Analytic Functions Satisfying Hölder Conditions on the Boundary

F. W. Gehring, ${ }^{*}{ }^{\dagger}$ W. K. Hayman, ${ }^{\ddagger}$ and A. Hinkkanen ${ }^{\ddagger, \S}$
*Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48104, U.S.A. and ${ }^{\ddagger}$ Department of Mathematics, Imperial College,
London SW7 2BZ, England
Communicated by Oved Shisha

Received July 13, 1981
DEDICATED TO ALEXANDER OSTROWSKI ON HIS 90th birthday

1. Introduction

Let G be an open set in the finite z plane and suppose that $f(z)$ is regular in G and continuous on its closure \bar{G}. We denote by ∂G the frontier of G and suppose that ∂G has at least two finite points. We then prove the following.

Theorem 1. Suppose, with the above assumptions, that there exist constants $\alpha, 0 \leqslant \alpha \leqslant 1$, and $M>0$ such that

$$
\begin{equation*}
\left|f\left(z_{1}\right)-f\left(z_{2}\right)\right| \leqslant M\left|z_{1}-z_{2}\right|^{\alpha} \tag{1.1}
\end{equation*}
$$

whenever z_{1}, z_{2} belong to ∂G and, further, that

$$
\begin{equation*}
f(z)=o(|z|) \tag{1.2}
\end{equation*}
$$

if $\alpha<1$ and

$$
\begin{equation*}
f(z)=o\left(|z|^{2}\right) \tag{1.3}
\end{equation*}
$$

if $\alpha=1$, as $z \rightarrow \infty$ in any unbounded component of \bar{G}. Then (1.1) holds for every pair of points z_{1}, z_{2} in \bar{G}.

Further, if (1.1) holds for a fixed $z_{1} \in \partial G$ and a variable $z_{2} \in \partial G$, then (1.1) also holds for this z_{1} and any $z_{2} \in \bar{G}$.

The functions z and z^{2}, respectively, show that o cannot be replaced by 0 in (1.2) and (1.3), when G is $|z|>1$.

[^0]Hardy and Littlewood proved in [4, p. 427] that if G is the unit disk, then (1.1) on the boundary implies the same on the closed disk if M is replaced by $C M$ for some $C>1$. Walsh and Sewell [9, Theorem 1.2.7, p. 17; see also 11] extended the result to Jordan domains with $C=1$. Pointwise results of the same kind were obtained by Warschawski [12]. Two other proofs for $C=1(0<\alpha \leqslant 1)$ in the unit disk were given by Rubel et al. [8, p. 27], based on H^{p}-theory and the theory of two complex variables. Tamrazov [10] proved this result for bounded functions defined on an open set G such that ∂G has positive capacity and either $\bar{C} \backslash G$ is connected or for every $z_{0} \in \partial G$,

$$
\lim _{r \rightarrow 0} \inf r^{-1} \operatorname{cap}\left(\left\{z| | z-z_{0} \mid \leqslant r\right\} \backslash G\right)>0
$$

where cap A denotes the capacity of the set A.
If $\omega(\delta)(\tilde{\omega}(\delta))$ denotes the modulus of continuity of f on \bar{G} (on ∂G), results of the form $\tilde{\omega}(\delta) \leqslant \phi(\delta) \Rightarrow \omega(\delta) \leqslant C \phi(\delta)$ for an absolute constant C have also been obtained for functions $\phi(\delta)$ other than $\phi(\delta)=\delta^{\alpha}, \alpha>0$. Assuming that G is simply connected and that the conformal mappings from G to D and D to G, where D is the unit disk, satisfy Hölder conditions on the boundaries, M. B. Gagua obtained this result for $\phi(\delta)=|\log \delta|^{-p}, p>0[2,3]$. Similar, but less general, results were proved earlier by Magnaradze [7]. Finally, Tamrazov proved in [10] that $\tilde{\omega} \leqslant \phi$ implies $\omega \leqslant C \phi(C=108)$ for more general functions ϕ in open sets satisfying certain capacity conditions on the boundary.

2. A Preliminary Result

To prove Theorem 1 we need the following generalisation of a result of Fuchs [1, Theorem 1].

