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Explicit examples of finite subgroups of the group of homotopy classes of self-bromatopy 
tguivalenceo of same flat Riemannian manifolds which cannot be lifted to &cctive ac ions are 
given. It is utso shown that no finite subgroups of the kernel of na(Homec(M))-, Out V,(M) 
can be lifted back *o Homeo(M), for a large class of flat manifolds M. Some results of an earlier 
paper by the authors are refit& #lnd related to recent work of R Schoen and SX, Yau. 
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In this note we make certain observations and give some examples which extend 
and compiement the results of our earlier paper [S] on actions of finite groups on 
Rat Riemaqniaq mtitirol& We asqume familiarity with [!5] and retain the notations 
attd defi&~ns @vet~~ there. ~ _ ’ 3 

‘Sectioti ‘;i gives mm explicit examples of finite subgroups of the group of 2 * 
t\am.otopy classes &! s& hamotapy &q\riva’lences of a f@t manifold ~~hich cannot 
be iui\kd to eflective actions. Section i examines a related paper of R. Schoen and 
ST. Yau [S], In Scctian 3, we prove that Theorem 3 of [S] solves also the lifting 
prqblem of an abstract kernel to the group of isometries. In Section 4 we partially 
prove that no finite subgroup of kernel of n$V(M) + Out n,M can be lifted back 

M). Section 5 is a refin$ment of Corollary 6 of [5] where it was shown that 
ffine actiuns are affinely equivalent if and only if the corresponding lift-in 

sequences are isomo~~phi~. We also show that there is a one-to-one correspondence 
between the strong conjugacy ‘ci&ses of aTI a@ne rea~i~~tio~s of an abstract kernel 
4 : G -) Qut Irr and H-“(G!; &r)). 



In the first part 02 this section we give two examples of finite subgrc~ups of the 
group of homotopy classes of self homotopy equivalence of a flat manifold which 
do not lift to effectke topological actions. In b&h casts, the underlykg bbnifolld 
fw will. he the flat manifold of dimension 3 ~4th h~&no;fi;r’gk$u~‘?@~ &‘~A@& then 
describe, for each integer n sz 2, a closed flat IGemanni&n manif&d && “of dimension 
n * + n - 2 with hobomy cyclic of order n, For each of’ tlksb ma&f&k a ‘cyclic 
subgroup of order n in Out WI(M) is found which cannot be lifted to a topological 
action on hf. 

1.1. Example. There ex,ists an isomctry B such that D2 is isotopic (through 
isomctries) to the identity, but D is not homotopic to any homeomorphism H with 
w* = identity. 

This follows the method of [7]. Here is a description of A&. Take 

o : T* -* T* given by 

and form M, the mapping torus of CU( = S’ x tw) T2). Denote points of M by (r, 21, zz}, 
etc. Then (r, tl, z~)=(P-1, tl’, zi’) for r”~ R, (~1, ~2) E T2. &fine D using the 
matrix 

i -1 0 00 0 1, 

0 -1 0 1 
That is, D(l; 21, 22) = (-r, 2;’ 
Now D2(p; Zl, z*) = (r, z-’ 

, ~1). Note it is well defined and D&I, 1) = (0, 1,l). 

0;: =D* and I>: 
1 , ~2~). If we define D”,(r, tri, 22) = (r -8, zlf, t;‘), then 

= id, which shows D” is isotopic to the identity. Clearly D2 
restricted to T2 ={(O,zl,z& E M} is W, Note that ~i( T2, {C&1,1)) is a characteristic 
Sub~rLWp of n = W&W) si.nc:e it is the Kernel of (P -+ H@t)@ 

If there exists H homotopic to D so that I#2 = id, then there exists an extension 
diagram : 



,it- ‘t&t centet of m,+ a(w)., Note that a(w), is .gene@cd by $q As D,(q).= 7 - ‘, 
&(e*) = 6% Outhecther hana, D,(e2) - &(e*) = t2. Therefore we see that e4 = 1. 
This is a contradiction because e% W, whicti Is torsionefree. 

