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The two-loop corrections to the axial anomaly are calculated for a non-abelian gauge theory 
with fermions using both conventional and supersymmetric dimensional regularization. In both 
cases we find results consistent with the Adler-Bardeen theorem if we use the non-anticommuting 
./5 of 't Hooft and Veltman. Expectations (based on the supermultiplet structure of the anomalies) 
that there exists in N =  1 supersymmetric Yang-Mills theory an axial current j5  such that 
c7. j5  _ / 3 ( g ) F F  are discussed. 

1. Introduction 

In this paper we present a calculation of the two-loop correction to the divergence 
of the axial current O"Jf in a non-abelian gauge theory with a multiplet of fermion 
fields transforming according to an arbitrary representation R of the gauge group. 
For simplicity we take the fermions to be massless throughout, so that chiral 
symmetry is broken only by the Adler-Bell-Jackiw (ABJ) anomaly. All our calcula- 
tions are performed using dimensional regularization. One purpose of this paper is 
to investigate whether or not the well-known difficulties associated with ~,5 in 
dimensional regularization schemes can be dealt with, and to explicitly verify the 
Adler-Bardeen theorem at the two-loop level. For Majorana fermions transforming 
according to the adjoint representation we have N = 1 supersymmetric Yang-Mills 
theory (SSYM) (in the Wess-Zumino gauge), and this special case provides us with 
additional motivation. As is well known [1-5] in SSYM the axial, the trace of the 
energy-momentum tensor and supersymmetry (~,-S) anomalies form the F, G, ~p 
components respectively of a chiral scalar supermultiplet (AB+FG). The leading 
contributions to the anomaly preserve the supermultiplet structure of the anomalies 
(as long as we use a regularization procedure for which the supersymmetry anomaly 
resides in y .  S rather than O,S ~) [3,6]. It is known that the trace anomaly is 
proportional to the Callan-Symanzik function fl(g) to all orders [7], while the 
Adler-Bardeen (AB) theorem [8] asserts that there are no radiative corrections to the 
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axial anomaly beyond the fermion triangle. The most obvious resolution of this 
dilemma is that the AB theorem is simply not valid in supersymmetric theories; there 
might be a conflict between the proofs of the theorem and the additional constraints 
of the supersymmetry Ward identities. Since, however, the supermultiplet identifica- 
tion of the usual axial current in SSYM remains unclear (see for example the recent 
analysis of Piguet and Sibold [9]) we feel an explicit calculation may be useful. The 
results are given in ref. [10]; in this paper we give more details of the calculation and 
discussion of related issues. The Adler-Bardeen theorem in non-supersymmetric 
non-abelian gauge theories is considered to be established [11]. The only explicit 
calculation to verify this statement of which we are aware is that of Chanowitz [12]. 
He calculated the one-loop corrections to the operator F ~ F  ~ ( P ~  --- e~PXFox) in the 
spontaneously broken phase of an SU(2) gauge theory, using the modification of 
dimensional regularization proposed by Bardeen [11], and found results consistent 
with the AB theorem. Our motivation being somewhat different, we do not introduce 
breaking of the gauge symmetry and calculate the two-loop corrections of O~J/ as 

, I L v  ~ 

well as the one-loop corrections to F F~. We perform the calculations using two 
regularization prescriptions: conventional dimensional regularization (CDR) [ 13-15] 
and supersymmetric dimensional regularization, or regularization by dimensional 
reduction (SDR) [16]. This choice of procedures is motivated by the fact that 
dimensional regularization (in some form) is the most practical way of performing 
explicit calculations beyond the one-loop level. The trade-off for the convenience of 
dimensional regularization is the difficulty in treating ,/s. We shall see, however, that 
if one uses the non-anticommuting ~,5 of 't Hooft and Veltman [13] and carefully 
imposes relevant Ward identities, then one obtains results consistent with the AB 
theorem for both CDR and SDR in the abelian and the non-abelian case. As 
emphasized by Chanowitz et al. [17], use of a non-anticommuting ~,5 is inconvenient 
and can be avoided at the oneqoop level. The reader is referred to ref. [17] for a 
discussion of their prescription and its possible extension to higher order. 

In the model under consideration the axial current is not gauged so the anomaly 
has no implications concerning renormalizability. In currently popular theories of 
electroweak interactions there are indeed gauged axial currents. Renormalizability is 
maintained by choosing particle representations so that the axial anomalies cancel at 
one loop, and appealing to the AB theorem to extend this result to all orders. Of 
course, in a supersymmetric version of such a theory it is not at all clear whether the 
supermultiplet structure would place any restriction on the gauged axial currents; 
however, the question of whether supersymmetry implies non-vanishing higher order 
corrections to the anomalies of these currents clearly deserves further investigation. 
If the answer were in the affirmative the consequences for recently fashionable 
supersymmetric grand unification would be severe. 

The rest of this paper is organized as follows. In the next section we review the 
status and limitations of the SDR method and discuss the treatment of .~s in 
the context of dimensional regularization. Sect. 3 is devoted to a discussion of the 
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one-loop correction to 0- j s .  In sect. 4 we calculate the two-loop corrections to 0. j5  
and the one-loop corrections to FF, and compare the results with our expectations 
(based on supersymmetry) for the special case of N = 1 supersymmetric Yang-Mills 
theory. In sect. 5 we present conclusions and speculations. In appendix A an identity 
used in sect. 3 is derived, and in appendix B we describe the calculation of the 
two-loop Feynman integrals, and give results for some of the integrals that were 
encountered. 

2. Supersymmetric dimensional regularization 

Calculations beyond the tree approximation in field theories require a regulariza- 
tion method to deal with the resulting infinities. The method almost universally 
adopted in gauge theories is that of dimensional regularization [13-15], and for 
excellent reasons; it is manifestly gauge invariant, and convenient in practice. It was 
therefore natural to seek to apply dimensional regularization to supersymmetric 
theories. The difficulty that then arises is that supersymmetric theories are not 
invariant with respect to the supersymmetry transformations in a general number n 
of space-time dimensions. The essential source of this problem is that a necessary 
condition for supersymmetry is equality of Bose and Fermi degrees of freedom; an 
equality which will hold only for specific values of n. 

