Multiple Regression

with a Qualitative Dependent Variable

Daniel L. Rubinfeld

This paper describes several methods by which a single
set of scores for a qualitative (usually ordinal) dependent
variable can be estimated simultaneously with the co-
efficients of the explanatory variables of a model. The
canonical correlation and multiple discriminant analysis
approaches are well known in the statistics literature.

The problem of scale construction has received
considerable attention outside the discipline of eco-
nomics.' At the same time the use of maximum-
likelihood estimation techniques such as probit and
logit analysis to study qualitative choice problems has
become quite popular. Within the purview of eco-
nomics, relatively little attention has been paid to the
relationship between scaling techniques and the
analysis of models with qualitative dependent variab-
les. This paper attempts to fill in some missing ground
by stressing the link between multiple regression and
models in which one seeks to determine a scale to
represent a qualitative dependent variable. We de-
scribe methods by which a single set of scores for the
dependent variable can be estimated simultaneously
with the coefficients of the “independent™ variables of
amodel.? Although the results may be interpreted in a
multiple regression framework (e.g., as an extension of
the linear probability model), we stress that the
estimation technique need not involve multiple re-

! The problem of scale construction has received substantial
treatment in the statistics literature. One procedure similar to the
scaling technique described in this paper was devised by Guttman
(1941, 1950). Guttman deals with the case in w=sich the independent
variables take the form of responses to a series of survey questions.
Other discussions of scale construction appe: in Shepard, Romney,
and Nerlove (1972) and Green and Rao (1973).

2 The search for a single sct of scores is a restrictive one and thus
substantially limits the scope of our analyvsis. We shal! return to this
issue later in the discussion.
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However, the paper goes ou to show an iterative least-
squa.es multiple regression technique can provide a
useful approximation to these more general procedures.
The techniques are illustrated with labor force par-
ticipation and voter turnout examples.

gression calculations. Because most of these tech-
niques involve nonlinear estimation techniques that
can be time-consuming and expensive for large data
sets or large models, we propose an ad hoc multiple
regression scaling technique that is relatively inex-
pensive to use. The multiple regression technique
provides a useful approximation of some of the more
general multivariate statistical techniques.

Assume that we know that a given individual unit
of study, family, firm, city, and so on is characterized
by a vector of attributes. Each individual population
member is assumed to belong to one of severai
mutually exclusive groups, and the attribu:. veciors
associated with each group are known to b= ruimally
distributed with different means but identical
variance-covariance matrices. The problem s to fi~
a single linear decision rule that predicts the grc.p
“score” of an individual after the vector ¢ .ttriby:zs
describing that individual is observed. The ;redicted
group scores can be interpreted as provicing ‘ot a
qualitative “dependent” variable in a multiple regres-
sion procedure. The predicted scores also proviie for
a method that allows for the classificationi of in-
dividuals into groups. The procedure is related in
terms of distributional assumptions to m-ultiple dis-
criminant analysis and is identical when tie sample
means of the group attribute vectors lic on a straight
line.

The techniques described here should be of use in
economics as well as in related social science disci-
plines. Examples of some relevant applications are as
follows:

1. In survey analysis, respondents to a question-
naire might be classified into one of several
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groups (e.g, Agree. Disagree, No response).
Attribute data are available for each of the
respondents and all respondents in each group
are assumed to be drawn from a population with
the same mean attribute vector. One can attach a
score to each of the groups in an attempt to
determine whether those who do not answer a
given question are more like those who agree or
more l.ae those who disagree.

. In a study of the work status of a certain segment
of the labor force, one may wish to emphasize the
distinction between those who work part-time
and those who work fuil-time. If the individuals
sampled can be properly classified into distinct
groups such as unemployed, part-time employed,
and full-time emploved, and if attribute and labor
market data are available, the scaling technique
can provide a useful mode of anaiysis. The
technique will be particularly valuable if one
wishes to determine those individual attributes
that best distinguish between the labor force
categories.