Theorem 2. Suppose that $u(z)$ is subharmonic and positive in an open set G, whose complement contains at least one finite point, and that

$$
\begin{equation*}
\overline{\lim } u(z) \leqslant 0 \tag{2.1}
\end{equation*}
$$

as z approaches any boundary point of G from inside G except the boundary point $\zeta=\infty$. Write

$$
\begin{align*}
B(r) & =\sup _{G \cap(|z|=r)} u(z) \tag{2.2}\\
I(r) & =\frac{1}{2 \pi r} \int_{G \cap(|z|=r)} u(z)|d z| \tag{2.3}
\end{align*}
$$

Then there exists β, such that $0<\beta \leqslant \infty$ and

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \frac{B(r)}{\log r}=\lim _{r \rightarrow \infty} \frac{I(r)}{\log r}=\beta \tag{2.4}
\end{equation*}
$$

Suppose further that $\beta<\infty$, and that $u(z)$ is harmonic in G and possesses there a local conjugate v, such that for some α, where $0<\alpha \leqslant 1$, and some positive R_{0}

$$
\begin{equation*}
F(z)=z^{1-\alpha} \exp (u+i v) \tag{2.5}
\end{equation*}
$$

remains one valued in $G \cap\left(|z|>R_{0}\right)$. Then $F(z)$ has a pole of order p, say, at $\zeta=\infty, \zeta$ is an isolated boundary point of G and $\beta=\alpha+p-1$.

The case $\alpha=1$ of this result is a slight extension of Fuchs' Theorem. To prove Theorem 2, we define $u(z)=0$ in the complement of G and deduce that $u(z)$ is subharmonic and not constant in the plane. It follows from standard convexity theorems [5, p. 67] that the limits

$$
\beta_{1}=\lim _{r \rightarrow \infty} \frac{B(r)}{\log r} \quad \text { and } \quad \beta_{2}=\lim _{r \rightarrow \infty} \frac{I(r)}{\log r}
$$

exist and $0 \leqslant \beta_{2} \leqslant \beta_{1}$ clearly. Also $\beta_{2}>0$ unless u is harmonic in the plane, and this is impossible since u attains its minimum 0 at a finite boundary point of G and u is not constant. Again we have, for $0<r<R[5, \mathrm{p} .127]$,

$$
B(r) \leqslant \frac{R+r}{R-r} I(R)
$$

so that for each fixed $K>1$ we obtain

$$
\beta_{1}=\lim _{r \rightarrow \infty} \frac{B(r)}{\log r} \leqslant \frac{K+1}{K-1} \lim _{r \rightarrow \infty} \frac{I(K r)}{\log (K r)}=\frac{K+1}{K-1} \beta_{2},
$$

i.e., $\beta_{1} \leqslant \beta_{2}$. Thus $\beta_{1}=\beta_{2}=\beta$ and this proves (2.4).

Next, if $\beta<\infty, u(z)$ has order zero and is finite at the origin so that $[5$, p. 155] $u(z)$ has the representation

$$
u(z)=u(0)+\int \log |1-z / \zeta| d \mu(\zeta)
$$

in terms of the Riesz mass μ of $u(z)$. Also if $n(r)$ denotes the total mass in $|z|<r$ then Jensen's formula [5, p. 127] shows that

$$
\begin{equation*}
I(r)=\int_{0}^{r} n(t) d t / t+u(0) \tag{2.6}
\end{equation*}
$$

so that

$$
\begin{equation*}
\beta=\lim _{r \rightarrow \infty} n(r) \tag{2.7}
\end{equation*}
$$

is the Riesz mass of the whole plane. Also since $u(z)$ has order zero it follows from Heins' extension of Wiman's theorem [6] that

$$
A(r)=\inf _{|z|=r} u(z)
$$

is unbounded as $r \rightarrow \infty$. In particular G contains a sequence of circles

$$
|z|=r_{v}, \quad \text { where } R_{0}<r_{1}<r_{2}<\ldots, r_{v} \rightarrow \infty \text { as } v \rightarrow \infty .
$$

By hypothesis these circles belong to G, since $u=0$ outside G and so G has only one unbounded component. In view of the maximum principle and (2.1) G cannot have any bounded components, so that G is connected. Next, (2.6) shows that for $r=r_{v}$,

$$
\begin{aligned}
n(r) & =r \frac{d}{d r} I(r)=\frac{1}{2 \pi} \int_{0}^{2 \pi} r \frac{\partial}{\partial r} u\left(r e^{i \theta}\right) d \theta \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\partial}{\partial \theta} v\left(r e^{i \theta}\right) d \theta \\
& =n_{v}+\alpha
\end{aligned}
$$

