TOPOLOGICAL, AFFINE AND ISOMETRIC ACTIONS ON FLAT RIEMANNIAN MANIFOLDS II

Kyung B. LEE* and Frank RAYMOND**
Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, :USA

Received 28 January 1981

Abstract

Explicit examples of finite subgroups of the group of homotopy classes of self-romotopy equivalences of some flat Riemannian manifolds which cannot be lifted to effective ac ions are given. It is also shown that no finite subgroups of the kernel of $\pi_{0}(\operatorname{Homer}(M)) \rightarrow$ Out $\pi_{1}(M)$ can be lifted back to Homeo (M), for a large class of flat manifolds M. Some results of an earlier paper by the authors are refired ind related to recent work of R. Schoen and S.T. Yau.

$$
\begin{array}{ll}
\text { AMS Subj. Clais.: Primary } & \text { 57S17, 57S25; Secondary 53C21 } \\
\text { flat Riemanniz, manifolds } & \text { topological, affine and isometric actions } \\
\text { outer automorthism group } & \begin{array}{l}
\text { homotopy classes of self-homotopy equivalences } \\
\text { obstroctallographion to a groups extension } \\
\text { obsometric extension }
\end{array} \\
\begin{array}{ll}
\text { abstract kernel }
\end{array} & \text { geometrin }
\end{array}
$$

In this note we make certain observations and give some examples which eatend and complement the: results of our earlier paper [5] on actions of finite groups on flat Riemannian manifolds. We assume familiarity with [5] and retain the notations and definitions given there.

Section 1 gives some explicit examples of finite subgroups of the group of homotopy classes of self homotopy equivalences of a flat manifold which cannot be lifted to effective actions. Section 2 examines a related paper of R. Schoen and S.T. Yau [8]. In Section 3, we prove that Theorem 3 of [5] solves also the lifting problem of an abstract kernel to the group of isometries. In Section 4 we partially prove that no finite subgroup of kernel of $\pi_{0} \mathscr{H}(M) \rightarrow$ Out $\pi_{1} M$ can be lifted back to $\mathscr{H}(M)$. Section 5 is a refinement of Corollary 6 of [5] where it was shown that two affine actions are affinely equivalent if and only if the corresponding lifting sequences are isomorphic. We also show that there is a one-to-one correspondence beiween the strong conjugacy classes of all affine realizations of an abstract kernel $\phi: G \rightarrow$ Out π and $H^{2}(G ; 3(\pi))$.

[^0]
1. Examples

In the first part of this section we give two examples of finite subgroups of the group of homotopy classes of self homotopy equivalence of a flat manifold which do not lift to effective topological actions. In both cases, the underlying manifond M will be the flat manifold of dimension 3 with holonomy group $\Phi=\mathbf{Z}_{2}$. We then describe, for each integer $n \geqslant 2$, a closed flat Riemannian manifold M_{n} of dimension $n^{2}+n-2$ with holonomy cyclic of order n. For each of these manifolds a cyclic subgroup of order n in Out $\pi_{1}(M)$ is found which cannot be lifted to a topological action on M.
1.1. Example. There exists an isometry D such that D^{2} is isotopic (through isometries) to the identity, but D is not homotopic to any homeomorphism H with $H^{2}=$ identity.

This follows the method of [7]. Here is a description of M. Take

$$
\omega: T^{2} \rightarrow T^{2} \text { given by }\left(\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right)
$$

and form M, the mapping torus of $\omega\left(=S^{1} \times_{(\omega)} T^{2}\right)$. Denote points of M by $\left\langle r, z_{1}, z_{2}\right\rangle$, etc. Then $\left\langle r, z_{1}, z_{2}\right\rangle=\left\langle r-1, z_{1}^{-1}, z_{2}^{-1}\right\rangle$ for $i \in \mathbb{R},\left(z_{1}, z_{2}\right) \in T^{2}$. Define D using the matrix

$$
\left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right)
$$

That is, $D\left\langle r, z_{1}, z_{2}\right\rangle=\left\langle-r, z_{2}^{-1}, z_{1}\right\rangle$. Note it is well defined and $D\langle 0,1,1\rangle=\langle 0,1,1\rangle$. Now $D^{2}\left\langle r, z_{1}, z_{2}\right\rangle=\left\langle r, z_{1}^{-1}, z_{2}^{-1}\right\rangle$. If we define $D_{\theta}^{2}\left\langle r, z_{1}, z_{2}\right\rangle=\left\langle r-\vartheta, z_{1}^{-1}, z_{2}^{-1}\right\rangle$, then $D_{0}^{2}=D^{2}$ and $D_{1}^{2}=$ id, which shows D^{2} is isotopic to the identity. Clearly D^{2} restricted to $T^{2}=\left\{\left(0, z_{1}, z_{2}, \in M\right\}\right.$ is ω. Note that $\pi_{1}\left(T^{2},\langle 0,1,1\rangle\right)$ is a characteristic subgroup of $\pi=\pi_{1}(M)$ since it is the kernel of $\left(\pi \rightarrow H_{1}(M) \otimes Q\right)$.

If there exists H homotopic to D so that $H^{2}=$ id, then there exists an extension diagram:

Choose $e \in E$ such that conjugation by e, μ_{e}, is preciscly $D_{*} \in \operatorname{Aut}(\pi)$. Let $\eta=$ $\{\langle s, 1,1\rangle \mid 0 \leqslant s \leqslant 1\}$ be the element of π representing the generator of the section of the fibering $M \rightarrow S^{1},\left\langle r, z_{1}, z_{2}\right\rangle \mapsto r$. Thern $\mu_{n}=\mu_{e^{2}}$ so that $e^{2}=c \cdot \eta$ for some c
in the center of $\pi, 3(\pi)$. Note that $3(\pi)$ is generated by η^{2}. As $D_{*}(\eta)=\eta^{-1}$, $D_{*}\left(e^{2}\right)=e^{-2}$. On the ether hand, $D_{*}\left(e^{2}\right)=\mu_{e}\left(e^{2}\right)=e^{2}$. Therefore we see that $e^{4}=1$. This is a contradiction because $e^{2} \in \pi$, which is torsion-free.