3. Assume that corporate cr muaicipal bond ratings
have been attached to a list of bonds to be
studied.® The scaling procedure can be used in an
attempt to replicate the behavior of the rating
agencics. One can determine weights for each of
the attributes that determine ratings as well as a
quantitative score for cach of the rating cate-
gories. Classification rules can be obtained and
used 1n the sample to test the validity of using a
single hinear decisions rule to describe the rating
process.

t9

The remainder of the paper is divided into five
sections. The first introduces the formulation of the
multiple regression model. with the unknown group
scores mterpreted artificially as the dependent
variable in the regression model. Least-squares mini-
mization subject to a constraint on the estimated
parameters feads to the simultaneous determination
tusing eigenvectors and eigenvalues) of a set of group
scores and the weights attached to the vector of
mndividual attributes. The second discusses the inter-
pretation of the regression model with particular
cmphasis on its use lor classification purposes. The
third describes an alternative view of the identical
scoring problem through a generalized analysis cf
variance approach. Tl fourth describes a method by
which ordinary least squares can be used 10 estimate
the dependent variable scale and the attribute

© Sex Rubinfeld (1973) for details cor:cerning this application.
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weights. The fifth contains two examples of the
application of the ordinary least-squares regression
technique.

GROUP SCORING IN A MULTIPLE
REGRESSION SETTING

We assume that each individual unit under study is
represented by an attribute vector, and that the popu-
lation of attribute vectors may be partitioned into G
groups. We also assume a quantitative score x, can be
attached to each group, with no presumption that the
a,s will aecessarily be distinct. We proceed in this
section to determine a set of scores and attribute
weights that minimize the sum of squared residuals of
an artificially defined regression problem. We stress
the artificiality of the procedure because the “de-
nendent” variable is not known and is clearly not
normally distributed. We shall see that the multiple
-egression approach yields a technique that is ident-
ical to other ad hoc scaling procedures computation-
ally, and has the advantage o’ providing a useful
means of interpreting the estitnated scale and at-
tribute weighis
We define !
follows:*

«nknown dependent variable y as

' if the observation is in group :

v, = % if the observation is in group 2 (h

ag if the observation is in group G.

There are N, observations in each of the & groups,
and a total of N observations in the sample.

It will be helpful to represent the vector y as the
product of a grouping matrix and a vector of
unknown scores, ie.,

v=>Dx
where

a=1xa;. - %) 4 Gx 1 vector

* 1t one wese able to specify a priori the probabilities with which
;i takes each ol the G possible values, then further pursual of a linear
probability model approach might be justified. The linear probability
modei is described in Ladd [8]. An attempted extension of the linear
probaoility appears in Warner { 12]. Since our primary obiective is to
estimate a set of scores or scale that can be interpreted in a re . "ession
setting, we shall procced in a different direction.
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D=[P". .- D'“"] an N x G matrix

Vom1 3 on G 1 ifthe ohservation i< in oramm
DW' g=1.2.--~.G=1ifthe observation is in group

£ and 0 otherwise.

The artificial linear regression model is
y=Dax= Xp. Our objective is to find estimates of the
parameter vectors x and f§ that minimize the sum of
squares (Da— X B)(Da— Xf). where X is an N xk
matrix of attribute observations (measured as devi-
ations from the mean), and B is a kx1 vector of
attribute weights. Throughout the paper, superscripts

within parentheses will be used to represent group

labels (). while subscripts will refer to observations (1)
and variables (i, j. k, h, r).

The parameters of the scaled dependent variable
will not be uniquely determined, but such a procedure
does yield a unique solution when a normalization is
made on the vector of group attributes. We choose the
normalization that the variance of the predicted
values J'y be constant.® The Lagrangian expression to
be minimized is the followir.g:

L=(Dx— XBy(Dx— X )
—(L=XBX'XB—K). (n

Differentiating equation (1) with respect to a, §, and
(1—7) yields the following first-order conditions (b
and a refer to the vectors of parameter estimates of
and o):

D'Da-D'Xf=0
X'XB—X'Du—(1—i\X'XB)=0
BX'XB—k=0

which yields
b=(1/iXX'X)"'D'a 2)

a=(D'D)"'D'Xb=X"b 3)

where X isa k x G matrix of the means of independent
variables in each group. Notice that the vector of
scores a is a simple weighted average of the within
group means o X b. To solve explicitly for b, substitute
equation (3) irto equation (2) to get

[A—ilTb=0 @)

