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ABSTRACT 
This paper presents a numerical model for predicting the performance of 
liquid-gas mass transfer in a rotating perforated-disc type contactor. 
The device consists of a cylindrical section situated between two 45- 
degree conical sections. A liquid flows downward by gravity while a 
stream of air moves upward by buoyancy thus forming a counter-current 
flow situation in the contactor. A gas dissolved in the liquid trans- 
fers into air bubbles which are sheared to a tiny size as they rise 
through the perforations on the rotating disc. Both laminar and turbu- 
lent flows are treated. Utilizing the velocity distribution [i0,ii] and 
bubble trajectory [12] as the basis, the interphase mass transfer per- 
formance of carbon dioxide in the water-air system is numerically 
determined. It is disclosed that in both laminar and turbulent flow 
cases, the rate of interphase mass transfer increases significantly 
with a reduction in bubble size. Rotational speed does not affect mass 
transfer in laminar flow but causes an exponential mass transfer en- 
hancement in higher turbulent flows. There exists an optirmzn through- 
flow rate of the liquid for the best mass transfer performance depending 
on the initial bubble size and disc speed. Test results [9] provide a 
qualitative confirmation of the theory. 

Introduction 

Rotating disc contactors (RDC's) are widely used for gas-liquid absorption 

and liquid-liquid extraction [1-4]. They are more efficient and flexible 

in operation than the conventional sieve-plate, packed and spray columns. 

Howeverm axial mixing tends to decrease the stage efficiency and is always 

a problem in this type of mixing device. That is why various modifications 

have been designed to inprove efficiency. Figure 1 shows a schematic of a 

relatively new construction. It consists of a perforated disc rotating in a 
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vessel cc~prised of one cylindrical and two conical sections. In gas-liquid 

mass transfer applications, the liquid flows down by gravity while the gas 

bubbles rise upward by buoyancy. The perforated rotating disc is used as a 

dispersing means to reduee the size of gas bubbles and to increase their resi- 

dence time, resulting in a significant increase in the gas-liquid interface 

for mass transfer at low power const~ption 15]. The housing is designed in 

a conical shape for the purpose of minimizing the occurrence of axial mixing. 

Glaeser et al [6] disclosed that the perforated-disc type devices per- 

formed better than propellers and turbines as gas dispersion equipment. Later, 

Jain [7] studied the power performance and gas holdup of a three- 

stage perforated-disc cascade in the absence of liquid flow and interphase 

mass transfer. Experimental results indicated a substantial power reduction 

that is associated with the presence of the gaseous phase. The physical 

causes of the large power reduction was explained in reference [8]. Mosch 

[9] conducted experiments on the same cascade system to determine the effects 

of gas flow rate and disc rotating speed on the mass transfer coefficient. 

Reference [5] derived the correlation equation for gas-liquid mass transfer 

in the mixing cascade using Mosch's data [9]. 

A series of studies have been conducted to determine the fundamental 

mechanisms on low power consunlotion and high interphase mass transfer in the 

rotating perforated-disc type contactors: The velocity distributions in the 

axial-swirling oc~bined flow field were determined for both the turbulent 

[i0] and laminar [ii] flow cases using a rapidly converging line-relaxation 

ntlnerical technique. For turbulent flows, a K-s (turbulent kinetic energy- 

rate of dissipation energy) two-equation model along with appropriate wall 

functions were utilized in calculating the turbulent viscosity. The theory 

provided a basis for the selection of a RDC with a 45-degree conical angle 

used in the previous experimental studies [5 through 9 ]. 

With utilization of the velocity distributions [i0, ii] and collaboration 

of an enloirical bubble growth equation, a bubble kinetic equation was n~neri~ 

cally integrated to determine the trajectory and velocity of a discrete bubble 

in the e0~%bined flow field [12]. The bubble departed from the center of per- 

forations on the disc rotating at an angular velocity ~. The Reynolds ntmlber 

based on the hydraulic diameter of the cylindrical section 2 (Ro - Rs) and the 

Taylor n~ber Ta are defined as 
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__2 
Re = Ta = P!~ 

• (i) (Rs÷R o) 

Here, m£ denotes the liquid mass flow rate; V and p, absolute viscosity and 

density of the liquid, respectively; Rs, % and Rd, radii of shaft, cylindri- 

cal section, and disc, respectively, as shown in Fig. i. 