Consequently, no such H can exist, since no such E can exist. Compare these examples with Example 2.8 of Heil-Tollefson, Deforming Homotopy Involutions, Topology 17 (1978) 349-365. Obviously, this example is just a prototype of many such examples on flat menifolds all working the same way: One needs orily to choose a flat manifold T with a period 4 automorphism γ with non-empty fixed points and whose powers $0(4)$ are not homotopic to the identity. Use $\omega=\gamma^{2}$ to make the mapping torus, M, On this new flat manifold one can define the analogue of D. Note, incidentally, that D^{4} is the identity [5, Theorem 5]. This would correspond to enlarging the abstract kernel $\left(\mathbb{Z}_{2}, \pi, \phi\right)$, where D_{*} generates \mathbb{Z}_{2}, to $\left(\mathbb{Z}_{4}, \pi, \bar{\phi}\right)$, where $\bar{\phi}: \mathbb{Z}_{4} \rightarrow \mathbb{Z}_{\mathbf{2}} \rightarrow$ Out π. To obtain the conclusion of the previous argument, one needs to know how D_{*} acts on $3(\pi)$. The simplest way to guarantee the non-existence of an extension is to have $3\left(\pi_{1}(R)\right)^{\omega}=1$.
1.2. Example. The following is another example on M. We will show that a certain abstract kernel fails to admit an extension by showing directly that its obstruction class does not vanish. Recall

$$
\pi=\left\langle\alpha, t_{1}, t_{2}, t_{3} \mid \alpha^{2}=t_{1}, \alpha t_{2} \alpha^{-1}=t_{2}^{-1}, \alpha t_{3} \alpha^{-1}=t_{3}^{-1},\left[t_{i}, t_{i}\right]=1\right\rangle .
$$

Consider the following automorphisms of π

$$
\begin{array}{llll}
a: & \alpha \mapsto \alpha, & t_{2} \mapsto t_{3}, & t_{3} \mapsto t_{2}^{-1}, \\
b: & \alpha \mapsto \alpha, & t_{2} \mapsto t_{3}, & t_{3} \mapsto t_{2}, \\
c: & \alpha \mapsto \alpha, & t_{2} \mapsto t_{2}, & t_{3} \mapsto t_{3}^{-1} .
\end{array}
$$

The following table shows these automorphisms together with the identity map 1 make a subgroup G of $\operatorname{Out}(\pi)$, which is isomorphic to $\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$ (e.g. $a b=\mu c$).

	1	a	b	c
1	1	a	b	c
a	a	μ	μc	b
b	b	c	1	a
c	c	μb	μa	1

Here μ denotes the antomorphism

$$
\mu: \quad \alpha \mapsto \alpha, \quad t_{2} \mapsto t_{2}^{-1}, \quad t_{3} \mapsto t_{3}^{-1}
$$

which is conjugation by any odd, ower of α. In fact, these are the only possible choices to denote μ by inner automorphisms since α^{2} zenerates the infinite cyclic center. This fact will be useful later.

Let us denote the automorphism classes containing $1, a, b, c$ by $\overline{1}, \bar{a}, \bar{b}, \bar{c}$ respectively, so

$$
G=\{\overline{1}, \bar{a}, \bar{b}, \bar{c}\} \stackrel{\oplus}{\leftrightarrow} \text { Out } \pi
$$

is our abstract kernel.
At this point we recall how we get the obstruction class in $H^{3}(G, 3(\pi))$ for an abstract kernel $\phi: G \rightarrow$ Out π to have an extension. In each automorphism class $\phi(x)$ choose an automorphism $u(x)$, taking care that $u(1)=1$, once and for all. Since ϕ is a homomorphism into $\mathrm{Oui} \pi, u(x) \cdot u(y) \cdot u(x y)^{-1}$ is an inner automorphism. For each $x, y \in G$ choose an element $f(x, y)$ in π yielding this inner automorphism:, in particular $f(x, 1)=0=f(1, y)$. (This choice of f is not unique, of course). For all $x, y, z \in G$,

$$
k(x, y, z)=u(x)(f(y, z)) \cdot f(x, y z) \cdot f(x y, z)^{-1} \cdot f(x, y)^{-1}
$$

defines a normalized 3 -cochain of G with coefficients in $3(\pi)$, which yields the obstruction class $\operatorname{obs}(G, \pi, \phi)=[k] \in H^{3}(G, 3(\pi))$. It is known that obs $(G, \pi, \phi)=0$ if and only if k is identically 0 for a suitable choice of f.

Now we go back to our example. For $\overline{1}, \bar{a}, \bar{b}, \bar{c} \in G$, we choose $u(\bar{x})=x$. That is $u(\bar{a})=a$, etc. Since $u(\bar{c}) \cdot u(\bar{b}) \cdot u(\overline{c b})^{-1}=c \cdot b \cdot a^{-1}=\mu$, conjugation by $f(\bar{c}, \bar{b})$ should be μ. This means all the possible choices for $f(\bar{c}, \bar{b})$ are odd powers of α as remarked earlier. Also $u(\bar{b}) \cdot u(\bar{c}) \cdot u(\overline{b c})^{-1}=b \cdot c \cdot a^{-1}=1$ shows that conjugation by $f(\bar{b}, \bar{c})$ is the identity. So $f(\bar{b}, \bar{c})$ is a central element, and hence should be an even power of α.

Assume now that $G=\mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \stackrel{\phi}{\rightarrow}$ Out π admits an extension. Then for some choice of f, k is ideritically 0 . An easy computation shows

$$
1=k(\bar{a}, \bar{b}, \bar{a}) \cdot k(\bar{b}, \bar{c}, \bar{b})^{-1} \cdot k(\bar{c}, \bar{a}, \bar{c})^{-1}=f(\bar{b}, \bar{c})^{2} \cdot f(\bar{c}, \bar{b})^{-2}
$$

[For any $\bar{x}, \bar{y} \in G$, conjugation by $f(\bar{x}, \bar{y})$ is either 1 or μ so that $f(\bar{x}, \bar{y})$ is some power of α. This implies all $f(\bar{x}, \bar{y})$ commute with each other.] Both $f(\bar{b}, \bar{c})$ and $f(\bar{c}, \bar{b})$ are powers of α. The identity above implies $f(\bar{b}, \bar{c})=f(\bar{c}, \bar{b})$. This is a contradiction because $f(\bar{b}, \bar{c})$ is an even power of α, while $f(\bar{c}, \bar{b})$ is an odd power and α is, of course, of infinite order.