* This normzlization has been chosen primarily because it yields
an estimation procedure that is tractable and relates closely to the
scaling work of Guttman and others.
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where I is a kxk
A=(X'X)"'X'DID'D)"'D'X

In general a solution for b must involve the search
for the largest eigenvalue of th: matrix A and the
corresponding eigenvector b.® Wz shall returniio this
point later, but for the moment we shall concentrate
on the use of the estimated vector of group scores.
Once the group scores are known they may be
interpreted in light of the regression approach used. In
particular, if we utilize the scores determined from
equation (4) as the dependent variable in an ordinary
least-squares regression, then we obtain a set of
estimated coefficients that are identical up to a scalar
multiple to the vector b.” This can be most easily seen
by recalling the form of a least-squares estimator and
comparing this to equation (2). Equation (2) also
makes it clear that the equality of the estimated vector
of attribute weights can be guaranteed by the ap-
propriate renormalization of the group scores (each
group score must be divided by ). To simplify
matters we often utilize the vector (1 /4)a as the vector
of group scores.

identity matrix and

INTERPRETATION OF THE
REGRESSION MODEL

The bs measure the effect of a change in one or more of
the independent variables on the normalized numeri-
cal index of the dependent variable, but the normaliz-
ation renders any cardinal interpretation of the
coefficients meaningless. The most appropriate use
for the regression resuits is to classify observations
into groups in the spirit of multiple discnminant
analysis by calculating the residuals between the
measured index a and the fitted values of the original
equation Xb. The residual vector for each of the
groups can be used to calculate an estimate of the
variance associated with each category of the de-
pendent variable.

The R? statistic calculated from the multiple
regression procedure provides one measure of good-

® There will, in general, be more than one eigenvalue assoviated
with the matrix 4. The choice of the largest eigenvalue is a result of
our desire to emphasize the “one-dimensional” aspect of the scaling
problem:. If tiie largest eigenvalue does not give sufficient explanatory
power, then it may be advisable to utilize more than one. See
Guttman (1941, 1950) for details.

7 Some normalization must be made when the scoring problem
is set up. Without a normalization, it is easy to see that if a and b
satisfy the first-order conditions that ka and kt will also. Thus our
interest in the estimated vector of weights b rust be relative, not
absolute.
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ness of fit of the scoring procedure. R? measures the
proportion of the variation in y = Da explained by tiie
variation in the weighted average of group attributes
Xb. The calculated R? will be identically equal to 4,
the value of the largest eigenvalue of the matrix 4 in
equation {4). This follows directly from the fact that

EX'Xb bX'Xb

R*= = e
Yy a’'D'Da
where a has been renormalized so that:
1\
= ‘ ) X 'b.
Then

— b X Xb '
R =, L e T
bX'D(D'L) 'D'Xb |
=/ from equation (4)

Perhaps a more proper measure of success of the
procedure wouid involve a comparison with alternat-
ive techniques of estimation and classification. One
reasonable approach would be to compare the
multi; le regression classification errors with the
number of classification errors associated with a
multiple discriminant analysis procedure. This
measure of success is deceptive, because multiple
discriminant analysis involves the estimation of G — 1
independent equations, and thus uscs more degrees of
freedom than the regression technique.

GROUP SCORING IN AN ANALYSIS
OF VARIANCE SETTING

The group scaling or scoring problem has frequently
beer: described in the literature in terms of generalized
analysis of variance and canonical correlation. We
shall describe the former approach here and leave the
latter derivation to the reader.® Assume that we wish
to find a vector b which maximizes the variance
among group means relative 10 the total variance
within groups. To accomplish this we define

1. §=(§,)=matrix of pooled sum of cross-products

using deviations about overall means

6 N,
S;=Y Y XPX9P-NX X,

g=11=1

" bor further detail concerning both approaches, see Guitman

11930). Anderson (1958), Cooley and Lohnes (1962, 1971), anc Rao
1198y
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where X'@ refers to the N, x k matrix of observ-
ations associated with the gth group.
Then with variables mesured as deviations
about means S=X'X,
2. C=(C;)=matrix of pooled sum of cross-
products using deviations about within group
means

~ Y N ROK®, ()

Then
C=X'X-X'DID'D)y 'DX.