The present work is an extension of the previous studies [i0 1 ] to inves- 

tigate the mass transfer performance between the gas and liquid phases. The 

effects of Ta, Re and initial bubble size on the performance characteristics 

of the RDC are determined. 

Theoretical Analysis 

The physical system to be studied is shown in Fig. I. The disc is per- 

forated with circular holes at uniform circtmlferential spacing. A liquid 

(water) saturated with a dissolved gas (carbon dioxide) enters the contactor 

from the top opening and flows down along the rotating shaft through the an- 

nular space between the disc edge and the cylindrical wall into the lower half 

of the housing. Gas (air) bubbles are fed into the device through tb~ lower 

opening. They rise along the shaft by buoyancy, flow radially outward under 

the lower surface of the rotating disc due to the action of centrifugal and 

Coriolis forces, and gush through the holes into the upper half of the housing. 

During the process of passing through the perforations, each bubble is broken 

up into smaller ones by the shearing action of the solid edges. Due to a com- 

bined action of the centrifugal and buoyancy forces, these tiny bubbles travel 

through the upper half of the housing in counter current with the downpouring 

liquid. It is during this period of their excursion that the dissolved gas 

migrates through the liquid toward the bubbles and evaporates into the bubble 

space. The interphase mass transfer prooess progresses until gas bubbles are 

intercepted by a vessel wall. Theoretical analysis is therefore focussed upon 

the upper half of the flow field. 

Eor convenience in mathematical treatment, the cylindrical coordinates 

(r, e, z) are employed withthe origin fixed at the center of the disc with z 

measur~.ng the axial distance in the direction against the liquid flow. 
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a) Velocity Distribution in the Liquid Phase [i0,Ii] 

With the use of the vorticity ~ and stream function ~ defined as 

= ~--~--~-~ ; U = p--~ ~z ; W = p-~ Dr (2) 

the full Navier-stokes equations can be expressed as [i0] 

a ~ ~ ~ -- ~ ~ ~ ~z br ~ (c~)-- ~ br (r#) + rd = 0 

Here, (U, V, W) denote the velocity c(~ponents in the (r, @, z) directions, 

respectively; p, the liquid density; and ~, general dependent variable. The 

coefficients a, b, c and d together with ~ are listed in Table i. 

(3) 

TABLE i: Definition of a, b, c, d and 

a b c d 

o i/pr 2 1 -~0/r 

~/r r 2 r 2 /u e -2 (p~)/~z 

< 1 ~e/Ok 1 ~t G - pg 

g 1 pe/~e 1 Cle~tG/< -C2pg2/< 

Equation (3) can be applied for both laminar and turbulent flows. In case of 

laminar flows, Pe = p and only the first three variables in Table I are needed; 

for turbulent flows, all the five equations must be solved. ~e = ~ + ~t' 

where U and Pt are the laminar and turbulent viscosity, respectively. ~t 

is defined as ~ piK I/2 which is equal to p<2Cu/g. The constants CI, C2, 

Cu, CD, o e and o k are 1.45, 2.0, 0.082, 1.0, 1.3 and 1.0, respectively [i0]. 

G signifies the turbulent viscous dissipation function. 

• "~ne a~propriate boundary conditions are 

(a) At inlet: U = V = 0, W = f(r); 

0~) on stationary walls: U = V = W = 0; 

(c) on rotating surfaces: U = W = 0, V = ~qr; 

(d) at exit: U = V = 0, ~W/~z = 0 

(4a) 

(4b) 

(4c) 

(4d) 
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For the near-wall layers where visoous effects predominate over turbulent 

ones, the "Wall function method" ~i0] is incorporated in the computer program. 

A fast-converging line-iterative technique is e~ployed to solve the above 

equations in finite difference form for the distribution of flow velocities 

(U, V, W). 