A possible solution to this problem retaining the benefits of conventional dimen- 
sional regularization (CDR) was proposed by Siegel [16]. The essential difference 
between Siegel's method, which we will call supersymmetric dimensional regulariza- 
tion (SDR), and CDR is that the continuation from 4 to n dimensions is performed 
by dimensional reduction. Subsequent calculations confirmed that the method 
respected supersymmetric Ward identities at the one-loop level in both global [18] 
and local [19] supersymmetry (while CDR did not). It was subsequently pointed out, 
however, that at sufficiently high order the method fails to respect supersymmetry 
for general n [20, 21]. The essential reason for this is that in SDR it is necessary to 
separate all 4-vectors into n-dimensional and (4-n)-dimensional  parts. Thus the 
decomposition 

v~=v;+v~ (2.1) 

is assumed (formally) to exist for the 1' matrices. [In eq. (2.1)/~,/i and/ i  denote 4-, n- 
and ( 4 -  n)-dimensional vector indices, respectively.] Consider the lagrangian for 
supersymmetric Yang-Mills theory (N = 1) (in the Wess-Zumino gauge) 

- aG/,~ + ½i~ky#Dl,~. (2.2) 
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The variation ~E of ~ with respect to a supersymmetry transformation 

= i G +  °, 

8+° = F2 o %, 

is (up to a total derivative) 

= ½gdob' V.+%br.+ c. (2.3) 

8~ can be shown to be zero by a Fierz rearrangement in 4-dimensional Minkowski 
space, but this Fierz rearrangement depends on properties of the y matrices 
inconsistent with the decomposition (2.1) for non-integer n. It was argued in ref. [21] 

that, for example, the supersymmetric Ward identity for the two-point function 
examined in ref. [18], may receive a non-vanishing contribution from 6~ at the 
4-loop level. Thus it is still an open question as to whether there exists a modifica- 
tion of dimensional regularization which is fully supersymmetric. It is easily seen, 
however, that 8~ will not contribute in our calculations at the one- or two-loop level. 
The use of a regularization method which fails to respect the underlying symmetries 
is, of course, fundamentally unsatisfactory, but, as we have already stated, it is 
difficult (for the authors at any rate) to contemplate such calculations without 
dimensional regularization (in some form). 

We turn now to the treatment of @. It was recognized in the earliest applications 
of dimensional regularization [13, 14] that 75 presents difficulties. These arise be- 
cause a fully anticommuting 3, 5 in n dimensions implies immediately: 

n(n- 2 ) ( n -  4)Tr['~5,&~,#,tvTa] = 0 .  (2.4) 

In their initial work on dimensional regularization 't Hooft and Veltman [13] 
recognized this problem and showed that a successful treatment of the one-loop 
anomaly was obtained by use of a 3, 5 with the following properties: 

{r 5, = 0,  

{@, Ya} = 2ysyg = 2ygy 5 , (a.51 

where 6~, = 4, ~ = n and 6~zg = n - 4. 
Consistent use of eq. (2.5) leads, of course, to spurious anomalies in other 

(non-anomalous) Ward identities. Subsequent authors [22-24] argued that these 
spurious anomalies could be dealt with, essentially by imposing the Ward identities 
on the renormalized Green functions. This procedure is unwieldy for diagrams 
involving even numbers of y5 's but poses no problems of principle. 
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An alternative prescription which permits the use of an anticommuting y5 (at the 
one-loop level) has been given by Chanowitz et al. [17]; we will not discuss this 
method as it is unclear (to us) how it can be extended to higher orders. 

Our procedure is therefore as follows: We write down all fermion loops starting 
with the 3, 5, and then perform Feynman integrals and Dirac algebra without 
assuming any property of 3, 5 at all, except that 

Tr[75~,~3, ~] = 0 .  

This prescription is sufficient to enable us to achieve expressions which have finite 
limits as n --, 4. After this limit the usual formula 

Tr [ ~,5~,~,~y~,8 ] =4ie,/~ 

is used. 
That this procedure is satisfactory for the evaluation of the lowest order VVA 

triangle has been noted by a number of authors [17,6,25]; we will for clarity 
reconsider this calculation and then follow the same procedure at the two-loop level. 

We have verified that this procedure gives automatic vector current conservation at 
both one- and two-loop levels in QED. The usual ambiguity in the position of the 
anomaly corresponds to the arbitrariness involved in the choice of initial position for 
the 3, 5 . 

We shall see, however, that in one graph (fig. 2r) we are obliged to use an explicit 
prescription for ys, in order to ensure that a Ward identity is obeyed. As we shall 
see, it is then eq. (2.5) which leads correctly to the Adler-Bardeen theorem. The 
calculation of fig. 2r will be considered in more detail in sect. 4. 

It has been argued that a non-anticommuting 3, 5 such as that of eq. (2.5) is 
inconsistent with supersymmetry [26, 6]. Certainly in the Wess-Zumino model, for 
example, the action is no longer invariant under the supersymmetry transformations 
and consequently spurious anomalies are generated, which must be dealt with as 
described above. The impact of these observations on our calculation is not clear, 
however, since 0- j5  and FF  are not members of the same supermultiplet but rather 
equivalent (presumably) members of a different supermultiplet. It might also be 
objected that SDR, being based on dimensional reduction, definitely requires n < 4, 
whereas the 't Hooft-Veltman y5 requires (formally, at least) n > 4. We will return to 
these points in sect. 4. 