Note that we can enlarge this abstract kernel to $\phi_{\boldsymbol{H}}: \mathbb{Z}_{4} \oplus \mathbb{Z}_{2} \rightarrow$ Out π so that this new abstract kernel has an admissible extension as in [5, Theorem 5]. Here \mathbb{Z}_{4} is generated by a (with $a^{4}=\mu^{2}=1$) and \mathbb{Z}_{2} by b. The kernel of $\mathbb{Z}_{4} \oplus \mathbb{Z}_{\mathbf{2}} \rightarrow \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$ is $\mathbb{Z}_{2}=\{1, \mu\}$. The group of affine diffeomorphisms realizing ϕ_{H} effectively is generated by

$$
a(x)=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right] x \quad \text { and } \quad \mu(x)=x+\left[\begin{array}{c}
\frac{1}{2} \\
0 \\
0
\end{array}\right]
$$

1.3. Examples. For each $n \geqslant 2$, there exists a closed orientable flat Riemannian manifold M_{n} such that a subgroup of Out $\left(\pi_{1} M_{n}\right)$, isornorphic to \mathbb{Z}_{n}, cannot be realized as a group of homeomorphisms of $\boldsymbol{M}_{\boldsymbol{n}}$.

The proof is by direct construction. First we construct a torsion free, discrete uniform subgroup Γ_{n} of $E\left(n^{2}+n-2\right)$, i.e., an $\left(n^{2}+n-2\right)$-dimensional Bieberbach group. This will define the desired manifold $M_{n}=\mathbb{R}^{n^{2}+n-2} / \Gamma_{n}$. Next, we find a certain element of $E\left(n^{2}+n-2\right)$ which normalizes Γ_{n}, and show that the outer automorphism induced by that element generates a subgroup of order n which has no germetric realization.

Let $n \geqslant 3$. B_{n} will denote the companion matrix of the polynomial $1+x+$ $x^{2}+\cdots+x^{n-1}$ so that $B_{n} \in \operatorname{GL}(n-1, \mathbb{Z})$. For example,

$$
B_{3}=\left[\begin{array}{rr}
0 & -1 \\
1 & -1
\end{array}\right], \quad B_{4}=\left[\begin{array}{ccc}
0 & 0 & -1 \\
1 & 0 & -1 \\
0 & 1 & -1
\end{array}\right], \quad \text { etc. }
$$

This matrix has the following properties:
(i) $\operatorname{det}\left(B_{n}\right)=(-1)^{n-1}$,
(ii) $I+B_{n}+B_{n}^{2}+\cdots+B_{n}^{n-1}=0$,
and hence, in particuiar, $B_{n}^{n}=I$.
(iii) $\quad\left(I-B_{n}\right) b_{n}=e_{2}$,
where

$$
\begin{aligned}
& b_{n}=\frac{1}{n} t[-1, n-2, \ldots, 3,2,1], \\
& e_{2}=[0,1,0, \ldots, 0]
\end{aligned}
$$

are elements of \mathbb{K}^{n-1}.
Let Γ_{n} be the subgroup of $E(n-1) \times E\left(n^{2}-1\right) \subset E\left(n^{2}+n-2\right)$ generated by

$$
t_{1}, t_{2}, \ldots, t_{n-1} ; \quad s_{1}, s_{2}, \ldots, s_{n^{2}-1} ; \quad \alpha
$$

where $\left\{t_{i} \mid 1 \leqslant i \leqslant n-1\right\}$ is the standard unit translations of $\mathbb{F}^{n-1},\left\{s_{j} \mid 1 \leqslant j \leqslant r^{2}-1\right\}$ the standard unit translations of $\mathbb{R}^{n^{2}-1}$ and, $\alpha=(A, a) \in E\left(n^{2}+n-2\right)$ with

$$
A=\left[\begin{array}{cc}
I & 0 \\
0 & \left(B_{n^{2}}\right)^{2}
\end{array}\right] \quad \text { and } \quad a=\left[\begin{array}{c}
b_{n} \\
0
\end{array}\right] \in \mathbb{R}^{n-1} \times \mathbb{R}^{n^{2-1}}
$$

Let $A t \mathcal{t}$ the subgroup of Γ_{n} generated by $\left\{t_{1}, \ldots, t_{:-1}, s_{1} \ldots, s_{n^{2}-1}\right\}$. Clearly Λ is a free abelian group of rank $n^{2}+n-2$. Since $A \in G L\left(n^{2}+n-3, \mathbb{Z}\right), A$ is normal in Γ_{n}. Now (order of A) $=n$ imples that $\alpha^{k} \notin \Lambda$ for $0<k<n$. W, sant to show $a^{n} \in \Lambda$. Since

$$
\alpha^{n}=\left(A^{n},\left(I+A+\cdots+A^{n-1}\right) a\right)
$$

and

$$
I+A+\cdots+A^{n-1}=\left[\begin{array}{cl}
n I & 0 \\
0 & *
\end{array}\right]
$$

we have

$$
\alpha^{n}=\left(I, n b_{n}\right)=t_{1}^{-1} t_{2}^{n} \cdots t_{n-2}^{2} t_{n-1}
$$

which is in Λ, as we expected.
It is clear that Λ is maximal abelian in Γ_{n} and $\left[A: \Gamma_{n}\right]=n$. Now we claim that Γ_{n} is torsion free. Suppose not, so that

$$
\left(t \cdot s \cdot \alpha^{k}\right)^{r}=1
$$

for some $0<k<n, r>0, t \in\left\langle t_{1}, \ldots, t_{n-1}\right\rangle, s \in\left\langle s_{1}, \ldots, s_{n^{2}-1}\right\rangle$. Then

$$
1=\left(t \cdot s \cdot \alpha^{k}\right)^{r}=t^{r} \cdot\left(s \cdot^{\alpha^{k}} s \ldots \alpha^{k(r-t)} s\right) \cdot \alpha^{k r}
$$

since t is central in Γ_{n}. Here we are using the notation ${ }^{x} y=x y x^{-1}$. Since A is normal in Γ_{n}, the first two factors are in Λ, and hence $\alpha^{k r} \in \Lambda$. However, we have seen that n is the least positive integer for which $\alpha^{n} \in \Lambda$. This implies $k r=n p$ for some integer p. We compare the number of t_{1}-factors of both sides in the last equation. If t has $d t_{1}$-factors, then

$$
0=r d+0+(-1) p,
$$

since the middle term has no t_{1} factor. Therefore r divides p, say, $p=q r$. Then $k r=q n r$ so that n divides k, which is impossible.

