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Introduction 

The purpose of this note is to record the Green's function that 
is suitable for formulating planar exterior thermoelastic contact 
problems. Exterior contact problems arise when the contacting 
bodies locally separate as heat is conducted through the inter- 
face. It is convenient to write the governing integral equations 
for such problems on the separation rather than the contact zones. 
The Green's function for the exterior contact consists of a ther- 
moelastic field (heat vortex) that allows one to construct an ar- 
bitrary temperature discontinuity across the interface, while 
maintaining continuity of heat flux, tractions and normal dis- 
placements, and a mechanical field (edge dislocation at a fric- 
tionless interface) which is required to introduce separation be- 
tween the solids. No derivations are given because it is readily 
confirmed that the results satisfy the field equations of thermo- 
elasticity and the appropriate boundary conditions at the inter- 
face. The simplifying assumption used is that the contact is 
frictionless. 

Heat Vortex 

The coordinate system is placed in relation to the contacting 

solids as shown in Fig. i. The two bodies are distinguished by 

the subscripts 1 and 2. The thermal conductivity is denoted by 

k, the coefficient of thermal expansion by ~, the shear modulus 

by ~ and Poisson's ratio by ~. 
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Consider the temperature distributions 

k2 .e 
T 1 = k~--~2t ~ - i) 

kl .@ 
T 2 = k ~ 2 t  # - I )  

( i )  

(2) 

0 < @ = tan -I Z < 2~ (3) 

which satisfy the differential equation of steady state heat con. 

duction and lead to the following components of heat flux: 

q(1) (2) _ ~ klk2 y (4) 

x = qx ~ kl+k 2 r 2 

q ( 1 )  ( 2 )  _ ~ k l k 2  x 

Y = q y  ~ k l + k  2 r 2  ( 5 )  

Herein ~ is a constant. The conditions satisfied on the inter- 

face by the thermal fields are 

Tl(X,0 ) + ~H(x) = T2(x,0 ) (6) 

q ( 1 ) ( x , 0 )  ( 2 ) ( x , 0 )  ( 7 )  y = q y  

w h e r e  H( ) d e n o t e s  t h e  H e a v i s i d e  s t e p  f u n c t i o n .  I t  i s  s e e n  t h a t  

t h e  t e m p e r a t u r e  d i s t r i b u t i o n s  c o n t a i n  a j u m p  a c r o s s  t h e  i n t e r -  

f a c e  f o r  x > 0 .  T h e  h e a t  f l o w  l i n e s  a r e  c i r c l e s  c e n t e r e d  o n  t h e  

o r i g i n  ( h e n c e  t h e  n a m e  h e a t  v o r t e x ) .  T h e  t h e r m a l  s t r a i n s  c o r r e -  

s p o n d i n g  t o  t h e  h a r m o n i c  t e m p e r a t u r e  d i s t r i b u t i o n s  ( 1 )  a n d  ( 2 )  
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are compatible and can be integrated for displacements (free ex- 

pansion displacements) in each of the bodies. However, the re- 

sulting expressions show that the normal displacements at the 

interface do not match, and either a variable gap or overlapping 

of material develop between the two solids. 

The normal displacements can be made continuous by superposing 

a purely elastic field derived from complex potentials of the 

type z and zlogz. It is also possible at the same time to adjust 

the elastic fields so that the normal tractions are continuous 

and the shearing tractions vanish at the interface. After dis- 

carding rigid body terms, the total displacements obtained on 

this basis are 

(1) 
U 

x 

(2) 
u 

x 

(1) 
U Y 

u(2) 
Y 

klk2 

kl+k 2 
--[61[ylogr-x(~-@)] 

M(61-62 ) 
2Pl [(<l+l)yl°gr-(ml -l)x(~-@)+y]} 

klk2 

kl+k 2 
--[62[ylogr-x(~-@)] 

M(61-62 ) 

2~ 2 

(8) 

[(<2+l)ylogr-(K2-1)x(z-O)+y]} (9) 

klk2 
k - - ~ 2 { 6 1 [ x l ° g r + y ( z - O ) ]  

M(61-62 ) 
2~i [(<l+l)xl°gr+(Kl-l)Y(~-O)-x]} 

klk2 
k-~2{62[xl°gr+y(~-8)] 

( lO) 

M(~1-6 2) 
+ 2p 2 [(<2+l)xlogr+(K2-1)y(~-e)-x]} (Ii) 

where 

6 - ~(l+v) 
k , < = 3 - 4u (12,13) 
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for plane strain, and 

2~i~ 2 
M = ~i(<2+i) + ~2(<i+i) (14) 

The set of first terms in (19-12) constitute the free expansion 

displacements, while the second terms which are mutliplied by 

the constant M are related to the stresses through Hooke's law. 

The stress components are 

klk 2 
a(1) = _a(2) 2~ M(~ ~ ) (7-0- x_~) (15) 
xx xx = --~ i- 2 ~ r 

klk 2 2 
(i) = _a(2) _ 2~ M(61_~2) y 

axy xy ~ k-~ 2 r2 (16) 

klk 2 
a(1) _ a(2) 2~ M(~ 6 ) (n-0+ ~) (17) 
yy yy = --~ I- 2 ~ r 

The boundary conditions satisfied on the interface by (8-11) and 

(15-17) are 

u(1)(x,0) = u(2)(x,0) (18) 
Y Y 

a(1)(x,0) = a(2)(x 0) = 0 (19) 
xy xy ' 

a(1)(x,0) = a(2)(x 0) (20) 
YY YY ' 

It may be noted that a term corresponding to rigid body rotation 

must be added to either (i0) or (Ii) in order to enforce condi- 

tion (20) in a strict sense. 