(b) Bubble Trajector~ and Residence Time in the Reaction Zone [12] 

A bubble with diameter less than 3 mm may be treated as a rigid particle 

[12]. The equation of bubble kinetics can then be found by the balanoe of 

the forces acting on a particle (e.g. bubble). Let the oemponents of bubble 

velocity in the (r, O, z) direction be expressed in terms of the instantaneous 

position of the bubble [R(t), _~ (t), Z (t)]. They are substituted into the 

force-balanced kinetic equation. It yields 

- 3 (R - U) U C d + ~2 + 3 U -~+ W-~- {5a) 

2R 3 
.... R 2~R (~ - V) O C d + ~ U ~+ W ~+ (5b) 

"" Cd [ ~W~_r ~-{~W ] Z = 2g 3 (9 - W) o + 3 U + W (5c) 

for the (r, 8, z) direction, respectively. Here, the superscripts "." and 

...... signify the time derivitives. The drag coefficient C d obeys the rela- 

tionship [13 ] : 

C d = 4 (0.75 Reb0"72 + 6)/ Re b (6) 

Here, ~b is the bubble Reynolds number defined as Re b = D~/v and 9 signifies 

the kinematic viscosity of the liquid. ~ denotes the relative velocity be- 

tween the bubble and the surrounding liquid defined as 

U = [(U - -R) 2 + ~ - --RH) 2 + (W- "/Z)2] I'2 (7) 

wherein (R, R~, Z) are the cc~nents of bubble velocity in the (r, 8, z) 

direction, respectively. Equations (5a), (5b), and (5c) are subjected to the 

initial conditions 
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R(0) = R h, ~(0) = 0, Z(0) = 0 

~(0) = 0, (0) = ~, ~(0) = 0 

(8a) 

(8b~ 

It is assigned that all tiny bubbles produced by the shearing of larger ones 

by the hole edges are ejected into the liquid region from the center of the 

holes located at a distance ~ from the shaft axis. The bubble dynamic equa- 

tion can be derived by cc~bining the mass-transfer rate equation, }~nry's 

law and thermodynamic equation of state for an ideal gas as 

D b D o I1 ~4- t] 1/4 = + 9HDn (9 . )  

where D is the initial bubble diameter; H, Henry's constant; R, universal 
o 

gas constant; hiD, mass transfer coefficient; T, liquid temperature; and 

t, time. 

Incorporating the liquid velocity distribution together with equations 

(6), (7) and (9) , a fourth-order Runge-Kutta method is utilized to solve 

equations (5) subject to equations (8) for the instantaneous position and 

velocity of a bubble. The drag coefficient, liquid velocity and bubble size 

are updated at every instant. The computions are repeated until the bubble 

hits a wall• 

(c) Interphase Mass Transfer Performance 

Let n be the number of air bubbles ejected from the holes on a rotating a 
disc per unit time. The mass flow rate of the air into the housing is 

m = n m wherein m is the mass of air inside the bubble of diameter D . 
a a a a o 

Each bubble has grow~ to a final size D during the residence time t through 
r r 

the migration of carbon dioxide into the bubble space. So, the mass flow 

rate of the air-CO 2 mixture out from the upper opening of the contactor is 

m = n m in which m denotes the mass of gas mixture inside the bubble of 
m a m m 
diameter D r. The mass rate of the dissolved CO 2 into air bubbles is then 

m % m--nam e or G me 
(i0) 

where m = m - m . With application of the thermodynamic equation of state 
c m a 

for an ideal gas, the above equation can be approximated as 
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me Me % 

i n  which M e 
spec t i ve l y .  

flow rates. 

(11) 

and M are the molecular weights of carbon dioxide and gas, re- 
.a 

Vc/V a represents the ratio of the corresponding volt~netric 

Results and Discussion 

For a specified RDC (fixed system gefm~try as shown in Fig. I), liquid: 

dissolved gas and air bubble, the interphase mass transfer performance is 

controlled by three nondimensional parameters: Do/Rd, Re and Ta. Here, R d 

is 6 cm, while ~/H for carbon dioxide in the water-air system is 0. 2475 

cm/sec at 20 C. Numerical ccmputations were conducted by means of an 

AMDAHL 470/%77 digital ccmputer with a H ccmpiler. 