We have just proved that Γ_{n} is an $\left(n^{2}+n-2\right)$-dimensional Bieberbach group with holonomy group isomorphic to \mathbb{Z}_{n} so that $1 \rightarrow \Lambda \rightarrow \Gamma_{n} \rightarrow \mathbb{Z}_{n} \rightarrow 1$ is exact. It is well known that the Γ_{n} action on $\mathbb{R}^{n^{2}+n-2}$ is free and properly distoncinuous, yielding a closed flat Riemannian manifold, $M_{n}=\mathbb{R}^{n^{2}+n-2} / \Gamma_{n}$. It is also easy to see that M_{n} is a nil-manifold. In fact, it is a $T^{n^{2-1}}$ bundle over T^{n-1} with structure group \mathbb{Z}_{n}. At this point, the picture of the manifold M_{n} as well as the group Γ_{n} is clear. But let us write down a presentation of Γ_{n} :

$$
\left[t_{i}, t_{i}\right]=\left[s_{i}, s_{i}\right]=\left[t_{i}, s_{i}\right]=1, \quad \alpha t_{i} \alpha^{-1}=t_{i} .
$$

$\alpha s_{,} \alpha^{-1}=$ polynemial in s_{i} 's with coefficients from the j th column of the matrix $B_{n}^{n}{ }^{\prime}$

$$
\alpha^{n}=t_{1}^{-1} t_{2}^{n} 2 \cdots t_{n-2}^{2} t_{n-1} .
$$

In order to find a subgroup G of Out Γ_{n} we look at the element $\beta=(B, 0)$ of Il $=A\left(n^{2}+n-2\right)$, the $\left(n^{2}+n-2\right)$ dimensional affine group, where

$$
B=\left[\begin{array}{cc}
B_{n} & 0 \\
0 & B_{n}^{2}
\end{array}\right]
$$

we claim that $\beta \in N_{y}\left(\Gamma_{n}\right)$, the normalizer of Γ_{n} in \mathbb{U}. It will be enough to show $\beta \alpha \beta^{-1} \in \Gamma_{n}$. Since $B^{n}=A, B A B^{-1}=A$. By (iii),

$$
B a=\left[\begin{array}{c}
B_{n} b_{n} \\
0
\end{array}\right]=\left[\begin{array}{c}
b_{n}-e_{2} \\
0
\end{array}\right]=a-e_{2}
$$

Therefore,

$$
\begin{aligned}
\beta \alpha \beta^{-1} & =(B, 0)(A, a)(B, 0)^{-1} \\
& =\left(B A B^{-1}, B a\right)=\left(A, a-e_{2}\right)=t_{2}^{-1} \alpha
\end{aligned}
$$

so that $\beta \in N_{\mathfrak{Y}}\left(\Gamma_{n}\right)$.
Look at the commutative diagram of exact rows and colurnns.

we claim that $\mu\left(\beta^{n}\right)=\mu(a)$. For,

$$
\alpha \cdot \beta^{-n}=(A, a)(B, 0)^{-n}=(I, a)
$$

so that $a \in \mathbb{R}^{n-1} \subset C_{\mathfrak{Q}}\left(\Gamma_{n}\right)$. Note that $C_{\mathfrak{Q}}\left(\Gamma_{n}\right)$ is generally bigger than \mathbb{R}^{n-1}. Let $\bar{D}=\mu^{\prime}(\beta)$. The above argument shows that the subgroup is of Out Γ_{n} generated by \bar{D} has order n.

We prove now that $G \leftrightarrow$ Out Γ_{n} does not have any affine and hence, topological (see [5, Theorem 7]) realization. Suppose there exists a sujgroup G^{\prime} of $A(M)$ so that $\left.\psi\right|_{G^{\prime}}$ is an isomorphism of G^{\prime} onto G. Form the lifting sequence of G^{\prime}, $1 \rightarrow \Gamma_{n} \rightarrow E \xrightarrow{n} G^{\prime} \rightarrow 1$. This is just a restriction of the middle row in the diagram so that $F \subset N_{\mathrm{g}}\left(\Gamma_{n}\right)$. Pick $\gamma \in E$ so that $\Psi(\nu(\gamma))=\bar{D}$. Since $\mu^{\prime}(\beta)=\bar{D}=\mu^{\prime}(\gamma)$ and $\operatorname{ker}\left(\mu^{\prime}\right)$ is generated by Γ_{n} and $C_{q}\left(\Gamma_{n}\right), \gamma=\sigma c \beta$ for some $\sigma \in \Gamma_{n}$ and $c \in C_{\mathcal{E}}\left(\Gamma_{n}\right)$. For $\Psi: G^{\prime} \rightarrow G$ to be an isomorphism, we should have $\gamma^{n} \in \Gamma_{n}$ or $(\sigma c \beta)^{n} \in \Gamma_{n}$. But this is equivalent to:
(*) $\quad(c \beta)^{n} \in \Gamma_{n} \quad$ for some $c \in C_{a}\left(\Gamma_{n}\right)$.

We will prove (*) is impossible. Let $c=(I, c)$ with $c \in \mathbb{R}^{n^{2}+n-2}$ (this is an abuse of notation). We need a little computation

$$
(c \beta)^{n}=((I, c)(B, 0))^{n}=\left(B^{n},\left(I+B+\cdots+B^{n-t}\right) c\right)
$$

By the definition of B, we have $B^{n}=A$. Also,

$$
\begin{aligned}
\left(I+B+\cdots+B^{n-1}\right) c & =\left[\begin{array}{cc}
I+B_{n}+\cdots+B_{n}^{n-1} & 0 \\
0 & *
\end{array}\right] c \\
& =\left[\begin{array}{cc}
0 & 0 \\
0 & *
\end{array}\right] c \quad \text { by (ii) } \\
& =\left[\begin{array}{l}
0 \\
*^{\prime}
\end{array}\right]^{\text {let }} b \in \mathbb{R}^{n^{2}+n-2} .
\end{aligned}
$$

Therefore, we have $(c \beta)^{n}=(A, b)$. Since

$$
(c \beta)^{n} \alpha^{-1}=(A, b)(A, a)^{-1}=(I, b-a) \notin \Gamma_{n},
$$

$(c \rho)^{n}$ cannot be an element of Γ_{n}, showing $(*)$ is not possible. This completes the pioof for $n \geqslant 3$.

