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Given a graph G, it is possible to attach positive and negative sigis to its lines only, to its 
points only, or to both. The resulting structu-es are called respectively signed graphs, marked 
graphs and nets. The dual of each such structure is obtained by changing every sign in it. We 
determine all graphs G for which every suitable marked graph on G is self-dual (the M-dual 
graphs), and also the corresponding graphs G for signed graphs (S-dual) and for nets (N-dual. 

A graph G is M-dual if and only if G or G is one of the graphs K,,, 2K,,, mK,, K, x K, or 
2C,. The S-dual graphs are Ca, 2C,, 2C,, 2K,,,$ 2nK,, Kr,*,,, nK,,,, Is&, l?,, and all graphs 
obtained from these by the addition of isolated points. Finally, the only N-dual graph other 
than l&, is 2K,. 

1. Duality 

Let G be a graph (V, E) with p points and q lines. All graphical notation and 
concepts not defined here can be found in the book [ 11. From a graph G = (V, E), 
a signed graph S is obtained by signing each element of E positive or negative; a 
marked graph M by signing V; and a net N by signing both V and E. The dual 
structures S*, M”, N* result when every sign is changed in S, M, NY respectively. 
We say that S is self-dual if S* and S are isomorphic signed graphs; then M or IV 
is defined as self-dual similarly. Obviously if M is self-dual, then c = 2m is even, 
if S is self-dual, then q = 2s is even, and if N is self-dual, then both p and q are 
even. 

A (p, q) graph G = (V, E) is called S-dual if for every signing of E using s 
positive and s negative signs, the resulting signed graph S is self-dual. We say 
similarly that G is M-dual if for every signing of V using m positive and m 
negative signs, the marked graph M is self-dual. The concept of an N-dual graph 
G is analogous. 

2. e M-dual graphs 

Fortunately and coincidentally, these graphs have been obtained already by 

Kelly and Merriell [4] in another context. A gvaph G is bisectable if p = 2m is 
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even and for each subset U of m points, the induced subgraphs (U) and (V- U) 
are isomorphic. 

Theorem (Kelly and Merriell). The only bisectable graphs are Kzm, 2&.,, mK,, 
K, x K2, 2C, and their complements. 

For a subset UC V(G) of points of a graph G, define the subgraph ((U)) 
prodrrced by U, to consist of all lines incident with at least one point of U. Then 
for all UC V(G), (( V))U ({ V- U)) = G, whereas it is not in general true that 

(U)u(V- U)= G. 
Our first result shows that the concepts of a bisectable graph and an M-dual 

graph are equivalent. 

Theorem 1. A graph G is M-dual if and only if G or G is one of the graphs K2,,,, 
2K,, mK,, K, x K2, 2C,. 

Roof. Certainly if G is M-dual, so is its complement G. Evidently G is M-dual if 
and only if, for all U c V(17) with 1 Ul = m, ((U}) =(( V- U)). Let 1 Ul = m and write 
+ for the usual join operation [l, p. 211. For U t V(K,,), clearly 

{{U))={(V- U))= k, + K,. 

For UC V(2K,), with r points of U in one component and m - r in the other, 

Fc r U c V(mK,), with points of U appearing in r components, ((U)) s (( V- U)) =Z 
I%,. The graph K,, x Kz may be regarded as 2K,,, plus a l-factor. The graph 2 K,,, 
is M-dual, and the addition of a l-factor does not altdr this. Hence K,,, X K2 is 
M-dual. The graph 2C, is immediately seen to be M-dual. 

Conversely let G be M-dual, with UC V(G) and IV1 = m. Then the graphs 
produced by U and by V- U are isomorphic so certainly the graphs they induce 
are icnmnr;)hic and G is bisec‘;ible. By Theorem KM, G or G is one of the graphs 

hsted in the 3tatement. R 

3. he S-dual graphs. 

We consider nobI those graphs with 4 = 2s lines which are always self-dual with 
respect to line signings. For a subset Fc E(G) of lines of G, let (F) denote the 
subgraph induced by F. 

. The only S-dual graphs are C,, 2C,, 2C,, 2K1,,, 2nK2, Kl,z,, nK,,zl, 
K Ln, - ‘7 and all graphs obtained from these by t’ae addit+n of isolated points. 
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oof. The graphs K are trivially S-dual and obviously a graph obtained by 
adding isolated points to an S-dual graph is again S-dual. For any EC 
E(G), (F)U(E- F) = G, so that G is S-dual if and only if, for all Fc E(G) with 
IFI = s, (F) =(E - F). It is easily verified that the graphs listed in the statement are 
S-dual. 

It is convenient to develop the sufficiency argument by means of several 
lelnmas. The lemmas serve to find all S-dual graphs with no trivial components. 