where n_{v} is an integer, since $F(z)$, given by (2.5), is one valued.
Thus since $n(r)$ is increasing and bounded, n_{v} is constant for large v and so $n(r)$ is constant and equal to β for $r>R_{1}$, say. Thus there is no Riesz mass in $R_{1}<|z|<\infty$ and so $u(z)$ is harmonic there. Hence $F(z)$ has an isolated singularity at ∞ and since when $|z|=r$

$$
|F(z)| \geqslant r^{1-\alpha},
$$

then $F(z)$ has a pole at ∞ if $\alpha<1$. If $\alpha=1$ and $F(z)$ is finite at ∞, then $u(z)$ is bounded as $z \rightarrow \infty$ and so $\beta=0$ in (2.4), which gives a contradiction. Thus $F(\infty)=\infty$ in all cases. If p is the order of the pole of $F(z)$ at ∞ then

$$
u(z)=(\alpha+p-1) \log |z|+0(1) \quad \text { as } \quad z \rightarrow \infty,
$$

so that $\beta=\alpha+p-1$. In particular,

$$
u(z) \rightarrow \infty \quad \text { as } \quad z \rightarrow \infty
$$

so that the complement of G in the open plane is bounded. This completes the proof of Theorem 2.

We note that Theorem 2 has a converse. If u is harmonic and positive near ∞ then there exists α such that $0<\alpha \leqslant 1$ and $F(z)$ given by (2.5) has a pole at ∞.

We state for future reference a form of Theorem 2 when the exceptional boundary point ζ is finite.

Theorem 3. Suppose that $u(z)$ is harmonic and positive in an open set G in the closed plane, whose complement contains at least two points and that $u(z)$ satisfies (2.1) as z approaches any boundary point of G excluding one finite boundary point ζ. Suppose further that u possesses a local conjugate v, such that

$$
F(z)=(z-\zeta)^{\alpha-1} \exp (u+i v)
$$

remains regular, i.e., one valued in $G \cap(|z-\zeta|<\delta)$, where $\delta>0$ and $0<\alpha \leqslant 1$. Then either

$$
\begin{equation*}
\overline{\lim }|z-\zeta|^{m}|F(z)|=\infty \tag{2.8}
\end{equation*}
$$

as $z \rightarrow \zeta$ for every positive integer m, or else $F(z)$ has a pole at ζ and ζ is an isolated boundary point of G.

We apply Theorem 2 to $U(z)=u\left(\zeta+z^{-1}\right)$ and deduce Theorem 3.

3. Proof of Theorem 1

Suppose that $f(z)$ satisfies the hypotheses of Theorem 1. We write for any $z_{1} \in \partial G$

$$
\begin{equation*}
u(z)=\log \left|f(z)-f\left(z_{1}\right)\right|-\alpha \log \left|z-z_{1}\right|-\log M \tag{3.1}
\end{equation*}
$$

and proceed to show that

$$
\begin{equation*}
u(z) \leqslant 0 \text { in } G . \tag{3.2}
\end{equation*}
$$

Suppose first that G is bounded. If $\alpha=0$ it follows from (1.1) that

$$
\begin{equation*}
\overline{\lim } u(z) \leqslant 0 \tag{3.3}
\end{equation*}
$$

as z approaches any boundary point z_{2} of G other than z_{1}, and since $f(z)$ is continuous at z_{1}, (3.3) holds also as z approaches z_{1}. Thus in this case (3.2) follows at once from the maximum principle, since $u(z)$ is subharmonic in G.

Assume next that $\alpha>0$ and that (3.2) is false. Let G_{0} be the subset of G in which $u(z)>0$ and define

$$
\begin{align*}
& u_{0}(z)=u(z), \quad z \in G_{0} \tag{3.4}\\
& u_{0}(z)=0, \quad \text { elsewhere } \tag{3.5}
\end{align*}
$$

Then it follows from (3.3) that $u_{0}(z)$ is subharmonic in the open plane, except possibly at z_{1}, and also at ∞, since G is bounded. Also $u_{0}(z)$ is not constant. Thus $u_{0}(z)$ satisfies the hypotheses for $u(z)$ of Theorem 3, with $\zeta=z_{1}, G=G_{0}$ and

$$
F(z)=\left(f(z)-f\left(z_{1}\right)\right) / M\left(z-z_{1}\right)
$$

We deduce that $F(z)$ has a pole at z_{1}, which contradicts our assumption that $f(z)$ is continuous at z_{1} as a function in \bar{G}. Thus (3.2) holds in all cases if G is bounded.