Consequently, no such H can exist, since no such E can exist. Compare these 
exampi?s WithUxample 2.8 Of&S-Toli%fson, Deforming Womotopy Involutions, 
Topology 17 (1918) 349-365. Obvioarsly, this example is just a prototype of many 
s’uch -examples on fist qrrnifo!ds all ,,,wan?king’ the same way: One needs only to 
choose, a fiat manifol# j T with a period 4 automorphism y with non-empty fixed 
pointsand” whoqe powers ~0 (4) are not ~motopic to the identity, Use Ed) = y* to 
make the mapping torus, M Qn this new flat manifold one can define the analogue 
of D. No!e9 in$identaHy, that D4 is the identity [S, Theorem 51. This would 

comspmd to dkwgig. the +m~t kemwl (&, n, qS), where I&, generates 32, to 
(&, W, &), where 4: Z,p Zz -B Out w. To obtain the conchsion of the previous 
argument, one needs to know how D, acts on 3(77=). The simplest way to guarantee 
the non-existence of an extension is to have 3{1~1(R))@’ = 1. 

1.Z Ex9lgtple., The following is another example on M. We will show that a certain 
abstract kernel fails to ad,zit an extension by showing directly that its obstruction 
class does not” vanish, Reca91, 

Consider the following autamorphisms of w 

c: 

c&&a! --’ = t;l, [ti, $3 = 1). 

The following table shows these automorphisms together with the identity map 1 
make a subgroup 0 of Out(v), which is isomorphic to Hz@ ZJ (e-g, ab = pc). 

la bc 



ir, our abstract kernel. - 

At this point we recall how we get the obstruction class in .M3(G, a(+)) for an 
abstract kernel 4 : G *Out 7p to have an extension. In each ammmphism class 
&LX) choose an automorphism u(x), taking care that u(I) = 1, omitce and for ak 
Since q5 is a homomorphism into Out s, U(X) 6 u &) * t&f)-’ is adiw+rxdkmrph~ 
ism. For each .t, y E G choose an element J(x, y) in w yielding‘rhb itiner atitsmbrph- 
ism, in particular f(x, 1) = 0 = f( 1, y ). (This choice of f is not unique, of course), 
For all x, y, t E G, 

Ux, y, 2) = u(x)(f(y, 2)) . fk yz) l fky, f)-l ’ f(x., ,,)-’ 

UWlInIWu U #Iu8I~a-IILWU J Aafi,- * ,--*;*aA ~=cechain of G with czoeWient@ in $(a), which yields the 
obstruction class obs(G, n, 4) = [k] E H3(G, &r)). It is known that ohs/C& n, 4) =4 
if and only if k is identically 0 for a suitable choice of fi 

Now we go back to our example. For 1, at, 6 c’ E G, we choose I = x, That 
is u(n) = a, etc. Since u(c’) l u(6) l t&5)-’ = dt * b l a-’ = p, conjugaltim by f@, 6) 
should be p. This means all the possible choices for f(C, 6) are odd powers of Q EIS 
remarked earlier. Also u(b) - u(t) - u(%$’ = 6, l c l u-l = 1 shows that conjugation 
by f(& c’) is the identity. So f(& c’) is a centtal element, and hence should be an 
even power of LT. 

Assume now that G = Hz@& : Out v admits an extension. Then for some 
choice of fs k is ider,tica.:ly 0. An easy computation shows 

[For any Z, y’ E G, conjugation by f(13, y’) is either 1 or fi so that f(#, 9) is 
some power of a. This implies all f@ y’) commute with each other,] Both fr& c’) 
and f Ic’, 6) are powers of cy. The identity above implies f(6, C) =f@, 6). This is a 
contradiction because f(6, c’) is an even power of Q[, while f@, 6) is an odd power 
and CL’ is, of course, of infinite order. 