3. Supersymmetry and the VVA triangle 

According to the Adler-Bardeen theorem, the divergence of the axial current 
~,q,~3,5~b is given in both abelian and non-abelian gauge theories by the expression 

g2 
0 . J  5 = T(R) FF,  (3.1) 

16~r 2 
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where T(R) is given by 

T(R) ~.6 = Tr[ R~R b ] 

for fermions transforming according to the representation R. 
In N = 1 supersymmetric Yang-Mills theory (SSYM) however, (corresponding to 

the case of Majorana fermions in the adjoint representation) it has been conjectured 
that 

O.j5 = 1  fl(g) FF. (3.2) 
6 g 

The basis for eq. (3.2) is the statement that 0. j5  forms a supermultiplet with 0~ and 
~, • S. Then if one accepts that the relation 0¢ - B(g)F 2 is true in the supersymmetric 
case, it follows that eq. (3.2) rather than (3.1) is necessary if the supermultiplet 
nature of the currents is to be preserved. 

Our purpose is to investigate the validity of eq. (3.1) [and in SSYM eq. (3.2)] to 
O(g4), by calculating the Green functions 

(OIT(O" JS(x)A~(y)A~(z))lO), 

(OIT(FPA~(y)A~(z))[O). (3.3) 

In momentum space 

lAg2  + Bg4 1 
(Ol3"JSA.(pl)A.(p2)lO) = [ 1 - - ~  2 (16~r2)2 _ .4e.~oop~p~ , (3.4) 

cg2] (3.5) (0[F/~A,(p,)A.(p2)[0) = 2 1 + 1-~2 j .4e,~o.pfp~. 

Our aim is to calculate A, B and C. In this section we consider the calculation of 
A. Of course, this calculation is nothing but the standard VVA triangle and has been 
performed already (using dimensional regularization) a number of times; neverthe- 
less for completeness we include it here. First we show how a direct evaluation of the 
VVA triangle* leads to a determination of A; then we give a simplified derivation 
which readily extends to the two-loop level (the calculation of B) avoiding com- 
pletely the necessity for studying unwieldy Feynman parameter integrals. 

* We follow closely the derivation of Capper [25]. 
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Pl L P2 
Fig. 1. The basic triangle diagram for the axial anomaly. The circle denotes a 3,5~ ''~ insertion. 

The one-loop expression for the Green function (see fig. 1) ~ 0 l J ~ ( - p l -  
p2)A~(p,)A~(p2)JO) is 

R~b=fT(R)Sabf d"k 
(2~) 4 

Tr [ ys~,x(/~ + p, )~,~/~y~(/k - P2)] - Tr[~'5~'x(/k - P2 )~@~',(~ + P~)] 
X k2(k +p,)2(k-e2) 2 

(3.6) 

Note that we have included trace terms corresponding to both fermion arrow 
directions in the loop, as appropriate for Dirac fermions. We have been careful to 
verify in every diagram that these two choices always give equal contributions. This 
means that the case of Majorana fermions can be extracted unambiguously by 
suitable choice of group theory factors. 

Using the results of appendix A it is straightforward to show that 

Rxu~(pt, p2)=~" 2 foldX fol-~ d yKau ~, 

where 

Kx, ~ = (n - 4)JzTr [ @Yx~'uY,( P2- P,) ]  - Q2J, Tr[ Y5 YxY~,Y~( P , -  P2)] 

+4QJ, Tr[y53'xp,y.Q] -4Q.J, Tr[yS~'xQq'Hb2] + 2J,Tr[ySyxp,3. .ey~p2].  

g__Z_ 
= (2'/7") 4 T ( R )  8 ah. (3 .7 )  

(See appendix A for the definitions of J1, J2 and Q.) 
Note that, since J2 has a simple pole at n = 4 while Ji is finite, Rx,  ~ is well-defined 

and finite at n = 4. [Use of the identity (A.4) is crucial to the derivation of this re- 
sult.] 
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It follows easily from (3.7) that 

X 
( P l + P 2 )  Rx.~ 

So 
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= (4(n - 4) J2Tr[,/5~%y.p, ~2] 

= 2 ~ 2~ Tr [-f 5yuy,/~, ~2] . 
n ~ 4  

A = 2T(R). (3.8) 

For QED this is the usual anomaly. The diligent reader may care to verify from 
eq. (3.7) that 

p~Rx~ ~ = p ~ R ~  = O, 

corresponding to vector current conservation. 
The above calculation is an elegant demonstration of the power of dimensional 

regularization. In order to facilitate performance of the two-loop calculation, we 
modify the calculation as follows. Consider eq. (3.4). Differentiating both sides with 
respect to p~', and setting P l = -P2 = P, we obtain 

8 "b [ Ag2 Bg4 4 o 
R~6u~(p , -p)= [1 -~v  24 (16rr2) 2 " e~o~ p • 

Thus to determine A and B it is sufficient to calculate R,,~( p, - p ) .  The one-loop 
calculation becomes 

d~k 
Ro. , (p ,  - p )  = g2V(R) 3°6f  

(2v) 4 

× Tr [Ys %/~%(//: - p) yfl~ ] - Tr [y5 Y"~Y"(/k - p ) Y"k ] (3.9) 
( k 2 ) 2 ( p _ k ) 2  

whence (see appendix B) 

R ~ ( p , - p ) =  g2T(R) 3Ub(n--4)ITr[ySy~y~y~p ] . 
167r 2 

Taking the limit n ~ 4 we find 

A = 2T(R), 
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as before. This is a simpler method of obtaining A (and in subsect. 4.1, B), for the 
elementary reason that integrals that depend on only one external momentum are 
easily done in closed form. A similar calculation gives R,~,,(p, 0 )=  0 which (it is 
easy to see) corresponds to vector current conservation. We have verified that this 
result remains true at the two-loop level in QED. 

Thus we have rederived the usual result for the one-loop W A  anomaly using 
dimensional regularization. It is clear [6] that the calculation is not modified at all if 
we use instead supersymmetric dimensional regularization (SDR). The only Dirac 
indices not contracted with momenta are/~ and p, the indices on the external gluons. 
However, in SDR external gluons also bear n-dimensional indices. The easiest way to 
see this is to consider the gauge transformations 

a abc b c 6A~= gf A~A + O~A", 

a _ ~.fabcAbAc ( O~A a ~ 0 ) .  