The variance among group means can be represented
by b'¥'b where

V=S-C=X'DID'D)"'DX,

while the total variance is given by b'Sh.
We can maximize b'V'b subject to b'Sb being
constant by writing the Lagrangian

L=bX'D(D'D) 'D'Xb—i(b'X'Xb—k).

Differentiating with respect to b and solving we
obtain

X'DID'D)"'D'Xb=iX'Xb

or

(A—2Db=0 (6

where A=(X'X)"'X'DID'D)"'D'X and { is a kxk
identity matrix. This can be seen to be identical in
form to equation (4). The solu.on to equation (4) is
once again obtained by choosing the largest eigen-
value / (which satisfies the constraints).”

“ Not infrequently the derivation just described is given as one
that maximizes b'V'b subject to b'Ch being constant. The attribute
weights and group scores obtained will be equivalent up to a scalar
multiple, but the new eigenvalue vbtained will not be equal to 4. In
particular, it is possible to show that 0=//(1 + 1) where 8 is the
eigenvalue of the matrix €~ 'V. See Cooley and Lohnes (1971) for
some details. This has relevance here because the canonical corre-

lation package used in the application provides an estimate of 6, not
o
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ORDINARY LEAST SQUARES WITH

A MIIAT ITATIVE NEDE L\
A GUALIREARIVEL UEI'I’JNDEL‘I

VARIABLE (OQDY)
The scoring procedure jusi described suffers from ithe
disadvantage that a solution cannot be obtained

using a standard multiple regression package. In this

section we briefly outline an estimation process that
will enable us to obtain an estimate of the vector of
weights # (and the scores a) using ordinary least
squares.

Recall that the original formulation of the model
was Do = X . We can utilize ordinary least squares by
normalizing the vector a, arbitrarily choosing a, =0
and ag= 1. Ordinary least-squares estimation can be
used if we rewrite the model in the following form:

D!Gl=[x _D‘l)_D(S)_..._D(G‘ |I)

The least-squares technique applied to equation (7)
provides for an estimate b of the parameter . The
estimated scale is simply the vector a= X'b. There is
no guarantee that the estimation procedure will yield
a scale consistent with one’s prior notions about the
ordering of the groups. More importantly, there is no
guarantee that OQDYV will yield scores identical (up to
a suitable transformation) to those derived earlier.
This can be realized intuitively by noting that the
calculated scores for all groups other than the 1st and
Gth will be identical to those obtained by the ordinary
least-squares procedure. But the scores for the 1st and
the Gth groups will not necessarily equal 0 and 1,
respectively.'®

The scale estimate obtained for the set of group
scores can be used to obtain improved parameter
estimates through the use of an iterated least-squares
procedure. The second iteration is accomplished by
regressing the vector Da on the vector of attributes X
This will yield a new set of estimated attribute weights
b’ znd a new set of group scores a’. Then the new
group scores yield a new set of attribute weights, and
so on, The iterated set of group scores and attribute
weights will remain unchanged from the previous set
only when the estimated scale and weights corre-

10 The estimated scores will be equivalent to those derived earlier
when the sample means of the .t*ribute vectors lie on a straight line.
See Apperdix for proof.
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spond to the generalized analysis oi variance solution
(and when the R’ is identically equal to the eigen-
value of the matrix A). We have been unable to prove
convergence under a general set of conditions, but the
lack of a gl:m:ral set Ul CCIVET; W wnuluons IS not
likely to be of practical consequence. The reason is

that when convereence does occur, the estimated

saias VRV VA pwaieY WMWY Ve ViAW WwORidaATAR

scale and weights will correspond to the generalized
analysis of variance solution, with R? being equal to
the largest eigenvaluz of A. And conversely when the
scale is equai to the analysis of variance scale, the
iterative process will end—additional iterations will
yield the same scale.!! Thus convergence guarantees
that the “optimal” solution has been reached, whereas
llUIlLUllVClgUHUC WHI UC i‘apiuny appdlcm ll ll OCCUrs.
In practice, in a number of experiments conducted
with different data sets, the estimated scale converged
rapidly with the generalized analysis of variance
scale.'?