Note that we can enlarge this abstract kernel to 4~ : Z&&-) Out v so that this 
new abstract kernel has an admissible extension as in [S, Theorem Sj. Here 24 is 
generated by Q (with a4 = p2 = 1) and 25 by b. The kernel of a@& 1) Z2@L2 is 

& = { 1, p)- The group of afine diffeomorpllisms realizing dp&t effectively is generated 

bY 



&,3. &@qI,~ Fer each n a 2, there exists a closed orientable flat Riemannian .r: .* 
< m@ipki A#! 8 &at a subgroup of Out(lr&,,), isomorphic to H,, cannot be 

realized as a group cif’ ht!meomofphisms of Mm. ' 

‘Qecprgof in by direct construction, First we construr=t a torsion free, discrete 
unifdnrm~+&rQ~p~~ of E(PJ* + n -2), i.e., an (n* it n -2)-dimemdional Bieberbach 
group, ‘Tl6s -Will define ihe desked manWd’ ‘A&, =Riz~‘@*/~~. Next, we find a 
certair~ alem+ of E(n* + R -2) which normalizes I”,, and show that the outer 
autom?r@&@, jnd$cefl by that element generates a subgroup of lorder n which has 

. . 
no gerqArk realization, 

/ 

Let n zs 3. B,, will denote the companion matrix of the polynomial 1 +x + 
x2+ . , .+p-l so that B, dX(n - 1, H). For example, 

0 
0 

1 

-1 

-1 ? 
-1 1 etc. 

This matrix has the following properties: 

(i) det(&) * (-l)““, 
q-1 (ii) ItB,+B~+~~+B, = 0, 

h 

and hence, in particular, 4!3: = I. 

(iii) (I - &)bn = e2, 

where 

b, =It 
?t 

[-1, n -2,. . ‘, 3,2,1J 

e*=‘[Oil,OI...,O] 

are elements of. @? 
Let r, be the subgroup of E(n - 1) x E(rt2 - 1) c E(n2 + rt -2) generated by 

h, t2, ..,I, n-1; t s19 $2 , . . . , s,q; iY 

where {tl 116 i G IQ - 1) is the standard unit translations of R” -I, {:lj 11 -I= j G r.’ - I.1 
the standard unit translations of W’2-1 and, cx = (A, a)~ E(n’+ n - 2) with 

Let A 1: I: the subprqup of r, generated by (ta, . . . , tzz ! f ~1. . . . , dptd - I}. Clearly A is 
a free abelian’&&p of rarik I? +n - 2. Since A E GL(n ’ -f- n _- ‘.!, ZJ, A is normal in 
r,. Now (order of )=nimp~iesthat(rk~Afor0<k<n.‘6rl,., 4Wtoshow0AzA. 
Since 



and 

!+A+-. l +A”--l= 

which is in ,4, as we expected. 
It is clear that A is maximal abetian in rH and [A : m] = IL Now we d&m that r@* 

is torsion free. Suppose not, so that 

(t*S-ak)r = 1 

forsomeO<k<n,r>O, tE(t1, . . . , t,_r), s E ($1, I . . , s,p- I), Then 

1 ,- (t, 3, ak)r = f . (s . akS l . * QL”-“s)~ (rkr 

since t is central in rM. Here we are using the notation ‘y = xy~“. Sirs A is Nobel 
in fm, the first two factors are in A, and hence aI” E A, However, we have seen that 
n is the, least positive integer for which CY’ E A. This implies kr = np for some integer 
p. We compare the number of tl-factors of both sides in the last equation. If t has 
n tl -factors, then 

O=rd+O+(--l’p, 

since the “middle term has no tl factor. Therefore F divides p, say, p = qr. Then 
kr = qnr so that 11 divides k, which is impossible. 

We have just proved that rfi is an (m2+ n - 2)-dimension,al Bieberbach group 
with holonomy group isomorphic to Z, so that l+ A + r” +Bn + 1 is exact. It is 
well known that the r, action on BB”z+“-2 ’ IS free and properly distoncinuous, yielding 
a closed flat Riemannian manifold, M, = Rn2+“-2/Pfi~ It is also easy to see that MS 
is a nil-manifold. In fact, it is a Tn2--* bundle over T”‘-’ with structure group &. 
At Fhis point, the picture of the manifold M;, as well as the group p,, is dear. But 
kt us write down a presentation of rn: 

a?, a ’ = ~o~yn~j~~i~l in si’s with coeficients from the jth column of the matrix S$ 