Only the first n components of A, behave as a vector under gauge transforma- 
tions. 

In sect. 4 we extend the calculation to the two-loop level and determine B. 
Because there are now graphs involving internal gluons CDR and SDR then give 
different results for individual graphs. 

4. The anomaly in next-to-leading order 

In this section, we describe the calculations of the constants B and C defined in 
eqs. (3.4) and (3.5). As explained earlier we have differentiated the diagrams with 
respect to p~ and set P l = --P2 =P- For the sake of clarity, we will describe the 
calculation of B, i.e. of the matrix elements of the axial vector current at zero 
momentum transfer (the left-hand side) first. We then discuss the calculation of C, 
the matrix element of the operator F~" and its renormalization. We perform the 
calculation with conventional dimensional regularization and the supersymmetric 
dimensional regularization described in sect. 2. 

For the convenience of the reader who wishes to reproduce our results, we will list 
the contributions of groups of diagrams separately in three tables. The notation for 
the standard one- and two-loop integrals used in writing the final answers is defined 
in appendix B. We have found it convenient to eliminate the 12 terms and express 
everything in terms of Z and the product IJ. In this way an explicit factor of (n - 4) 
appears multiplying IJ in each term. All diagrams are proportional to the tensor 
structure Tr ys7~'y~y~, which we will omit to simplify already long formulae. We 
also set p 2 =  1 throughout, except in the final expressions for B and C. Finally we 
use the Feynman gauge (a  = 1) throughout the calculation. 



482 D. R. T. Jones, J. P. Leveille / Dimensional regularization 

4.1. THE MATRIX ELEMENT OF J#(0) 

The  two-loop diagrams are shown in fig. 2. Before differentiat ion the divergence 
of the axial current  introduces ~,5(#1 + ~2) at the axial vertex. When  we differentiate 
and set Pl = - P 2  = P ,  a non-vanishing result is obta ined only when differentiat ing 
the axial vertex. Consequent ly  the calculation now reduces to the calculation of the 

matr ix  element of J#  at zero m o m e n t u m  transfer. 

For  generality we per form the calculation with Dirac  fermions and so there are 
two directions for the charge flow. The  result for any d iagram is invariant  under  

reversing the charge flow, so each d iagram except 2i and 2j can be mult ipl ied by  a 
factor  of two and computed  only for one arrow direction. For  the diagrams 2i,j 
reversing the fermion direction does not  produce  a topologically distinct diagram; 
consequently these diagrams are not  multiplied by two. Only the counter - te rm 
diagrams 2 m - r  require an explanation.  They represent  the subtract ion of the pole 
term of the appropr ia te  self-energy or vertex insertion. 

(a) 

(e) 

(t) 

(rn) (n) 

Z 
(c) 

(k) 

A 
/0/ 

(r) 

(d) 

(h~ 

Fig. 2. The second-order contribution to the axial anomaly. For Dirac fermions there are two directions 
of charge flow. Flipping the charge direction does not yield a topologically distinct diagram for (i) and (j). 

A cross represents the insertion of the appropriate O(g 2) counter-term. 
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The only subtlety arises in the calculation of fig. 2r. It is necessary to ensure that 
the axial current is correctly normalized, and this determines the subtraction 
constant at the top vertex. We do this by imposing the identity 

F. 5 = ysFu (4.1) 

relating the renormalized axial and vector two-fermion Green functions. In the 
calculation of F, we subtract only the pole term in e; it therefore follows, if we 
assume an anticommuting '/5, that we must subtract only the pole term in F~ too. 
Conversely, if we adopt the 3, 5 prescription of eq. (2.5), then there are additional 
finite pieces which must also be subtracted. Thus, in this case, the identity (4.1) is 
true only for the renormalized (and not the unrenormalized) Green functions. As we 
shall see it is this procedure which leads to the AB theorem. Thus we obtain for fig. 
2r 

[ - 21 + x ] C 2 ( R ) T ( R ) ,  (4.2) 

where the first term arises from the pole term in the subtraction, and X is given by 

X C D R  = XSDR = 0 ,  (4.3) 

for an anticommuting '/5, and 

XCDR = - 8, (4.4) 

XSDR = -- 4, (4.5) 

for the '/5 of eq. (2.5). The different results of eq. (4.4) and (4.5) arise because in the 
former case the '/5 must commute past two n-dimensional ' /matrices,  while in the 
former one of them is n-dimensional and the other 4-dimensional. One might be 
concerned that in the SDR case there is a contradiction between eq. (2.5) which 
requires n > 4 and dimensional reduction, which requires n < 4. However, the 
properties of '/5 required are 

, / ~ ` / 5 , / ~  = ( n  - 8 ) ' / 5  , 

'/g [`/5, '/~]'/g = (6 - n)[ ' /5,  ' / ; ] .  (4.6) 

These relations can presumably be extended to n < 4, formally at least. Of course, it 
is not clear that this procedure can be made consistent with supersymmetry, which 
serves once again to underline the unsatisfactory state of the SDR procedure. All the 
integrals necessary to evaluate the diagrams have been tabulated in appendix B. An 
integration by parts is needed before the non-planar diagrams 2i,j are integrable 
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with the integrals of appendix B. The results of the diagrams are summarized in 

table 1 for C D R  and table 2 for SDR, (Diagram 21 vanishes identically after the 

differentiation has been performed.) Note  that the Z contr ibution to all diagrams 

except g + h and i + j  is proport ional  to (n - 4). The Z term of the sum g + h + i + j  

also contains an (n - 4) factor as can be easily verified. Since the expression for Z is 
finite as n = 4, namely Z = 6~(3)qr 4, the total Z contr ibution will vanish as n --* 4. 

Note  also that the IJ contributions have simple poles for all diagrams. The pole 

terms cancel in the sum as they should. 