We have chosen to focus on a single linear function
of the group attributes, but the techniques discussed
should be viewed as a special case of the more general
decision ruie used for muitipie ciassification. In fact,
the scoring procedures (both 0QDV and the more
general iterative procedure) can be shown to be
identical to multiple discriminant analysis when the
sample group means of X lie on a straight line."* This
suggests a set of conditions under which the use of a
single set of group scores involves no loss of ex-
planatory power as well as the conditions under
which OQDV is likely to approximate closely the
more general scoring procedure.

Statistical Testing

As a final item, it is reasonable to ask whether the
statistical tests associated with the ordinary least-
squares regression are valid in the scoring procedure
described in this paper. Assume that we are working

11 Recall that the scale is a=X'b. The dependent variable is Da
and the regressor b. The newly calculatec coefficient vector is then

b*=(X X) 'X'Da=(X'X)"'X'DX'b
=(X'X)"'X'D(D'Dy 'D'Xb- Ab.

From equation (4}, if b is the g-neralized analysis of variance solution
(4 — Al)b=0. Therefore b* = ;Ib= ib, so that b* is a scalar multiple of
b.

12 The initial set of group scores obt1ined will depend on the
narticular 0-1 normalization chose. This an be seen most clearly
when the labor force example is discussed below.

13 A detasled proof of this result is given in the Appendix.
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under the set of conditions described by multiple
discriminant analysis (the Xs arc assumed to be joint-
normally distributed;. Then it is clear that under the
condition that the true means of the group attribute
vectors lie on a straight line, the distributional resulis
of multiple discriminant analysis hold.'* In this case,
small sample tests are appropriate, but since the
conditions of the previous theorem are likely to hold
approximately at best, any tests based on the meth-
odology of discriminant analysis are likely 10 be
inexact. If we view the scoring model as an approxi-
mation to the logit or probit model, large sample tests
can be appropriate.

TWO EXAMPLES

Labor Force Participation

The following application is based on a study of the
labor force participation of married fcmale teachers.'*
The focal point of the study was the breakdown of
labor supply status into three groups—those working
full-time. those working part-time, and those not
working at all. One of the objectives of the study was
to determine those variables that best help to dis-
tinguish between the three labor force groups.
Discriminant analysis (two types) was the sole tech-
nique used.

Using the same data set, we have attempted to
estimate a scale of set of scores for the three labor force
groups. A brief description of the data set and a list of
the relevant variables appear in Table 1. The reader is
refer;od io the original source article for more
complete details about the data set.

Tables 2, 3, and 4 contain the results of several of the
es’imation experiments. Each of the scales listed in
Table 2 was renormalized (through an appropriate
affine transformation) to make the results of the
alternative estimation procedures comparable. Such
a renormalization has no effect on the relative
magnitude of attribute coefficients and no effect on
the statistical tests used. The complete multiple
regression results for three of the experiments are
listed for illustrative purposes.

Scale 1 was determined from a canonical corre-
lation package as a solution to the original scaling
problem. The regression results using Scale 1 to form
the ordered dependent variable are given in Table 3.

* These tests are descnibed in some detail by Anderson (1958)
and Rac (1952).

' See Gramm (1973). The author wishes to thank Ms. Gramm
for her asastance in making the data available.
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TABLE 1. Definition of Variables

Sample: 414 married women consisting of 254 full-
time teachers, 118 substitute teachers and 42 nonwork-
ing teachers

W) = part-time wage of wife in $1000

W) = full-time wage of wife in $1000

WH) = wage of husband in $1000

T = household age in years

ASSETS = household assets in $1000

#CH = number of children under six years
of age

D1 = dummy variable equal to 1 it not
working and zero otherwise

D2 = dummy variable equal to 1 if part-
time and zero otherwise

D3 = dummy variable equal to 1 if full-

time and zero otherwise

Source: Gramm (1973).