Bor $n=2$, we take $B_{2}=[-1]$ and $b_{2}=\frac{1}{2}$. Then all of the proof goes through just as above. The only modification needed is $\left(I-B_{2}\right) b_{2}=e_{1}$ since there is only one basis element. Thus Γ_{2} is generated by $t_{1}, s_{1}, s_{2}, s_{3}$ and $\alpha=(A, a)$, where

$$
A=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 0 & -1 & 1 \\
0 & 0 & -1 & 0 \\
0 & 1 & -1 & 0
\end{array}\right], \quad a=\left[\begin{array}{c}
\frac{1}{2} \\
0 \\
0 \\
0
\end{array}\right] .
$$

The subgroup $G \cong \mathbb{Z}_{2}$ of Out Γ_{2} is generated by $\bar{D}=\mu^{\prime}(\beta)$, where $\beta=(B, 0)$ and

$$
B=\left[\begin{array}{rrrr}
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & -1
\end{array}\right]
$$

For the orientation argument, note that, by $(i), \operatorname{det} A=\operatorname{det} B=1$, for any $n \geqslant 2$. This completes the proof.

Remark. By a slight modification of Example 1.3, we can produce many others. As an example, we clain that:

For each dimension $n \geqslant 3$, there exists a closed n-manifold N_{n}, of non-positive sectional curvature, on which Nielsen's theorem fails to hold. That is, there exists a cyclic subgroup of $\operatorname{Out}\left(\pi_{1} N_{n}\right)$, of order $n-1$, which cannot be realized as a group of homeomorphisms.

Proef. Let S be a surface of genus $(n-1)^{2}$ with an isometry δ of order $(n-1)^{2}$. We define an action of $\mathbb{Z}_{n-1}=(\alpha\rangle$ on $T^{n-2} \times S$ by $\alpha(x, s)=\left(x+b_{n-1}, \delta^{n-1}(s)\right)$ This is free since it acts freely on T^{n-2} already. Let $N_{n}=T^{n-2} \times S /\langle\alpha\rangle$.
Let $\bar{\beta}$ be the diffeomorphism on $T^{n-2} \times S$ defined by $\bar{\beta}(x, s)=\left(B_{n-1} x, \delta(s)\right)$. Passing to the quotient, $\bar{\beta}$ defines a diffeomorphism β on N_{n}; of order $(n-1)^{2}$. In turn, $\boldsymbol{\beta}$ defines a subgroup \boldsymbol{G} of $\operatorname{Out}\left(\pi_{1} N_{n}\right)$, isomorphic to \mathbb{Z}_{n-1}. We claim that $G \rightarrow \mathrm{Out}\left(\pi_{1} N_{n}\right)$ has no realization.

2. Remarks on a paper of R. Schoen and S.T. Yau

In a recent paper of R. Schoen and S.T. Yau, [8], one finds some results that are related to those of [5]. However we caution the reader that their Corollary 6 , Theorems 11,12 and 13 need an additional hypothesis - the G-action on M leaves the kernel of $f_{*}: \pi_{1}(M) \rightarrow \pi_{1}(N)$ invariant - in order to be correct. Of course this condition, in general, will not hold and must be assumed. (Also, their Theorem 10 is incorrect since one cennot, in general, lift homomorphisms of G into Out π back up to the affine diffeomorphisms of $\boldsymbol{M}(\pi)$. Theorem 3 of $[5]$ is an independent and different treatment of the same problem.)
By combining our techniques with their theorems one may obtain extensions of some of their theorers. Here is an illustration of a generalization of their Theorem 13 (after the hypothesis on the fundamental group has been strengthened according to our suggestion).
2.1. Theorem. Let M be a compact manifold with a finite group G acting effectively and differentiably. Suppose there is a degree 1 map from M to a closed flat Riemannian manifold N such that $K=$ kernel of f_{*} is a characteristic subgroup of $\pi_{1} M$. Then G has a faithful representation in $A(N)$.

Proof. There exists a satural diagram of extensions:

Therefore by our result (Corollary to Theorem 4), there exists an affine geometric realızation of the abstract kernel arising from the extension of $\pi_{i}(N)$ by G. However, if we now apply their Theorem 8, we see that the constructed action of G will act effectively since the degree of the map is 1 . Consequently, under the strengthened hypothesis to Theorem 13 to make the conclusion correct (the invariant kernel condition) one needs only assume that N is a compact flat manifold. The condition on the center of $\pi_{i}(N)$ or the first Betti number of M is not necessary. Of course, one cannot assert a conclusion about the faithful representation into the outer automorphism group of N in case $b_{1}(M) \neq 0$ and $b_{1}(N) \neq 0$.

At the end of Theorems 4,5 and 6 of [5] we pointed out that affine actions on M must qualitatively describe the possible topological actions on M. Nevertheless, as ain example (end of Theorem 6 in [5]) showed, even smooth actions, in the presence of non-trivial isotropy subgroups, can differ from affine actions in some essentials. Still, Schoen and Yau's results, coupled with 2.1 above, compares, up to homotopy, each smooth action with an affine action. Specifically:

Given a homotopy equivalence f between a closed manifold M and a closed flat manifold N and a smooth effeciive action of a finite G on M, there exists an aftıne G-action on N and a smooth f^{\prime} homotopic to f so that $f^{\prime}(g x)=g \cdot f^{\prime}(x)$.