In order to find a subgroup G of Out rfi we Took at the element /3 = US, 0) of 

ne group, wher*e: 



Therefore, 

BS a --* = (B, WA, a)(& 0)“’ 

= (BAB-‘, Ba) = (A, a - e2) = P;?‘a 

so that fl E N%(m). 
L.ook at the commutative diagram of exact rows and columns. 

we claim that @ @) = ~(a). For, 

Q *jr-” = (A, a)@, O)-” = (I, a) i 

so that Q E IV-* c Cs(rR). Note that Cpt(r,) is generally bigger than IIV? Let 
D = cd’@). The above argument shows that the subgroup c’l; of Out rH generated 
by 6 has order n. 

We prove now that G =+ Out r, does not have any affine ::ind hence, topological 
(see [!5, Theorem ?]) realkation. Suppose there exists a swgroup @’ of A(M) SO 
that $10’ is an isomorplhism of G’ onto 6. Form the li ting sequence of G’, 

’ + 1. This is just a restrktiol f thr= middle row in the diagram so 
icky E Eso that P(v(y)) = q+)andker($b 

is generated by I-‘n 
:G’+G to be an 

and C2j(S,), y = u=c~ for so 
iso 
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We will prove (*) is impossible. Let c = (f, e) with ct E Rnz*n-2 (this is M abum of 
notation). We need a IittYe computation 

(q!?)” = ((I, C)(B, 0))” = (B”, (I + i&t -t” * ’ l + w-‘)c). 

By the definition of B, we brave B” = A. Also, 

(I+B+* l l +B”_‘)c = 
[ 

I+&+- l l +B:-’ 8 
0 1 

c 
t 

s E 0 0 

0 
SC 1 by (ii) 

= [I *’ 0 let bdAR nhn -2 . 

Therefore, we have (c/3)” = (A, b). Since 

(@)“a .l = (A, b)(A, u)-’ = (I, b -fZ)$#R, 

(cfl)” cannot be an clement of rn, showing (*) is not possible. This completes the 
pi oof fsr n 2 3. 

‘“or n = 2, we take Bz = [-l] and b2 t= 4. Then ail lof the proof goes through just 
as above. The only modification needed is (1 -B&52 = &1 since there is only one 
basis element. Thus & is generated by !I, sl, ~2, ~3 and cy = (A, a), where 

The subgroup G = Hz of Out r2 is generated by ii = p’(p), where 0 = (I& 0) and 

P the orientation argument, not!: that, by (i), det A = det B = 1 p for any u 3 2. 
csmple tes the 

pie 1.3, we can produce many others. 

ension IV 3 3, there exists a closed bt-manifold IV,,, of ~o~-posit~~~~ 



2. Reinarks on ir paper of R. schoen aad SX NW ’ . 

‘In a recent paper of FL Schoen and ST. Yau, [8], one finds some results that 
are related to those of’[S], However we caution the reader that their Corollary 6, 
Theorems 11,12 and 13 need BII additional hypothesis - the G-acti4an on M leaves 
the kernel of & : ?;rl(&f) + n&V) invariant - in order to be correct. Of course this 
con@ion, in general, will not hold and must be assumed. (Also, their Theorem 10 _ 
is incor=ct since one cannot, in general, lift homomorphisms of Ci into Out P back 
up to the afine diffeomorpkisms of M(W). Theorem 3 of [S] is an independent and 
different treatment of the same proMem.) 

By combining our techniques with their theorems one may obtain extensions of 
some of their theoyens. Here is an illustration of a generalization of their 
Theorem 13 (after the hypothesis on the fundamental group has been strengthened 
according to our suggestion). 

2.1. Theorem, Let A4 be a compact manifold witk a finite group G acting effectively 
and differentiably. Suppose there is a degree’ 1 mufr; f from M to a closed flat 
Riemannian martifaM N suck that K = kernel off* is a &aracteristic subgroup of 
wlM. tj(7ten G has a faithful re#wesentation in A(N). 