Remark. The lemmas are proved by assuming that an S-dual graph G is not one 
of the graphs of the theorem. We then identify a nonempty subset F of lines of G 
such that (F) has some structural property not held by (E - F). Then one of these 
subgraphs has at most s lines which may all be given the same sign. Any 
completion in G of such a signing is not self-dual, a contradiction. As this 
reasoning is used repeatedly, the proofs of the lemmas end when such an 
exceptional subset of lines is constructed. 

Lemma 2a. Let qd be the number of lines oj G which are incident with a point of 
degree d. Zf G is S-dual, then qd = q for all d > 0 for which a point of degree d 
exis Is. 

Proof. Let G be S-dual. Assume there is an integer d > 0 such that a point of 
degree d exists but qd <q. Then there i., *c a line of G not incident with a point of 
degree d. Let Ed be the set of all lines incident with a point of degree d, do that 
lEdI= q& By hypothesis, neither Ed nor E -Ed is empty. By the Remark, this is a 
contradiction. Hence qd = q for all degrees d > 0 occurring in G. 0 

Lemma 2b. Zf G is S-dual with no trivial components, then G is regular or is 
bipartite with all points of the same subset having the same degree. 

Proof. By Lemma 2a, every line b;f 5 r.iust be incident with a point of degree d 
for every degree occurring in G. Thus at most two different degrees can occur in 
G. Either G is regular or points of different degrees dI and d2 occur. In this case 
G is bipartite since by Lemma 2a, no line of G can join two points OF the same 

degree. 0 

The next three lemmas serve to find all S-dual regular graphs. 

C. Zf G is S-dual and not a forest, then each component of G is a block. 

If G is S-dual then certainly all components of G are isomorphic. For if 

en for some component W of 6, all the components isomorphic to H 

together have at most s lines, a contradiction by the emark Thus if G is also not 
a forest, then no component of G is a tree. Let H be a component of G. Then H 
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contains a cycle and no line of this cycle is incident with a point of degree 1, so by 
Lemma 2a, there can bc no point of degree 1 in H. 

Assume H is not a block, and let EC be the set of all lines of H incident with a 
cutpoint. There must be some block B of H containing only one cutpoint O. Since 
no point of B is of degree 1 in B, the removal of all cutpoints from W removes 
only u from B, hence must leave some lines between points of B. These lines are 
incident with no cutpoint, hence E(H)-EC is not empty. The Remark completes 

the proof. Cl 

Lemma 2d. If G is S-dual and regular of degree d, then d s 2. 

Proof. If G is regular of degree d then s = pd/4. First, if d 3 4 then s 2 p. Choose 
one point. u of G and sign the d lines incident with u positive. It requires at most 
p - d - 2 additional positive lines to cover the p - d - 1 points not adjacent to O. 
Then we have used at most p - 2< s positive signs to make all lines incident with 
u positive while leaving no point with all incident lines negative. 

The Remark applies here to give a contradiction. Hence d c 3. 
If d = 3, since 4 is even, we have p = 4n and 4 =‘6n for some ~1. since K4 is not 

S-dual, n is at least 2. By Lemma 2c, each component of g is I block. It is well 
known that a cubic block has no bridge. Feierscn [6] proved that every cubic 
bridgeless graph has a l-factor, i.e., a spanning subgraph of the form mK,. By 

signing each line of such a subgraph in G positive, every point of G is incident 
with a positive line. Choose one point u of G and sign the other two lines incident 
with u positive also, This uses 2n + 2~ 3n = s positive signs. Again the Remark 
applies, since we have all lines incident with u positive and no point with all 
irlcident lines negrmtive. I-Ience d s 2. Cl 

Lemma 2e. If G is S-dual and regular of degree 2, then G is C6, C,, 2C,, or 2C,. 

Proof. By hypothesis, G is a union of cycles. As in Lemma 2c, the comp~onents of 
G are isomorphic so G is of the form kc,. Further, k s 2 for if k > 2, make one 
C,, component all positive, This leaves nk/2 - n = n(k - 2)/2 > .r( - 2 positive signs, 
enough to use one on each of the other k - 1 cycles, leaving no cycle all negative. 

If G consists of odd cycles C&,+,, then G must be 2C2m+l and in fact, G = 2C,. 
For if m z 1, we may sign one cycle with a Pm+t subgraph positive and a Prn+2 
$Uh Jranh xgative and sign the other with a P,,,+l U P2 subgraph positive and a 
P,,, U 6:) subglaph negative. This is not self-dual. 

If G corxists of even cycles C,,, then m c 3. For if w1>3 we may choose in 
each component m lines which induce the subgra.ph P2 U Pm while the remaining 
tn lines induce fs U P,,,_ l. Again this is not self-dual. If one component is Cb, then 
there is only one component. For if there arc two components then we may sign 
one with a P5 subgraph positive and a P7 subgraph xgative, and the other with a 
2 P2 subgraph positive and a 2P, subgraph negative. ,I-Ience G = 2C,, C,, Cd, or 
2c,. q 
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Evidently, if G is S-dual and regular of degree 1, then G = 2nK,. If G is S-dual 
and regular with d = 0, then G = Kn trivially. 