Taking the n ---, 4 limit, the sum of all diagrams becomes 

BCD R = (8 + XCDR)C2(R)T(R) + C2(G)T(R)(12  - 4 y ) ,  

BSD R = (4 + XSDR)C2(R)T(R) + C2(G)T(R)(12  - 4 7 ) ,  (4.7) 

TABLE I 
Contribution of diagrams shown in fig. 2 in CDR for general n 

Diagram Group factor Result/Tr(~{ 5 y a y ~t ~Y ~/) ) .  ~ ab( g 4 / (  16 qr 2 ) 2 ) 

a + b + c C2(R)T(R ) 

d + e T(R)[C2(R ) -- '2 C2(G)] 

f C2(R) T(R ) 

g + h ~ T(R)C2(G ) 

i + j ½ T(R)C2(G ) 

k T(R)C2(G ) 

m + n + o C2(R)T(R) 
p + q C2(R)T(R) 

+ C2(G)T(R) 
r C2(R) T(R) 

2(n - 4 ) (n  - 2 ) ( - n  2 + 12n - 24) IJ 

(6 n)(3n 8) 

( n - 4 ) ( n  2) (n  2 7 n + 1 5 )  Z 
(,  - 1 ) ( .  - 3 )  

+ 2 ( n - 2 ) ( n - 4 ) (  7n 3+69n  2 - 2 2 7 n + 2 4 6 )  l J  

( n -  1 ) ( n -  3 ) ( 3 n -  8) 

2 ( n -  4 ) ( n -  6 ) (n  - 2) IJ 
3 ( .  - 8 )  

- (n-2)  2 Z +  2 ( n - 4 ) ( - 5 n  3+28n  2 - 5 6 n + 4 8 )  IJ 
(.  - 1 )  ( .  - 1 ) ( 6  - . ) ( 3 , ,  - 8 )  

2 ( - 2 n  2 + 17n - 34) Z 

(. ~)(.-3) 
+ 4(n - 4)(8n 4 -  108n 3 + 561n 2 - 1304n + 1128) IJ 

( n -  1)(n - 3 ) ( 6 -  n ) (3n  - 8) 

(4n 2 - 33n + 58) 
4 ( n - 4 )  ( - ~ n _ - 8 ~ n  ~ lJ  

6I 
- 4 I  

- 2 I + x  

We have eliminated 12 using identity (B.4) Diagram 1 vanishes identically. The answer for each is the 
product of the group factor and the last column. 
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TABLE 2 
Table 1 with CDR -+ SDR 

485 

Diagram Group factor Result/Tr(~,57~'-r~'~,"jb) .sab(g4//(16~r2) 2) 

a + b + c  C2(R)T(R) 

d + e T(R)[C2(R ) - ½C2(G)] 

f C2(R) T(R) 

g + h ½ T(R)C2(G ) 

i + j ½ T(R)C2(G ) 

k T(R)C2(G ) 

m + n + 0 C2(R)T(R ) 
p + q C2(R)T(R) 

+ C2(G) T(R ) 
r C2(R) T(R ) 

4( n - 4) ( - -n2+ 12n - 24) lJ 
(6 n ) ( 3 n -  8) 

2(n - 4)(n 2 -  5n + 7) Z +  4(n - 4 ) ( - 3 n  3 + 27n 2 -  83n + 86) / J  
( n - l ) ( n -  3) ( n - t ) ( n -  3 ) ( 3 n -  8) 

4(n - 4)(2 - n) IS 
(3n - s) 

( - 4 n  3 + 38n 2 -  128n + 152) Z 
2 ( n -  l ) ( n -  3) 

2 ( n - 4 ) ( - 1 2 n 4 +  155n 3 -  790n2+ 1844n-1632) 
+ IJ 

(n - 1)(n - 3)(6 - n ) ( 3 n -  8) 

( - 3 n  2 + 26n - 52) Z 
(n-  1)(n-3) 

2(n - 4)(14n 4 - 183n 3 + 924n 2 - 2096n + 1776) 
+ IJ 

(n - 1)(n - 3)(6 - n ) ( 3 n -  8) 

4(n - 4)(4n 2 - 33n + 58) IJ 
( 6 -  n ) ( 3 n -  8) 

61 
- 4 1  

- 2 I + x  

where 7 = "YE -}- l n ( p 2 / ~ 2 ) ,  YE being Euler's constant and ~2 the renormalizat ion 

scale. The group theory factors are according to the usual convention: 

T ( R )  8 ~b = T r  R ~ R  b, 

C 2 ( G  ) a~b = f ~ c a f b c d ,  

G ( R ) / =  RaR °- 

4.2. THE MATRIX ELEMENT O F  g2FF 

W e  m u s t  ca lcu la te  the  o n e - l o o p  d i a g r a m s  s h o w n  in fig. 3. T h e  F e y n m a n  rules  for  

the  F F  ve r t ex  are  eas i ly  o b t a i n e d  by  e x p a n d i n g  the  ope ra to r ,  and  are  s h o w n  in fig. 4. 

T o  c o m p u t e  the  d i a g r a m s  we first  wr i te  d o w n  the  exac t  express ion  wi th  m o m e n t a  p l 

a n d  P2 f lowing  in to  the  ex te rna l  g luon  lines. W e  then  d i f f e r en t i a t e  wi th  respec t  to p~ 

a n d  set p t = - P 2  = P. Because  the  t h r e e - g l u o n  ver tex  in fig. 4 is p r o p o r t i o n a l  to the  
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(a) 

(d) 

(b) 

(e) 

(c) 

Fig. 3. The correction to the matrix elements for F/~ in second order. The circle denotes the insertion of 
the operator. Diagram (e) represents the O(g 2) renormalization of the operator. 

total momentum flowing into the vertex, we only need to differentiate the F F  vertex 

for figs. 3b, c. It is easy to verify that for fig. 3a we only need to differentiate the 

ordinary three-gluon vertex. Fig. 3d vanishes identically after differentiation since no 

momentum flows in the loop. Hence we never differentiate a propagator  inside the 

graph; consequently, we do not generate any infrared divergences. When calculating 
the diagrams in either dimensional method, we must continue to n dimensions. The 

Feynman rules of fig. 4 contain explicitly the e tensor; so we must define what we 

mean by these rules in n dimensions. Actually there is a natural definition namely we 
identify the e~,po tensor with (1/4i)Tr(ySy~y,yp3,o) which we can easily continue to n 

dimensions. The only property of the tensor which is needed in the calculation is the 
complete ant isymmetry in the four Lorentz indices, which is satisfied by the trace 
tensor if Tr 3,5~,"3," = 0 in n dimensions which we have assumed. 