Froaf. There exists a zatural diagram of extensions: 



Therefore by our msult (cor~h’y to TheureW#), there e&&s an a&e gW3mMric 
realtzatisn of the abstract kernel arising from the ext~~iorr t~i%r#E)~by~C& Hbwevtq 
if 5ve now apply their Theorem 8, we see that the coastructed action of G witI act 
effectively since the degree of tke map is I. Consequently, under the strengthened 
hypothesis to Theorem 13 to make the conclusion correct (the invariant kernel 
condition) one needs only assume that N is a compact flat manifold, Thie-cc>lqdition 
on the center of ri(N) or the first Betti number of M is ~0% necesspry. af course, 
one cannot assert a conclusion about the faithful representation into the outer 
automorphism group of N in case bl(M) + 0 and B&V) ?Ilr 0. 

At the end of Theorems 4, 5 and 6 of [S] we pointed out that afine act.iQns ov 
M must q;lalitative!ly describe the possible topological actions dn A3. N&&itheless, 
as zi.7 example (end of Theorem 6 in [5]) showed, even smooth actions, in the 
prese;qce of non-trivial isotropy subgroups, can differ from affine action’s in some 
essentials. Still, Schoen and Yau’s results, coupled with 2.1 above, compares, up 
to homotopy, each smooth action with an affine action. Specifically: 

Given a homotopy equivalence f between a closed manifold &# and a closed flat 
manifold Iv and a smiooth effective action of a finite G on M, there exists an atine 
G-action on N and a smooth p homotopic to f so that f(gx) = g 9 f’(x). 

3. Realization by isometrics 

For a Riemannian manifold there are many lifting problems to explore, Let us 
consider the inclusions and quotient groups 

.9 ( M 1 c A(M) c Diffeo(M) c Z(M) c= 8(M) 

where 4(M) denotes the group of isometries of M, A(M) the group of a@ne 
diffeomorphisms of M One might try to start with, say a finite group at any stage 
and attempt to lift upwards and/or backwards. So far we have concentrated on 
Wring Out T*(M) to A(M) for flat Riemannian manifolds. In this section we wiJi 
tleae the problem of lifting back to 9(M). Note that for closed Riemannianr 

+ sroA (;M) is always injective but no Diffeo(M) -+ ~&V(ici) -+ 

be a closed flat Riemanlraan manifold. Let out(nyM) denote the image 
on & : No&++ 

by 
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: C&t n~a)y not be UkGte group even thtDu$!;h ‘0~ has trivial center [2, Example 21. 
Notice that rout P is always finite, 

,EVW tkx@ zout(?r &f) v&es according- to the metric of M, there is a “common 9’ 

sabgtiup which is very convenient for our lifting problems. 
“, 1s 

3.X. WNNMWE [l$ L& M be a closed flat Riemakia7t manifold. Let Z be the 
maximal abelian subgroup of nlM with quotient 44 a”hert H I(@, Z) is narunzCly 
embedded in out&M) anti can be sea&ad as a group of isometrics of M 

Tk realizatiowproblem of an abstract kernel by isametries is caimpletely settled 
by applying [S, Theorem 31. 

3.2. The~ean. Let M be a closed flat Riemanvziart manifold. Then an abstract kernel 
(G, ?I, 4) with G.finite cun be realized as a group of isometrics if and only if it admits 
an admissible extension and # (G) c out(n&Z). 

Pro& Suppose (G, n, 4) admits an admissible extension. By [S, ThetDrem 3 j, there 
is a realization of this abstract kernel, say, 8 : G + A(M), SO that !P * A is the identity 
an 0, where !P is the natural homomorphism A(M) cft g(M) * Out m Since 
F’(aut(rr~M))c #(Af)1 B(G) should be inside S(M) if G c out(?rlM). Another 
implication is easy-. 

3~3. -positZon. Let M be a chased flat Riemannian manifold. For emy finite 
subgroup G -of Out(nlMj, there exists a flat Riemanraian manifold M’ which is 
afinely di’eomorphic to M SO that G c out( qr 1 M’). 