The parameters were varied as follows: D O = i, 2, 3 ram; Re = 174 and 

Ta = 200 to 600 for laminar flow; and Re = 174 to 1160 with Ta = 5.72 x 104 

to 4 x 105 for turbulent flow. Results are graphically presented in Figs. 

2 through 5. 

Figure 2 illustrates the changes in both the final bubble size in the 

dimensionless form D~/D ° and the bubble residence ~ t r as a function of 

the Taylor number. The through-flow Reynolds n~b~rs correspond to 174 and 

580 in the laminar and turbulent flow fields, respectively. It is seen in the 

figure that both D r and t r remain constant with Ta for laminar flows with low 

disc rotation. However, like the recirculating flow strength, they axe strongl~" 

influenced by Re. In the turbulent flow regime, both D and t increase 
r r 

with Ta. A reduction in the bubble size results in an increase in D/ D O 

and t r for both the laminar and turbulent flow cases, as expected. The 

corresponding mass transfer results are shown in Fig. 3 for the vol~netric 

flow rate ratio VJ V a and mass flow rate ratio mJ% versus Ta. One ob- 

serves that the interphase mass transfer of carbon dioxide increases sub- 

stantially with a reduction in the initial bubble size. The curves for the 

three different bubble diameters are almost parallel and beccrne steeper as 

Ta increases. One set of test data at Re = 580 which were obtained by Mosch 

[9] using a RDC of identical gecmetry and size as Fig. 1 are super- 

imposed in Fig. 3. Mass transfer rates increase with a decrease in the 

volumetric flow rate of air through the RDC. A direct comparison between 
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the test results and the theoretical.prediction is not appropriate since in 

actual operations, it is impossible to measure D O of air bubbles ejected from 

the perforations and a good fraction of air bubbles bypasses the holes, enter- 

ing the upper half RDC through the annular space between the rim of the disc 

and the cylindrical wall of the housing. However, under the same values of 

Re and Ta, a higher air flow rate Va would certainly produce a larger D O of 

air bubbles. Test results (Re = 98) in Fig. 6 show a similar trend as the 

theoretical prediction, namely an enhancement in the interphase mass transfer 

performance with increasing Ta, thus qualitatively supporting the theory. 

Figures 4 and 5 deal with the effects of Re on bubble behavior and inter- 

Dhase mass transfer performance, respectively. A reduction in D n pr~notes an 

increase in D r, t r ana m c. Re exerts only a limited influence on D r, t r 

and m . An interesting observation is the existence of a maximum value 
c 

in Dr, t r and m c at a certain value of Re, approximately 500. This 

means there exists an opt~ liquid flow rate for achieving the best mass 

transfer performance. A through-flow rate of the liquid either higher or 

lower than this optimt~n Re results in a shorter bubble residence time and 

oonsequently a lower mass transfer rate. Test results in Fig. 7 correspond 

to the liquid flow rates lower than the optimum Re. The trend bears out the 

prediction of the theoretical model. 

Conclusions 

With the incorporation of equations (6), (7) and (9), n~nerical integra- 

tions of equations (3) and (5) were carried out subject to the boundary 

conditions (4) and (8). Theoretical results were obtained for the rate of 

interphase mass transfer of carbon dioxide in the water-air system using 

equation (ii). It is concluded t_hat (i) A reduction in D O results in a signi- 

ficant enhancement in m c in both laminar and turbulent flow cases. (ii) Ta 

plays no role on m c in the laminar flow regime. However, in the case of turbu- 

lent flow, an increase in Ta prcmotes an augmentation of m c which increases 

exponentially with Ta when Ta exceeds I. 5 x 105 • (iii) There exists an optimum 

Re for the best interphase mass transfer performance, m c decreases at a value 

of Re, either higher or lower than the optimum value. (iv) The t/~eoretical 

model is in qualitative agreement with the test results. 
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