3. Realization by isometries

For a Riemannian manifold there are many lifting problems to explore. Let us consider the inclusions and quotient groups

where $\mathscr{I}(M)$ denotes the group of isometries of $M, A(M)$ the group of affine diffeomorphisms of M. One might try to start with, say a finite group at any stage and attempt to lift upwards and/or backwards. So far we have concentrated on lifting Out $\pi_{1}(\boldsymbol{M})$ to $\boldsymbol{A}(\boldsymbol{M})$ for flat Riemannian manifolds. In this section we will treat the problem of lifting back to $\mathscr{F}(M)$. Note that for closed Riemannian manifolds $\pi_{0} \mathscr{I}(M) \rightarrow \pi_{0} A(M)$ is always injective but $\pi_{0} \operatorname{Diffeo}(M) \rightarrow \pi_{0} \mathscr{H}(M) \rightarrow$ $\pi_{0} \mathscr{E}(M) \rightarrow$ Out $\pi_{1}(M)$ may neither be injective nor surjective.

Let M be a closed flat Riemannan manifold. Let out $\left(\pi_{1} M\right)$ denote the image of the injection $\pi_{0}(\mathscr{F}(M)) \rightarrow \mathrm{O}^{\prime} \cdot\left(\pi_{1} M\right)$. Using the surjection $\mu: N_{\mathrm{A}(n)}(\pi) \rightarrow$ Aut $\left(\pi_{1} M\right)$, the conjugation map, we define aut $\left(\pi_{1} M\right)$ by aut $\left(\pi_{1} M\right)=\mu\left(N_{E(n)}(\pi)\right)$. Notice that out $\left(\pi_{3} M\right) \cong \operatorname{aut}\left(\pi_{1} M\right) / \operatorname{lnn}\left(\pi_{1} M\right)$ and aut $\left(\pi_{1} M\right)$ depend on the Riemannian metric on M, while $\operatorname{Cut}\left(\pi_{1} M\right)$ and $A u t\left(\pi_{1} M\right)$ do not. The latter are purely algebraic objects depending only on the group $\pi \pi_{1} M$.

Out π may not be a finite group even though π has trivial center [2, Example 2]. Notice that out π is always finite.

Even though out $\left(\pi_{1} M\right.$) varies according to the metric of M, there is a "common" subgroup which is very convenient for our lifting problems.
3.1. Theorem [1]. Let M be a closed flat Riemannian manifold. Let Z be the maximal abelian subgroup of $\pi_{1} M$ with quotient Φ. Then $H^{1}(\Phi, Z)$ is naturally embedded in out $\left(\pi_{1} M\right)$ and can be realized as a group of isometries of M.

The realization problem of an abstract kernel by isometries is completely settied by applying [5, Theorem 3].
3.2. Theorem. Let M be a closed flat Riemannian manifold. Then an abstract kernel (G, π, ϕ) with G finite can be realized as a group of isometries if and only if it admits an admissible extension and $\phi(G) \subset$ out $\left(\pi_{1} M\right)$.

Proof, Suppose (G, π, ϕ) admits an admissible extension. By [5, Theorem 3], there is a realization of this abstract kernel, say, $\theta: G \rightarrow A(M)$, so that $\Psi \circ \theta$ is the identity on G, where ψ is the natural homomorphism $A(M) \hookrightarrow \mathscr{E}(M) \rightarrow$ Out π. Since $\Psi^{-1}\left(\operatorname{out}\left(\pi_{1} M\right)\right) \subset \mathscr{F}(M), \theta(G)$ should be inside $\mathscr{I}(M)$ if $G \subset \operatorname{out}\left(\pi_{1} M\right)$. Another implication is easy.
3.3. Proposition. Let M be a closed flat Riemannian manifold. For any finite subgroup G of $\operatorname{Out}\left(\pi_{1} M\right)$, there exists a flat Riemannian manifold M^{\prime} which is affinely diffeomorphic to M so that $G \subset \operatorname{out}\left(\pi_{1} M^{\prime}\right)$.

Proof. This is non-trivial, because G cannot be realized in general. In [4], it is proved that any such G has an inflation $G^{*} \rightarrow$ Out π, with a finite abelian kernel $H^{1}(M, \mathbb{Z}) /$ Center $\left(\pi_{1} M\right)$, which can be realized as a group of affine diffeomorphisms of M. So, we may assume that $G^{*} \subset A(M)$. Now, by $[5$, Theorem 6], there exists a flat Riemannian manifold M^{\prime} with an action of a group of isometries ($M^{\prime}, G^{* \prime}$) which is affinely equivalent to the original (M, G^{*}). Therefore, $G^{* \prime}$ mape to G under $A\left(M^{\prime}\right) \rightarrow \operatorname{Out}\left(\pi_{1} M^{\prime}\right) \xrightarrow{\circ} \operatorname{Out}\left(\pi_{1} M\right)$ and certainly $G \hookrightarrow \operatorname{out}\left(\pi_{1} M^{\prime}\right)$.

4. Can the kernel K of $\pi_{0} \mathscr{H}(M) \rightarrow O$ ut π be realized?

It is known for certain aspherical manifolds that K is very large (all 2 -torsions). The explicit description depends upon A. Hatcher's theory, where certain aspects are still in doubt, but enough is verified so no doubt exists for tori of dimension greater than 4 , and most asphericals of suficiently large dimensions.
We conjecture that for any closed aspherical manifold no non-trivial finite subgroup of K can be lifted back to $\mathscr{H}(M)$.

For M with $3\left(\pi_{1}(M)\right)=1$, this is true since any finite group G acting effectively on M necessarily injects into Out $\pi_{1}(M)$.

We shall show that our conjecture holds at least for certain kinds of flat manifolds.
4.1. Theorem. Let $M^{\prime \prime}$ be a closed flat Riemannian manifold, and G be any finite subgroup of $\pi_{0}(\mathscr{H}(M))$. Suppose either:
(i) $3\left(\pi_{1}(M)\right)$ is a "summand" of $\pi_{1}(M)$, or
(ii) $n>4$, and the holonomy of M is of orid order [this case depends upon the kernel of $\pi_{0} \mathscr{H}(M) \rightarrow$ Out $\pi_{1}(M)$ having on'y 2 -torsion]. Then G lifts to $\mathscr{H}(M)$ if and only if $G \rightarrow$ Out $\pi_{1}(M)$ is injective and rdnits an extension (and hence admissible).