Proof, This is non-trivial, because G cannot be realized in general. In [Lb], it is 
proved that any such C has an inflation G!* + Out n, with a finite abelinn kernel 
H’(A$, Z)/Center (VIM), which can be realized as a group of affine diffeomorphisms 
of M. So, we may assume that G* c A(M). NOW, by [5, Theorem 61, there exists 
a flat Riemanniar manifold M’ with an action of a goup of isometries (M’, G*‘) 
which is affinely equivalent to the original (M, G*). Therefore, G*’ map? to G 
under A(M’) -P Qut(rIM’) z CIut(7rlM) and certainly G “+ out(w&f’). 

It: is known for certain aspheri~a~ mani is very large (ail 24orsions). 

The explicit description de heory, where cert 

are stiil in doubt, but en is verified so t-40 doubt exists for tori of 



We shall show that our conjecture hoids at least for certain kinds of Wut manifolds. 

4.6. Theorem. Let M” be a c/cued flat Riemanniun manifold, and G be my finite 
suhgrm4p of W(-)!l f M )I. Sbqqm~ either: I 

(i) 3(nl(bf)) is a “summand” of WI(M), or 

, 

Prloof, ‘We have already shown the if part. So let us assume that G ac’::s effectively 
an M. We get the admissible extension: 

and by restricting to Go = kernel of (G --p out ?r), get 

l-Vr-*E,~-,G~-,l. 

We claim EC1 is torsion free. If this 1s the case, then & is a torsion free extension 
of a Bieberbach group and hence, by Proposition 2 of [S], is an abstract Bieberbach 
group. Note that Eoc X(W) by construction and so it acts freely and properly 
discontinuousiy on 84”. By Farrell-Hsiang, [3], there exists It e 8ep(R”) such that 
hEoh -’ <E(n). Denote Eo s 6(&) (6 =conjugation by Ir), Since 81~: w-+ $(ctr) 

is an isomorphism between Bieberbach groups, there is an afIine map f eA(n) so 
that hvoh ’ =fwof.-* for all cp E w. Let o be the conjugation by f-l. Then 

Note that 04 Eo) c E(n), and hence 8(&J c A(n). This implies that g(G) = @!?&/n 
is in AQW). Originally, Go was mapped to id E Out n, so the extension I+ rr + 
fq 0) -+ &Go) + 1 is an extension realizing the abstract kernel ~((Go) + 1 E 0ut R. 
That is, in the induced diagram 
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&~~> = ker i&c Tk, the connected component of S(M), This tnean$ every element 
of S(&) is isotopic to the identity, which in, turn implies that every element of 
GO = Ic”@(G)f?z is isotopic to the identi;ty. Thus, 00 must be trivial. 

It remains to check that &-is necessarily torsion free, We have the com,mutative 
diagram: 

with elrslct rows and columns. Note that in case (i), In3 v = the complementary 
summand. (In fact, the splitting of the center implies that M = 71k x .?J and Inn v = 
WI(N)). If EQ has a torsion element eo, then it injects into Inn v since C&(w) is 
torsion free (or trivial). Now in case (i), Inn v is torsion free. In case (ii), the order- 
of eo in Inn T is 2 since it injects into Go because n is torsion free, and also injects 
into Inn w because C&n) is torsion free. Suppose p (v) = image eo E Inn V, u E 7~. 
Then ~{a~) = (&a))*= 1 implies a*~ B(V). This implies that M has even order 
holomony. For, if we denote CT = (A, a) e A(n), then (A*, (I + A)a) z= u-* E 3(r) 

implies A2 == I. This contradiction shows Eo is torsion free in case (ii) and completes 
the argument. 

Cordhry 1. Let T” be a flat torus. K = the kerrtel of n&%‘( T”) -9 GL(n, Z) = Aut Z”. 
7%eta no non-trivial finite subgrwp of K can be geometrically realized as an eftkctive 
group of homeomorphisms of T”, n it 4. 

Cwolhry 2. Let M” be flat and G a finite subgtoup of K. Then no nontrival ehwrrt 
of G can be lifted to act freely oriz M if n f 4. 

Examining the argument used in the proof of Theorem 4.1, one sees that 
what is needed to carry out the argument is that ths lifted action of E :Jn M(rr) 
is free (equivalcltly, E is torsion free). This is guaranteed if G acts freely. 



