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1. INTRODUCTION 

Let E be a real Hilbert space with elements x, y,..., with scalar product 
(x, -v), with norm /xll = (x, x)“~, and zero point 8. Let f be a map of a 
bounded open neighborhood a, of 8 into the reals, and suppose that 
g = gradf exists in 0,. A point x E Q, is called critical forf if it satisfies the 
equation 

g(?c) = e. (1.1) 

We assume that 0 is an isolated critical point, i.e., there exists an open 
neighborhood D c 0, of 0 such that B is the only root of (1.1) in the closure 
fi of 0. If we assume that g is a Leray-Schauder (L-S) map, i.e., 

g(x) = x - G(x), Cl.21 

where G is completely continuous, then the Leray-Schauder degree 
d( g, Q, 0) is defined and independent of the specific choice of an Q having 
the above properties. For such Q we may define 

qe; g) = d( g, R. 8). (1.3) 

J is called the Leray-Schauder index of 0 as the root of (1.1). 
It is known that under certain additional assumptions the Morse numbers 

M, . M, , M, ,... of the critical point t9 are zero except for a finite number and 
that 

qe; g) = x (-i)Wi. 
i=O 

(1.4) 

* This paper was presented at the August 1980 meeting of the American Mathematical 
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Sot. I (5) (1980), 446. 
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(see [5, Section 81). The proof consists of establishing (1.4) first for the 
finite-dimensional case and then using a passage to the limit in the 
dimension. 

The purpose of the present paper is to establish (1.4) directly in Hilbert 
space for the special case that 0 is a nondegenerate critical point forf: This 
is possible by using the “intrinsic” definition of the Leray-Schauder degree 
which-under proper assumptions-does not presuppose the finite- 
dimensional degree theory [ 2, 6 ]. 

In Section 2 the definition and elementary properties of a nondegenerate 
critical point in Hilbert space are recalled. Section 3 contains relevant 
background material of the intrinsic degree theory. 

Finally, in Section 4 it is shown that relation (1.4) is an immediate conse- 
quence of the definitions and assertions contained in Sections 2 and 3. 

2. DEFINITION AND PROPERTIES OF A NONDEGENERATE CRITICAL POINT 

The isolated critical point 19 off is called nondegenerate if the following 
two conditions (A) and (B) are satisfied. 

(A) fE C”(fi), i.e., the first and second differentials Df(x; h) and 
D’f(x; h, k) are defined and continuous for all x in some open set containing 
fi. (For the definition of D and D* see e.g., [ 1, Chapter VIII].) 

We note that (A) implies that D*(& h, k) is a bounded symmetric bilinear 
form in h and k (see [ 1, Section 1.~1). 

(B) The bounded symmetric bilinear form Dtf(S: h. k) is 
nondegenerate, i.e., the relation 

D*j-(0: h, ; k) = 0 for all k E E (2.1) 

implies that h, = 6. 
We recall that the index of a bounded nondegenerate quadratic form 

q(h, h) is defined as the maximal dimension of linear subspaces L of E for 
which q(h,h) (0 for all hEL-8. 

If the index N of the quadratic form D’f(0; h, h) is finite, then for 
i = 0, 1, 2,... 

Mi = s;, (8,:. is the Kronecker 6) (2.2) 

is called the ith Morse number of the nondegenerate critical point B off: 
Now from our differentiability assumptions on f it follows easily that the 

differential D( g; h) of g = grad f exists and that 

D*j-(x; h, k) = (D&x; h), k), x E n. (2.3) 
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(For a proof see (7, p. 3631.) Since here the left member is symmetric in h 
and k. we see from (2.3) that for each x E R, the linear operator Dg(x; h) is 
symmetric. Moreover, since g is an L-S map (cf. Eq. (1.2)) it follows by a 
lemma of Krasnoselskii [3, p. 135 1 that, for x E R, the linear operator 
Dg(x; h) is L-S. In particular the operator 