Proof. We have already shown the if part. So let us assume that G acis effectively on M. We get the admissible extension:

$$
1 \rightarrow \pi \rightarrow E \rightarrow G \rightarrow 1,
$$

and by restricting to $G_{0}=$ kernel of $(G \rightarrow O$ ut $\pi)$, get

$$
1 \rightarrow \pi \rightarrow E_{0} \rightarrow G_{0} \rightarrow 1
$$

We claim E_{0} is torsion free. If this is the case, then E_{0} is a torsion free extension of a Bieberbach gioup and hence, by Proposition 2 of [5], is an abstract Bieberbach group. Note that $E_{0} \subset \mathscr{H}\left(\mathbb{R}^{n}\right)$ by construction and so it acts freely and properly discontinuously on \mathbb{R}^{n}. By Farrell-Hsiang, [3], there exists $h \in \mathscr{H}\left(\mathbb{R}^{n}\right)$ such that $h E_{0} h^{-1}<E(n)$. Denote $E_{0} \xrightarrow{\theta} \theta\left(E_{0}\right)(\theta=$ conjugation by $h)$. Since $\theta \mid \pi: \pi \rightarrow \theta(\pi)$ is an isomorphism between Bieberbach groups, there is an affine map $f \in A(n)$ so that $h \circ \sigma \circ h h^{\prime}=f \circ \sigma \circ f^{-1}$ for all $\sigma \in \pi$. Let ω be the conjugation by f^{-1}. Then

Note that $\theta\left(E_{0}\right) \subset E(n)$, and hence $\bar{\theta}\left(E_{0}\right) \subset A(n)$. This implies that $\vec{\theta}(G)=\vec{\theta}\left(E_{0}\right) / \pi$ is in $A(M)$. Originally, G_{0} was mapped to id \in Out π, so the extension $1 \rightarrow \pi \rightarrow$ $\bar{\theta}\left(E_{0}\right) \rightarrow \bar{\theta}\left(G_{0}\right) \rightarrow 1$ is an extension realizing the abstract kernel $\bar{\theta}\left(G_{0}\right) \rightarrow 1 \in$ Out π. That is, in the induced diagram

$\theta\left(G_{0}\right)=\operatorname{ker} \bar{\phi} \subset T^{*}$, the connected component of $\Phi(M)$. This ineans every element of $\bar{\theta}\left(G_{0}\right)$ is isotopic to the identity, which in turn implies that every element of $G_{0}=h^{-1} \bar{j}\left(G_{0}\right) f^{-1} h$ is isotopic to the identity. Thus, G_{0} must be trivial.

It remains to check that E_{0} is necessarily torsion free. We have the commutative diagram:

with exact rows and columns. Note that in case (i), Inn $\pi=$ the complementary summand. (In fact, the splitting of the center implies that $M=T^{k} \times N$ and Inn $\pi=$ $\pi_{1}(N)$). If E_{0} has a torsion element e_{0}, then it injects into Inn π since $C_{E_{0}}(\pi)$ is torsion free (or trivial). Now in case (i), Inn π is torsion free. In case (ii), the order of e_{0} in Inn π is 2 since it injects into G_{0} because π is torsion free, and also injects into Inn π because $C_{E_{0}}(\pi)$ is torsion free. Suppose $\mu(\sigma)=$ image $e_{0} \subseteq \operatorname{Inn} \pi, \sigma \in \pi$. Then $\mu\left(\sigma^{2}\right)=(\mu(\sigma))^{2}=1$ implies $\sigma^{2} \in 3(\pi)$. This implies that M has even order holomony. For, if we denote $\sigma=(A, a) \in A(n)$, then $\left(A^{2},(I+A) a\right):=\sigma^{2} \in 3(\pi)$ implies $A^{2}=I$. This contradiction shows E_{0} is torsion free in case (ii) and completes the argument.

Corollary 1. Let T^{n} be a flat torus. $K=$ the kernel of $\pi_{0} \mathscr{H}\left(T^{n}\right) \rightarrow \mathrm{GL}(n, \mathbb{Z})=$ Aut \mathbb{Z}^{n}. Then no non-trivial finite subgroup of K can be geometrically realized as an effective group of homeomorphisms of $T^{n}, n \neq 4$.

Corollary 2. Lot M^{n} be flat and G a finite subgroup of K. Then no nontrival element of G can be lifted to act freely on M if $n \neq 4$.

Proof. Examining the argument used in the proof of Theorem 4.1, one sees that what is needed to carry out the argument is that the lifted action of E on $M(\pi)$ is free (equivale atly, E is torsion free). This is guaranteed if G acts freely.

5. Classifications of finite affine actions

An affine action $\left(G_{1}, M\right)$ is said to be strongly conjugate to $\left(G_{2}, M\right)$ if there is h in $A_{0}(M)$, the connected component of identity of $A(M)$, such that $\mu(h)$ maps G_{1}
onto G_{2} isomorphically. We shall now classify all alfine realizations of a given abstract kernel ϕ up to strong conjugacy.
5.1. Theorem. Suppose (G, π, ϕ) is an injective finite abstract kernel with an affine realization. Ther there is an isomorphism of the strong conjugacy classes of all affine realizations of ($\boldsymbol{G}, \pi, \phi$) onto $H^{2}(G, 3(\pi)$).