We pick a map w : G + Aut 7~ SO that w composed with the natural 
ism Aut v + Out 7r is the same as 4, once aac! for alI. Let 80 be the 
iven by the hypothesis, and 14 n + EQ-+ @O(G) 3) I the lifting sequence 

af &( (3). Again we choose a map fo : C? -i) A!& SO that F ~$0 = w. 
For any other al%ine realization 6 with lifting sequence, 13 w + E -p e(G)+ 1, 

and any map f : G --, E with p of = w, it Is readily verified that f- fo: G + IR’ = 
CAln, (71: yields a 1-cocycle g : G -Q Tk = 4&f). Now it is not hard to see that 8 is 
strongly conjugate to 8’ if and only if g - g’ is principal. Thus we have shown that 
there is an injective homomorphism of all strong conjucacy classes of afine rep%- 
ations into If ‘( T”), Conversely, given a l-cocycle g : G + T’ = 4r&W) wet can 
lift g to d : 6 4 wr,l define a map f = fo+g : G 3 A(n). The subgroup &‘ of A(n) 
generat Td by T and f(G) induces an affine realization 6 I G + 8(G) = E/n so that 

PO@ = 4, showi (realizations} 4 H $2, Tk) is surjective. 
Since If’@, ) = 0 for i > 0, VW have an isomorphism 6 : .H1(G, Tk)+ 

N*(G, a(n)). ‘?%erefore, by composiaig S with the isomorphism above, we have the 
desired isomorphism of all strong ronjugacy classes of Mine rea!izations of (0, w, #) 
onto HI@, 3t.n)). Note that 8” maps to 0 under this isornorphism. 

5.2. Examp!e. On kf of 1.2, the automorphism of P given 5y %b 

cy -+Q, t2 -+ t3r t3 -+ t2 

defines m abstract kernel (1, 7) = 2!z d:= Out W. We have: an obviuusr realizatiun of 
this by /31 = (B, 0)~ A(3), where 

1 0 0 

B= i 

1: 0 1 I . 0 1 0 

NOW 7&, $1 IT H is isamorphic to 2, and a non-triivial cocycle is g(7) = 4~ 1”’ SC) 

1 = : E R’. “Therefore our new realization is lsiven by & = (19, ‘pi, 0, NJ). Of 
~o~r~~, these two actions are not strongly conjugate to each other. 



We &all testate the CkoTlary ta Theclrem 6 af [S], (which essenti&y sulunmarize 
many of our resutts thexc?), in a slightly altered form to conform twith OUT effective 

requir@rnent here: 
If (61, M) and (02, M) are finite efkctive equivalent action:sl then their lifting 

sequences are isomorphic= Conversely, two acrllmissable isomoryrhic extensions 1 
rr -41 E -+ G + 1 and 13 71’ + E’ + P-l, 1 yield &Finely equivalent affine realizationll;. 

Henfee, affine actions are topalogically equivalent if and onlly if they are affineliy 
equivalent. 

The group of all affine actions .which are affinely equivalent 1x1 a given eflective 
tine action (e(G), M) can be measured. It is isomorphic to N (~)/N(rr) A N(E), 
where E is the lifting of 8(G) to A& N(n) and N(E) denote the normalizers of TT 
and E in A(a). Note that isomorphic extensions do not, in general, yield the same 
abstract kernel, 

5.3. Example, Even though two affine actions reahze the same abstract kernel and 
are a@nely equivalent, they are not, in general, strongly conjugate. Gsnsider the 
two actions in 5.2. Let 6 = &C, C$ where 

1 

C=O [ 

0 0 

0 0 -? 1. 1 0 

Then one easily chtxks that @(rz) = R il, @(t,) = t2, $(a) = a and 8Q3,) = &a I. 
Therefore, 8 is an isc tnorphism of the lifting of the first action to that 9f the second 
one leaving rr invariilnt, making the two actions a%iinely equivalent. Certainly the 
isomorphism 8 of G1 and Gz induced by 8 preserves the abstract kernel. Hswever, 
we have seen in 5.2 1 hat they are not strongly conjugate. 
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