Suppose next that G is unbounded. We first apply the result we have just proved with the domain

$$
G_{1}=G \cap\left(\left|z-z_{1}\right|<1\right)
$$

instead of G. Then $u(z)$ is bounded above by some positive constant M^{\prime} on $G \cap\left(\left|z-z_{1}\right|=1\right)$, since $f(z)$ is continuous in \bar{G} and so in \bar{G}_{1}. Thus the argument we have just given when applied to $u(z)-M^{\prime}$ in G_{1} shows that

$$
\begin{equation*}
u(z) \leqslant M^{\prime} \quad \text { in } \quad G_{1} \tag{3.6}
\end{equation*}
$$

Suppose now again that (3.2) is false. Let G_{0} be the subset of G where $u(z)>0$ and define $u_{0}(z)$ by (3.4) and (3.5). Then $u_{0}(z)$ is subharmonic in the closed plane except possibly at $z=z_{1}$ and $z=\infty$. However, by (3.6) $u_{0}(z)$ is bounded above near z_{1}. It now follows [5, p. 237] that $u_{0}(z)$ can be extended as a subharmonic function to the whole open plane. We now apply Theorem 2. If $0 \leqslant \alpha<1$ we deduce from Theorem 2, applied with $1-\alpha$ instead of α, that $f(z)-f\left(z_{1}\right)$ has a pole at ∞, which contradicts (1.2). If $\alpha=1$ we deduce from Theorem 2, applied with $\alpha=1$, that $\left(f(z)-f\left(z_{1}\right)\right) /\left(z-z_{1}\right)$ has a pole at ∞, which contradicts (1.3). Thus (3.2) holds in all cases. This proves the last sentence of Theorem 1.

We now take a fixed point $z_{2} \in G$ and consider

$$
u(z)=\log \left|f(z)-f\left(z_{2}\right)\right|-\alpha \log \left|z-z_{2}\right|-\log M .
$$

Then $u(z)$ is subharmonic in G if we define

$$
\begin{aligned}
& u\left(z_{2}\right)=-\infty \quad \text { when } \quad \alpha<1 \\
& u\left(z_{2}\right)=\log \left|f^{\prime}\left(z_{2}\right) / M\right| \quad \text { when } \quad \alpha=1
\end{aligned}
$$

Also by what we have just proved, if $f(z)$ satisfies the hypotheses of Theorem 1, then (3.3) holds as z approaches any finite boundary point of G. If (3.2) is false we again define $u_{0}(z)$ by (3.4) and (3.5) and apply Theorem 2. Once again (1.2) or (1.3) leads to a contradiction so that (3.2) holds in \bar{G}. Thus (1.1) is proved in all cases.

References

1. W. H. J. Fuchs, A Phragmen-Lindelöf theorem conjectured by D. J. Newman, to be published.
2. M. B. Gagua, On the behaviour of analytic functions and their derivatives in closed domains, Soobšč. Akad. Nauk Gruzin. SSR 10 (1949), 451-456.
3. M. B. Gagua, On a theorem of Hardy and Littlewood, Usp. Mat. Nauk 8. 1 (1953). 121-125.
4. G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals, II, Math. Z. 34 (1931), 403-439.
5. W. K. Hayman and P. B. Kennedy, "Subharmonic Functions, I," Academic Press, New York, 1976.
6. M. H. Heins, Entire functions with bounded minimum modulus: subharmonic function analogues, Ann. Math. 49 (2), (1948), 200-213.
7. L. G. Magnaradze, On a generalisation of the Plemelj-Privalov theorem, Soobšč. Akad. Nauk Gruzin. SSR 8 (1947), 509-516.
8. L. A. Rubel, A. L. Shields and B. A. Taylor, Mergelyan sets and the modulus of continuity of analytic functions, J. Approx. Theory 15 (1975), 23-40.
9. W. E. Sewell, "Degree of Approximation by Polynomials in the Complex Domain," Princeton Univ. Press, Princeton, N.J., 1942.
10. P. M. Tamrazov, Contour and solid structure properties of holomorphic functions of a complex variable, Russ. Math. Surveys 28 (1973), 141-173.
11. J. L. Walsh and W. E. Sewell, Sufficient conditions for various degrees of approximation by polynomials, Duke Math. J. 6 (1940), 658-705.
12. S. Warschawski, Bemerkung zu meiner Arbeit: Über das Randverhalten der Ableitung der Abbildungsfunktion bei konformer Abbildung, Math. Z. 38 (1934). 669-683.

[^0]: ${ }^{\dagger}$ Research supported by a grant from the Science Research Council of the U. K.
 ${ }^{\S}$ Research supported by the Osk. Huttunen Foundation, Helsinki.