Fig. 3e provides the renormalization of the operator  g2FF. The bare operator  

g~FoF o is renormalized by the usual rescaling: go = Zgg = Z I Z A 3/2g, A~ = ZI/2AU. If  

we carry out this rescaling, we find to order g4 

g2FoF o = g 2 F ~ -  g2(1 - Z ~ Z # 2 ) F P  + . . . . (4 .8)  

The second term in this equation is the counter-term which we need to renormalize 

the bare operator  ggFoP o. Given the s tandard formulae for the renormalization 

a p q b pOLqr3 8ab 
8 E#~f3 # v 

a T" C 

,it p '(q 8 

s 
b ~2 

8 9 Epv8cr(p+q+r )o- ~aDc 

Fig. 4. The Feynman rules for the operator F/?. 
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constants  (in the F e y n m a n  gauge), 

g 2  | 

Z A = 1 + ( ~  C2(G ) - ~ T (R) )  4 - n 
16~r 2 

g2 1 (4.9) Z, = 1 + (4 C2(G ) _ 38 T (R) )  4 - n 
16¢r2 

we find 

4g' c2(G) (4.10) 
g 2 ( 1 -  Z~Za2)- 16~r 2 4 - n  

Note  that  the fermion contr ibut ions to Z t and Z A cancel in the renormal izat ion of 
g2FF. 

This rescaling of g2FF is sufficient to render  the two-gluon matr ix  element  of this 
opera tor  finite: there is no anomalous  dimension.  We are now ready to give the 
result of the computa t ion .  It  is easy to verify that  the result is identical for C D R  and 
SDR. The contr ibut ion for each graph is summar ized  in table 3. The  total contri-  
but ion is finite as n - *  4. We easily find [taking into account  the coefficient 2 

factored out in eq. (3.5)] 

C = (6 - 2 y ) C 2 ( G  ) . (4.11) 

If  we now define r by  the relation 

O.J 5 =rFF, (4.12) 

and substi tute the values of  A, B and C f rom eqs. (3.8), (4.7) and (4.11) in eqs. (3.4) 

TABLE 3 

Cont r ibu t ions  of d iagrams  in fig. 3 

D iag ram  R esu l t / [ (T r  3' 53' "3' ~' 3' ~/~ )" 8 ~ hg 4 /16  vr 2 ] 

a - 2( n - 9)IC2(G ) 
b + c 6IC2(G) 
d 0 

8C2(G)  
e + - -  

n - 4 

C D R  and  S D R  give identical  results. 
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and (3.5), we find 

C 2 ( R ) T ( R ) g  4 , 
- T(R)g2 + )2 (4+~XcDR),  (4.13) 

FCDR 167r 2 (16~r 2 

C 2 ( R ) T ( R ) g  4 , 
T(R)g2 + )2 (2 -]- 2 X s D R )  (4.14) 

rSDR-- 16~r: (16~r 2 

Note that in both cases the dependence on C2(G ) cancels. 
From eqs. (4.13) and (4.14) it is at once apparent that the AB theorem is valid for 

both CDR and SDR if we use the values of X from eqs. (4.4) and (4.5). So 
dimensional regularization in either form correctly reproduces the AB theorem to 
this order providing we are careful to normalize the current correctly by imposing 
the identity (4.1), and use consistently the 't Hooft-Veltman ~,5. 

Supersymmetric Yang-Mills theory corresponds to the special case C2(R)= C2(G) 
= 2T(R). Eq. (4.14) then yields 

1 C2(G) g2 + C2(G) 2 4,, 
- -  -~- 4 X s D R )  rSDR 2 16~r 2 (167r2)zg ~l 1 . 

(4.15) 

We now require the fl function through two loops. This was calculated using CDR 
in ref. [27], and it was subsequently verified that SDR gives the same results (Capper 
et a1., ref. [18]), namely 

So we see that, in accordance with eq. (3.1), 

FSDR .~ - _ / / ~ ( g ) ,  ( 4 . 1 6 )  

if and only if XSDR = 0. 
Thus we obtain the conjectured supersymmetric result by using an anticommuting 

~,5 in the calculation of F2. While this is an intriguing result it should be emphasized 
that its significance is unclear. Although the other graphs of fig. 2 were calculated 
without assuming any property of 75 other than Tr ,/57,~,~ = 0 the fact remains that 
strictly speaking a fully anticommuting ~5 gives zero for each graph because of the 
identity eq. (2.4), while the ~,5 of eq. (2.5) would reproduce our results. Therefore one 
could argue that the result r - f l ( g )  is obtained only at the expense of the chiral 
identity, eq. (4.1). 
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5. Conclusions 

We have verified that, using conventional dimensional regularization and the 
non-anticommuting 7 s of 't Hooft  and Veltman, the Adler-Bardeen theorem is valid 
through two-loops in both abelian and non-abelian gauge theories. With supersym- 
metric dimensional regularization the same result is obtained, although in the SDR 
case use of a non-anticommuting .ys is somewhat paradoxical since SDR requires 
n < 4 .  