Proof. We pick a map $w: G \rightarrow$ Aut π so that w composed with the natural homomorphism Aut $\pi \rightarrow$ Out π is the same as ϕ, once and for all. Let θ_{0} be the realization given by the hypothesis, and $1 \rightarrow \pi \rightarrow E_{0} \rightarrow \theta_{0}(G) \rightarrow 1$ the lifting sequence of $\theta_{0}(G)$. Again we choose a map $f_{0}: G \rightarrow E_{0}$ so that $\mu \circ f_{0}=w$.
For any other affine realization θ with lifting sequence, $1 \rightarrow \pi \rightarrow E \rightarrow \theta(G) \rightarrow 1$, and any map $f: G \rightarrow E$ with $\mu \circ f=w$, it is readily verified that $f-f_{0}: G \rightarrow \mathbb{R}^{k}=$ $C_{A(n)}(\pi)$ yields a 1 -cocycle $g: G \rightarrow T^{k}=y_{0}(M)$. Now it is not hard to see that θ is strongly conjugate to θ^{\prime} if and only if $g-g^{\prime}$ is principal. Thus we have shown that there is an injective homomorphism of all strong conjucacy classes of affine realizations into $H^{1}\left(G, T^{k}\right)$. Conversely, given a 1 -cocycle $g: G \rightarrow T^{k}=\boldsymbol{g}_{0}(M)$ we can lift g to $\tilde{g}: G \rightarrow \mathbb{R}^{k}$ and define a map $f=f_{0}+\tilde{g}: G \rightarrow A(n)$. The subgroup E of $A(n)$ generated by π and $f(G)$ induces an affine realization $\theta: G \rightarrow \theta(G)=E / \pi$ so that $\psi \circ \theta=\phi$, showing \{realizations\} $\rightarrow H^{k}\left(G, T^{k}\right)$ is surjective.
Sirice $H^{\prime}\left(G, \mathbb{R}^{k}\right)=0$ for $i>0$, we have an isomorphism $\delta: H^{1}\left(G, T^{k}\right) \rightarrow$ $H^{2}(G, 3(\pi))$. Therefore, by composirg δ with the isomorphism above, we have the desired isomorphism of all strong sonjugacy classes of affine realizations of (G, π, ϕ) onto $H^{2}(G, z(\pi))$. Note that θ_{0} maps to 0 under this isomorphism.
5.2. Example. On M of 1.2 , the automorphism of π given by

$$
\alpha \rightarrow \alpha, \quad t_{2} \rightarrow t_{3}, \quad t_{3} \rightarrow t_{2}
$$

defines an abstract kernel $\{1, \tau\} \equiv \mathbb{Z}_{2}<$ Out π. We have an obviour realization of this by $\beta_{1}=(B, 0) \in A(3)$, where

$$
B=\left[\begin{array}{lll}
1 & 0 & 0 \\
C & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

Now $\boldsymbol{H}^{2}\left(\mathbb{Z}_{2}, 3(\pi)\right)$ is isomorphic to \mathbb{Z}_{2}, and a non-trivial cocycle is $g(\tau)=\frac{1}{2} \in T^{1}$ so that $g(\tau)=\frac{1}{2} \in \mathbb{R}^{\prime}$. Therefore our $n \in w$ realization is given by $\beta_{2}=\left(B,\left[\frac{1}{2}, 0,0\right]\right)$. Of course, these two actions are not strongly conjugate to each other.

Two effective affine (respectively; topological) actions (G_{1}, M) and (G_{2}, M) are affinely (resp.; topologically) equivalent if there is $h \in \mathcal{A}(M)$ (resp. $h \in \mathscr{H}(M)$) so that $\theta=\mu(h)$, conjugation by h, is an isomorphism of G_{1} onto G_{2}; i.e., $\theta(g) \cdot h(x)=$ hig x, for all $g \in G_{1}$ and $x \in M$. We say that two extensions E and E^{\prime} of π are
isomorphic if there is an isomorphism between them inducing an automorphism of π.
We shall restate the Corollary to Theorem 6 of [5], (which essentially summarized many of our results there), in a slightly altered form to conform with our effective requirement here:

If $\left(G_{1}, M\right)$ and $\left(G_{2}, M\right)$ are finite effective equivalent actions then their lifting sequences are isomorphic. Conversely, two admissable isomor hic extensions $1 \rightarrow$ $\pi \rightarrow E \rightarrow G \rightarrow 1$ and $1 \rightarrow \pi \rightarrow E^{\prime} \rightarrow G^{\prime} \rightarrow 1$ yield affinely equivalent affine realizations.

Hence, affine actions are topologically equivalent if and only if they are affinely equivalent.

The group of all affine actions which are affinely equivalent to a given effective affine action $(\theta(G), M)$ can be measured. It is isomorphic to $N(\pi) / N(\pi) \cap N(E)$, where E is the lifting of $\theta(G)$ to $\bar{M}, N(\pi)$ and $N(E)$ denote the normalizers of π and E in $A(n)$. Note that isomorphic extensions do not, in general, yield the same abstract kernel.
5.3. Example. Even though two affine actions realize the same abstract kernel and are affinely equivalent, they are not, in general, strongly conjugate. Consider the two actions in 5.2. Let $\theta=\mu(C, 0)$, where

$$
C=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right] .
$$

Then one easily checks that $\theta\left(t_{2}\right)=t_{3}^{-1}, \theta\left(t_{3}\right)=t_{2}, \theta(\alpha)=\alpha$ and $\theta\left(\beta_{1}\right)=\beta_{2} \alpha^{1}$. Therefore, θ is an iscmorphism of the lifting of the first action to that of the second one leaving π invariant, making the two actions affinely equivalent. Certainly the isomorphism $\bar{\theta}$ of G_{1} and G_{2} induced by θ preserves the abstract kernei. However, we have seen in 5.2 that they are not strongly conjugate.

References

[1] P. Conner and F. Raymond, Deforming homotopy equivalences to homeomorphisms in aspherical manifolds, Bull. Amer Math. Soc. 83 (1977) 36-85.
[2] L.S. Charlap and A.T. Vasquez, Compact flat Riemannian manifolds III, Amer. J. Mith. 95 (1973) 471-494.
[3] F.T. "hrell and W.C Hsiang, Topological characterizations of flat and almose fla Riemannian manifolds $M^{n},(n \neq 3,4)$, to appear.
[4] K. B. Lee, Geometric dalization of $\pi_{0} \mathscr{E}(M)$, Proc. Amer Math. Soc., to appea.:
[5] K.B. Lee and $F \cdot \mathbb{R}$ mond, Topological, affine and isometric actions on fiat Riemanman manifolds, J. Differential Geometry 16(2) (1981).
[6] F. Raymond, The Nielsen theorem for Seifert fibered spaces over focally symmetric space . I. Korean Math. Soc. 16 (1979) 8/-93.
[7] F. Raymond and L.L. Scott, Failure of Nielsen's theorem in higher dimersions, Archiv, Math, 29 (1977) 643-654.
[8] R. Schoen and S.T. 'Yau, Compact group actions and the topology of manitolds with non-positive curvature, Topology 18 (1979) 361-380. See also a forthcoming Correction.

[^0]: * Present address: Dept. of Mathematics, Purdue University, W. Lafayette, IN 47907, USA.
 ** Supported in part by the N.S.E.