I(h) = Dg(B. h) = h -L(h) (2.4) 

is L-S and symmetric. Thus L(h) is completely continuous and symmetric. 
If now e, , e, ,... is a full orthonormal system of eigenelements of L with 

corresponding nonzero eigenvalues A,, l,,.... then by (2.3), (2.4). and the 
classical expansion theorems (see e.g.. [4. pp. 231, 2321) 

Dtf(B;h,h)=(l(h),h)= 1 (hei)’ (1 -Ai) + IJhJJ2, 
i=l 

(2.5) 

where h, = h - xi (hei) e, (cf. [7, p. 3921). Now since L is completely 
continuous. the Ai converge to 13 if there are infinitely many. Thus in any 
case there are at most a finite number N of Ai satisfying 

(1 -Ai)<o. (2.6) 

If there are such Ai we may assume that they are A, > AZ > 1.v. But since for 
s = 0 the left member of (2.3) is a nondegenerate bilinear form, it follows 
from (2.3) and (2.4) that the L-S operator I is nonsingular. i.e.. 1 = 1 is not 
an eigenvalue of L. Thus the equality cannot hold in (2.6). This shows that 
N is the index of quadratic form (2.5). 

Now if p, > ,u~ > ... > ,D,. are distinct among A, A?,.... A,\- and if mp = m(,u,) 
is the multiplicity of the eigenvalue pp. then 

index of (2.5) = N = ;T m, 
,I 

(2.7) 

since. by definition. m@,,) is the dimension of the eigenspace belonging 
to Pp. 

If there are no eigenvalues 1; satisfying (2.6). then it is clear from (2.5) 
that the left part of (2.7) holds with N = 0. 

3. BACKGROUND MATERIAL FROM THE INTRINSIC LERAY-SCHALJDER 
THEORY 

Let 

I(h)=h-L(h) (3.1) 
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be an arbitrary linear nonsingular (not necessarily symmetric) L-S map 
E + E. We first recall the definition of the index j(j) of I. As in Section 2 we 
see from the nonsingularity of I that 1 is not an eigenvalue of L and from the 
complete continuity of the operator L that at most a finite number of its 
eigenvalues Ai satisfy (2.6). (Since E is a real Hilbert space. by eigenvalue we 
always mean “real eigenvalue.“) 

If L has eigenvalues greater than 1 we denote them by ,u, > ,uuz > ... > P, 
and by U, = o(,u,) the generalized multiplicity of ,u~, i.e., the dimension of 

E,=(xEEICu,Z-L)“x=B} 

for some n = 1, 2...., where 1 denotes the identiy map on E. It is well known 
that ~1, is finite. We define 

j(l) = (-1)‘L“O. (3.2) 

If I has no eigenvalues greater than 1. we set j(l) = 1. (See [ 6. 
Definition 6.21 and [2, p. 3831.) 

Now let f2 be a bounded open subset of E and let 4 E C’(a) be an L-S 
map fi-t E. Let yO be a point of E and suppose that x,, c R is the only 
solution in fi of the equation 4(x) = J,, . Suppose, moreover, that Dd(x,, ; h) is 
nonsingular. Then the intrinsic definition of the Leray-Schauder degree 
d(qi, f2, y,) is given by 

4. PROOF OF ASSERTION (1.4) 

Let f, g. p, , P?...., pu, be as in Section 2. and let the 9, .yi, y,,, and I of 
Section 3 be given by 4 = g. x0 = ~3” = 19, and (2.4). Then o$(O; h) = 1 is 
nonsingular and (3.3) holds. Thus by (1.3). (3.3). and (3.2) 

;l(e:g)=d(g,a.e)=j(r)=(-l)‘b 1’0. (4.1) 

But the operator L in (2.4) is not only completely continuous but also 
symmetric, and it is well known that this implies that the generalized 
multiplicity L’, of pp equals the multiplicity mp of that eigenvalue. Therefore 
by (4.1) and (2.7) 

qe; g) = (-I)\. (4.2) 

But by definition (2.2) of the Morse numbers Mi our assertion (1.4) is 
equivalent to relation (4.2). 
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