If we use an anticommuting 7 5 in the calculation of F~ we obtain apparent 
violation of the AB theorem even in the case of QED. As already emphasized, this 
arises from the fact that the normalization of the axial current is now inconsistent 
with eq. (4.1). It is nevertheless intriguing that in the case of supersymmetric 
Yang-Mills theory, however, this method (with SDR) gives O.JS-fi(g)FF in 
accordance with expectations based on the supposed supermultiplet structure of the 
currents. Since it is not clear what restriction supersymmetry places on the axial 
current normalization, the question of whether the Adler-Bardeen theorem is valid in 
supersymmetric theories remains undecided. 

It is amusing to note that in the cases of N =  2 and N =  4 supersymmetric 
Yang-Mills theory there is, in any case, no apparent conflict between supersymmetry 
and the Adler-Bardeen theorem (at least to this order). For general N, B(g) is given 
by [28] 

[ C2(G)]2 5 . 0  'B'~ ] /~(g) = ( N -  4) g 3 _  2 ( N -  4 ) ( N -  2) ~ !  g , 

so that the two-loop contribution vanishes for both N = 4 and N = 2. In the case 
N = 4 it is generally believed (and verified through O(g7)) [29] that f l (g)  vanishes to 
all orders. In the case N = 2 it has been conjectured that the one-loop result is exact 
[30]. In both cases (assuming the truth of the conjectures) there would be no conflict 
with the AB theorem. Thus it is N = 1 SSYM that appears "anomalous" (sic) from 
the above point of view. 

One of the rules of the game of constructing renormalized gauge theories of 
unified interactions is that gauged axial currents should be kept anomaly free. This is 
commonly achieved by choosing particle representations such that the anomaly 
cancels at one loop and appealing to the AB theorem to extend this result to all 
orders. In the model we considered the axial current was not gauged; however, it is 
clear that the supermultiplet structure of the gauged axial currents and the question 
of anomaly cancellation in supersymmetric unified models requires careful examina- 
tion. Must one impose an infinite set of anomaly constraints? Or is it, in fact, the 
case that a regulator exists such that the one-loop result is exact for all three 
anomalies? A final resolution of these questions requires a superfield formulation of 
the anomalies and a two-loop calculation with a manifestly supersymmetric regula- 
tor, free of the ambiguities discussed in sect. 2. Work in this direction is in progress. 
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Appendix A 

In this appendix we derive an identity the use of which is crucial to the derivation 
of eq. (3.5), and hence to the demonstration of the finiteness of the VVA triangle 
graph. In fact the derivation was given by Capper [25]; we reproduce it here for 
convenience. 

We write 

dnk )2 
f k 2 ( k + p , ) Z ( k - p 2  

d"kk ,k ,  [ 
J k2(k + p , ) 2 ( k - p 2 )  2 

where 

and 

Consider the identity 

2foldXfo 1 - x d y J , ,  (A.1) 

2fo'dXfo'-Xdy(J28~+JiQ;,Q~),  (A.2) 

Q =ply  -p2  x , 

J,  = ½~r"/2r(3 - ½n ) D ~"/2~- 3, 

DJ 1 
J 2 = 4 _ n  , 

D -: x(1 - x)p~ +y(1 _y)p2 + 2xyp, "P2" 

(2k" + P ~ -  P~)k2dnk = 0 

f k 2 ( k + p , ) 2 ( k - p 2 )  2 
(A.3) 

(easily shown by shifting k --* - k + p~ - P2). In terms of J1, J2 this identity becomes 

/o' /0' dx -X d y ( n +  2)JzQ~{-½(p~-p~-2Q'~)QZJ , -½n(p~-p~)J2}=O.  

(1.4} 
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Eq. (A.4) is the identity required for the derivation of eq. (3.5). An analogous 
identity can be derived for the case of massive fermions [25]. 

Appendix B 

T H E  T W O - L O O P  I N T E G R A L S  

For our calculation we require a number of two-loop integrals dependent on one 
external momentum. We find it convenient to express all these integrals in terms of 
three basic quantities (I ,  J, Z)  which are defined as follows*: 

dnk 

f k2(k +p) 2 - I ,  (B.1) 

f d"k =j,  (B.2) 
(k2) 3 "/2(k +p)2 

d"k d"q = Z.  
f q2k2(k +p)2(q+p)Z(k_ q):  

(B.3) 

In fact there exists a remarkably simple identity relating I, J, Z: 

( n -  4 ) Z =  ( 6 n -  2 0 ) I J -  ( 2 n -  6)• 2 . (B.4) 

This identity is derived in ref. [31], and was rediscovered independently (and less 
directly) by the present authors. It represents a considerable simplification in the 
calculation of Z over previous methods. It is easy to verify that the known result for 
Z, viz. 

Z = 6~(3)~r 4 + O(n - 4) 

follows from eq. (B.4). 
The two-loop integrals which we encounter are expressed in terms of I, J, and Z 

by a process we illustrate by means of an example: 
Consider the integral 

d"k d"q k~k ~ ( F,~ =J k2qZ(p + q)Z(p + k)2(k_ q)2 

* Throughout this paper (except where explicitly stated) we set p2 ~ 1. 
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Step I. Write the integral in terms of Lorentz invariant amplitudes (a, b .... ), etc: 

F ~ = a 3U~p 2 + bp~p ~ . 

Step II. By contractions with Kronecker 6's or p~, p" derive a system of linear 
equations for (a, b... ): 

na + b= IJ,  

n - 2  
a + b =  I J + ¼ Z .  

2(3n - 8) 

Step III. Solve the resulting equations: 

5 n -  14 1 
a =  /J  - - Z .  

2 ( n -  1 ) (3n-8)  4 ( n -  l) 

(n - 4) 2 n 
b = 2 ( n -  1)(3n-  8) IJ + 4 ( n -  1 ~  Z'  

It was this process applied to the integral 

d ' k  d'q k~k~q"q p f 
J k4qZ(k +p)Z(q + p ) Z ( k _  q)2 

that led to the identity (B.4). Step II gave more equations than invariants, and (B.3) 
was necessary for consistency of the equations. 