We now find all S-dual graphs which are not regular, looking first for connected 
graphs. 

Lemma 2f. If G is S-dual and a tree, then G = K1,2n, 

Proof. Since G is a tree, there exist points of degree 1. By Lemma 2a, either 
G = K2 or each line of G is incident with exactly one point of degree 1. Since G is 
S-dual, G # K2. Thus the q lines of G insure the presence of q distinct points of 
degree 1 in G. Since the tree G has q + 1 points, G = K1,. U 

By Lemma 2b, S-dual graphs which are n)t regular are bipartite. Let V(G) = 
U, U V, with ni points of degree di in Ui, i = 1,2, and dl # d2. 

Lemma 2g. Let G be S-dual and not regular. If ItI > 2, then dl c 2. 

Proof. Consider n1 > 2. If dl > 2, choose a point u from U1 and sign the dl lines 
incident with u positive. As s = n,dJ2, this leaves n,d1,12-d, = dl(n,-2)/2> 
n, - 2 positive signs. Thus there are enough plus signs available to pla,-e one of 
them on some line incident with each of the n, - 1 other points of U1. Since 
d, # dz, this is not self-dual. Hence dl s 2. El 

Lemma 2h. If G is S-dual, connected, not regular, and not a tree, then G = 
Kz.,,, n > 2. 

Proof. By Lemma 2a, if G is not a tree there are no points of degree 1. If G is 
not regular we may assume 1~ d, < d, and since nldl = n2d2 and dl s n2, we have 
n,>n,>l. Hence, n,>2 so dl = 2 by Lemma 2g. If also n2> 2 then d, = 2: but 
d, # d, so n,= 2. Then dl = nz, so that G is a complete bigraph; hence G = K2,,, 
when n=n,>2. 0 

Finally we look for disconnected nonregular S-dual graphs. 

Lem.ma 2i. If G is S-dual, not replrr, and disconnected with no trivial com- 
ponents, then G = nKl,2 or G = 2K,.,,. 

Proof. Since G is disconnected and dl # d’, we may assume I< nl < n2, so 
6, ;, d2. We have n,,>Z so d,<2 by Lemma 2g. In one case, n, > 2 also Then 

4~2 so d, = 2, dz= 1. Since nld, = n2d2= q, we have n2 = 2n,. Evidently G = 

w.2 when n = n,. 
In the other case, nl = 2. Since G is disconnected, d2 < nl. Hence dZ = 1, n, is 

even, and dl = n2/2. Thus G = 2K,,, when n = n,/2. 0 

This completes the proof of the theorem. 00 
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Without reference to line signing, we may define a graph G to be E-bisectable 
if q = 2s is even and for every subset Fc E(G) with IFI = s, the subgraphs induced 
by F and by E - F are isomorphic. The concepts of an E-bisectable graph and an 
S-dual graph are equivalent. 

4. The N-dual graph 

We turn now to N-dual graphs. Certainly every N-dual graph is both S-dual 
and M-clual. Thus we need only search among the graphs of Theorems 1 and 2 
although a direct determination of all N-dual graphs is not difficult. 

Theorem 3. The only N-dual graphs are 2K2 and G 

Froof. The graphs I?*,, are trivially N-dual. There 
signings of 2K2 as a net and each is readily verified 
in Fig. 1. 

+ - + 

+ - 
% % 

- t 

+ - 
% 1 
+ 

Ia) (b) 

are only three nonisomorphic 
to be N-dual. They are shown 

+ + 
? 

+ 
[ -A 

k) 
Fig. 1. The three nets on 2K, with equidistributed signs. 

By Theorems 1 and 2, the only graphs G which are both N-dual and S-dual 

are K Zn, 2nK,, C,, 2C,, and 2C,. None of the latter three graphs is N-dual as 
illustrated in Fig. 2. Hence G is &,, or G is of the form 2nK,. 

Assume n > 1 and sign the lines arbitrarily. As there are at least four Kz 
components, we may construct the following net. Let one positive line have both 
its points positive, let one positive line have bot:r points negative, and let all 
remaining lines have one pomt positive and one negative. This net is not self-dual, 
a contradiction. Hence n = 1 and G = 2K,. 0 

+u - - 
(a) - 

+ 

/rr + + a_ 

(b) 

Non-self-dual nets on C,, 2C,. 2C,. 

+ - + 

+ lz! + - 
+ - + 

+ El_ + - 
(c) 

Fig. 2. 
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Kelly and Merriell [5] found all the bisectable digraphs and, hence, all A4-dual 
digraphs. Self-dual marked graphs, signed graphs, and nets are counted in [2]. 
The converse D’ of a digraph D is obtained when the orientation of every arc in 
D is reversed. A theorem analogous to those obtained above was derived in [3] 
for the dual operation of taking the converse. 

Theorem (Harary, Palmer and Smith). The only connected graphs for which every 
orientation is self-converse are K1, K2, C,, Cd, and C,. 
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