Of particular interest in formulating the exterior thermoelastic 

contact problem are the heat flux and normal tractions trans- 

mitted by the interface. Shifting the heat vortex from the ori- 

gin to an arbitrary point (~,0) on the interface, the results 

are 

klk2 1 
qy(X,0) - ~ kl+k 2 x-~ (21) 
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klk 2 
Oyy(X,0) = 2~M(~l-~2)k-~ 2 H(x-~) (22) 

Suppose that heat vortices with the density ~(x) are distributed 

over the interval (a,b) on the interface. The resulting temper- 

ature discontinuity then is 

T(x) = T2(x,0) - Tl(X,0) = 0, x<a 

I x = ~(~)d~, a<x<b 
a 

= a ( g ) d g ,  b < x  
a 

(23) 

The corresponding heat flux and normal tractions transmitted by 

the interface are 

1 klk2 I b ~(~)d~ 
q y ( x , O )  - ~ k l + k  2 x - ~  

a 
(24) 

YY 
(x,0) = 0, x<a 

= 2M(~l-~2)k-~ 2 ~(~)d~, 

klk2 Ib~(~ b<x 
= 2M(61-62)k--~k2 -a )d~, 

a<x<b 

(25) 

It is seen from (23) and (25) that 
YY 

T(X). From (23) it also follows that 

(x,0) is proportional to 

dT(x) (26) 
~(x) - dx 

If the interval (a,b) is a separation zone that is bounded by 

two contact zones offering no resistance to heat transfer from 

one body to the other, T(x) = 0 outside the separation interval, 

and from (25) 



314 J. DUNDURS and MARIA COMNINOU 

b 
I ~ ( ~ ) d ~  = 0 

a 
(27) 

Edge Dislocation at a Slipping Interface 

Consider the elastic fields 

u ( 1 ) byM 
x = 2~i{ (<i-i) l°gr 2x2 

• 2 } 
r 

u(2) b M 2x 2 
- E - - - { ( K 2 _ l ) l o g  r - - -~ -}  

x 2~2 r 

b M b M 
u(1)y _ 2~IY [(<i+i)0 r ~2xy} 2~IY (<I+i) 

u(2) b M b M 
Y = 2~2 (<2+l)g 2~y} _ _~__(K2+l) 

r 2~2 

(28) 

(29) 

(3o) 

(31) 

a ( 1 )  = a ( 2 )  _ 2byM 
xx  xx  ~ ( 1  2x2  - ~ )  (32) 

r r 

( 1 )  = a ( 2 )  _ 2byM 
axy xy ~ -~2 (I 2x2 ---~--) (33) 

r r 

a ( 1 )  = a ( 2 )  _ 2byM 2_~22 
YY YY ~ % ( 1  + ) ( 3 4 )  

r r 

where M is defined by (14), and 0 < e < 27. These fields satis- 

fy the equations of equilibrium and the following boundary con- 

ditions at the interface" 

u ~ l ) ( x , 0 )  + b y H ( X )  

, a(2)(x o ( 1 ) ( x  o)  -=  o) 
x y  - x y  " ' 

( 1 )  x 0 )  = a ( 2 ) ( x , 0 )  
a y y  ( , YY 

= u ( 2 ) ( x , 0 )  (35)  
Y 

= 0 (36) 

(37) 

It is seen from (35-37) that the given displacements and stresses 

correspond to an edge dislocation which has the Burgers vector 
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(0,by) and is located at the freely slipping interface. 

Shifting the dislocation from the origin to the point ([,0), the 

gap between the solids and the normal tractions transmitted by 

the interface are 

= u ~ l J ( x t  ~ 0 )  - u ~ 2 ) ( x C  0 )  = - b  . H ( x - [ )  ( 3 8 )  g(x) 
X ' y ' Y 

2byM 1 
gyy(X,0) - ~ x-[ (39) 

If edge dislocations are distributed on the interval (a,b), with 

By(X) being the density, 

g(x) = 0, x<a 

- fx B 
a y(~)d~, a<x<b 

- ~)d~, b<x 

ayy(X 0) - 2M rjb 
By([)d[ 

' ~ a x-[ 

(40) 

( 4 1 )  

It follows from (40) that 

dg(x) 
B y ( X )  = d x  (42) 

and also that, if the gap is to close at x = b, we must have 

(43) 

Conclusion 

The given expressions, in particular (24), (25) and (41), allow 

one to write at sight the governing integral equations for ex- 

terior contact problems. The unknown functions in the integral 

equations are the densities of heat vortices and the edge dislo- 
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cations. However, the intervals of integration are generally un- 

known, and the equations are subject to inequality conditions ex- 

pressing the requirements that the gap may not be negative and 

that the interface tractions may not be tensile. Once the two 

densities are determined, any field quantity of interest can be 

found by integration using the given expressions. 
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