We conclude this appendix by listing the results for some integrals that were used 
in the calculations of sect. 4. We define 

1 d ' k d ' q  --~____. 
D kZqZ(k + p)Z(q + P)2(k _ q)2 

Thus 

We find 

1 
z = f ~ ,  etc. 

k"k~q x rt 2 + 12n - 48 
=p,p~pX 4(__~ = l ~ n _  8) i j  

( n + 2 )  1 1 
8 ~ Z ] - )  Z 2 ( n -  1 ~  Iz 

I 14 - 5n 
+Pa6"" 4(n--1)-(~-n- 8) / J + - -  1 z] 

8(n- 1) 
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20 - 7n 
+(PU6"X+P ~8ux) 4 (n - - i~ (~n_8)  IJ 

+ m 
8 ( n - 1 )  Z-t 4 ( n - 1 ~  Iz ; 

k2D 3n IJ + ½nZ + 12 ] 

1 [ -2(4n2- 23n + 32) ] 
+6~PX 4(n - 1) 3n--8 I J - Z + ( n - 3 ) I 2  

(n-4) [7n-20 
+ (6"XP" + 6"XP") 4(n--i-)  3 n - 8  

- - / J - ½ Z - 1 2  ] ; 

kUk'k x 5(n - 3)(n - 4) 2 f k ' o  [6  pa+6zxp"+6 xp"-(n+z)pzp px]IJ 

1 
+ 8(n 1 ~ - ~  [(3-n)(6""px + 8"XP" + 8~XPU) 

+ (n 2 -  5 n -  2)p"p~p x] Z; 

k~k~kXq ~ 
f k2D -Ap"P'PXP~+B[~"~PxP~+8~XP~P~+8~XP~P ~] 

+ C [SX~p"p" + 8"~p"p x + 6"~p~p x] + D[8 "" 8 x~ + 8"x6 "~ + 6"a6"~], 

where 

A = lln5 - 43n4-  516n3 + 2752n2-  824n - 7680iJ 

24(n 2 -  1 ) ( n -  6 ) ( 3 n -  8) 

(n 3 - n  2 -  1 6 n - 2 0 )  Z 

16(n 2 -  1) 8(n 2 -  1) 
3(n 2 -  3 n -  6) i2 ' 

B = - ( l l n 4 -  99n3 + 168n2 + 436n - 1056) i j ~  

24(n 2 -  1 ) ( n -  6 ) ( 3 n -  8) 

C =  - (23n4-  261n3 + 798nZ + 8 8 n -  2208) i j ~  

24(n 2 - 1)(n - 6)(3n - 8) 

( n 2 - n - 4 )  z + l ~ 
16(n 2 -  1) 8(n + 1) 

( n  2 - -  3n - 6) 
~ n  2 ~ i )  ( Z + 2 1 2 ) ,  

12 , 
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D =  
23n 2 - 200n + 384 1 

IJ ( Z + 2 1 2 ) ;  
24(n + 1 ) ( n -  6 ) ( 3 n -  8) 16(n + 1) 

f k,k~q~q . _ k 2D = AP~P"P"PB + BS"~P"P~ + C6"t~P"P~ 

+ b [ p" p" 6~a + p,p~ 6 ~ + p~ p~ 8~ ~ + p~p~ 8 ~/~ ] 

+ ~8~" 8 "~ + ~ ' [ ~  8"" + 8"~ 8 .° ] ,  

where 

-- (5n 5 -- 55n 4 + 378n 3 -- 1676n 2 + 2488n + 960) IJ 

24(n 2 -  1 ) ( n -  6 ) ( 3 n -  8) 

- n ( n  2 -  3n - 10) Z ( n 2 -  V n -  2) 12 , 

16(n 2 -  1) 8(n 2 -  1) 

= - (19n 4 -  255n 3 + 1008n 2 -  8 9 2 n -  960) I J+  ( n 2 -  5 n -  4) Z 

24(n 2 -  1 ) ( n -  6 ) ( 3 n -  8) 16(n 2 -  1) s ( , +  1) 

= 32n 4 - 318n 3 + 756n 2 + 400n - 1920 IJ -~ 

24(n 2 -  1 ) ( n -  6 ) ( 3 n -  8) 
( n + 2 )  Z ( n 2 - n - 4 )  I2, 

8( .  ~ -  1) 8 ( ,  ~ -  ~) 

- -  8 n  4 - -  6 0 n  3 + 18n 2 + 532n -- 768 1 1 
D = I J +  Z - - 1 2 ,  

24(n 2 -  1 ) ( n -  6 ) ( 3 n -  8) 8(n 2 -  1) 8(n + 1) 

= -- (8n 3 -- 106n 2 + 464n -- 636) IJ - 

24(n 2 -  1 ) ( n - 6 ) ( 3 n -  8) 

1 1 Z q  - - 1 2  , 
S(n ~ -  1) 8(n + l) 

~ ,=  - (2n 3 - 58n 2 + 4 1 0 n -  744) i J 

24(n 2 - 1)(n - 6)(3n - 8) 

1 1 Z -  12 . 
8(n 2 -  1) 4(n 2 -  1) 

We will finally require I and J :  

2 
I=Ir2C(2-½n)B(½n - 1 , ½ n - l )  4 - n  Y E + O ( n - - 4 ) '  

F(4  - n)  1 
J=~r2~3(3 - f l - -~n )B(n -3 ,½n- -1 )=4_  n y E + 3 +  O ( n - -  4) .  

- - i  2 
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N o t e  tha t  he re  we h a v e  t aken  the  sur face  a rea  of  the  un i t  sphe re  in n d i m e n s i o n s  

to be  2 ~ r 2 / F ( l n ) .  I t  is easy  to see tha t  the c o n v e n t i o n a l  cho i ce  o f  2 ~ r " / 2 / V ( ½ n ) j u s t  

changes  the  de f i n i t i on  of  , / [ eq .  (4.1)] w i t h o u t  a f fec t ing  the  f inal  results .  
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