What value does such a scaling procedure have in the
context of this labor force problem? First, recall that
the implicit assumption here is that one set of
regression parameters can be used to explain the full-
time, part-time, no work decision. Given this assump-
tio, the estimated scale of 1, 0.77, 0 suggests that the
characteristics or attributes of part-time workers is
such that they are more similar or like those not
working than those working part-time. This may
have implications for policy ot apparent in the
Cramm study because it suggests that labor force
participatior responses to policy changes may be
substantial as workers move into the labor force to
part-time jobs and out of the labor force with relative
ease. The regiession results themselves make it much
easier to evaluate the importance of individual
characteristics in explaining the ordered labor force
choice. The use of asymptotic tests in Table 3 allows
us to say that the full-time wage of the wife has a
significant positive effect on the probability of the
woman's entrance into the labor force (recall that 1
represents the nonworking choice). Significant but in
the opposite direction is the wage of the husband, as
one would expect. Al: of the coefficients have the
2xpected sign, and only one is insignificant at the 10
percent level. The overall results suggest that taking
into account the part-time status of women teachers
does not alter the behavior that would be predicted by
labor economics theory. These results are also im-
plicit in the more general discriminant analysis
approach, but the multiple regression does simplify
the analysic. ‘n our case, the lost precision or
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TABLE 2. Scale Variables Defined?
Labor Force

Status Scale 15 Scale 2¢ Scale 39 Scale 4¢ Scale 5/ Scale 68
Not working 1.000 1.000 1.000 1.000 1.000 1.000
Part-time 0.770 0.858 0.662 0.399 0.699 0.757
Full-time 0.000 0.000 0.000 0.000 0.060 0.000

“ All scale variables have been renormalized for purposes of comparison by means of suitably chosen affine transformations.
* Obtained througn the solution of equation (6) using canonical correlation computer program.

* Obtained by regression of D2 on D1.
¢ Obtained by regression of D3 on D2.
¢ Obtained by regression of D1 on D3.

/ Obtained through second iieration using least-squares regression of D1 on D3.

¢ Obtained through third iteration using regression of DI on D3.

explanatory power of the model is small, since our
results predict almost as well as do those obtained
from the multiple discriminant analysis approach.
How does our iterative least-squares approach to
estimation work in this case? To evaluate this
question, the remaining scale variables were ob*zined
using the OQDV approximation and a standa-d
multiple regression package. What is most striking
about the OQDX approximation is the degree of
accuracy associated with the first iteration of the
procedure. The scale obtained through the regression
D1 on D3 and the vector of attributes (Scale 4) yields
the poorest results, but even in this case R? is only 0.04

TABLE 3. Regression Results

below the maximal R?, all signs are identical, and only
one additional coefficient (the 7 variable) is insignific-
ant. When the Scale 4 variable was used iteratively to
obtain new scale variables {Scale 5 and Scale 6) the
results were again very promising. By the third
iteration the difference in scales was small and no
substantive difference in regression results could be
seen.

Voter Turnout

In the 1978 congressional election, Michigan voters
passed a tax limitation 2amendment that limited the

W(F)

Constant W(S) WH) T Assets #CH
Scale 1 0.422a -0.0063 -0.0564 0.0184 0.00454 0.0013> 0.3504
(St. Err.) (0.116) (0.022) (0.008) (0.002) (0.0020) (0.0007) (0.035)
R2 =0.443 S.E.=0.308
Percent variance explained by first eigenvalue = 91.1
Scale 2 0.4554 ~0.0061 --0.061¢a 0.0194 0.00544 0.0014b 0.370a
(St. Err.) (0.124) (0.024) (0.009) (0.002) (0.0022) (0.0007) (0.037)
R2 =0.442 S.E.=0.330
Scale 4 0.2794 -0.0072 —0.035¢4 0.0134 0.0005 0.00100 0.3004
(St. Err.) (0.094) (0.018) 0.007) (0.002) (0.0016) (0.0005) (0.028)
R2=10.399 S.E. =0.250
Notes: 1. The standard error is an estimate. '
2. Regression coefficients and standard errors of the regression are not directly comparable, since the variance of the dependent
variable has not been fixed. ) _ »
3. The results of Scale 1 are not identical (up to a scalar multiple) to those given in Gramm (1973), owing most likely to an errot in the

transmission of the data.
“ Significant at the 5 percent level (using standard ¢ test).
b Significant at the 10 percent level.



TABLE 4. Classification Matrices
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Actual Labor

Predicted Status

Force Status No Work Part-time Full-time
Scale 1 No Work 6 28 8
Part-time 10 16 12
Full-time 0 27 227
Percent observations correctly classified = 73
scale 2 No Work 5 29 8
Part-time 10 2 36
Full-time 0 27 227
Percent of observations correctly classified = 73
Scale 4 No Work 6 33 3
Part-time 7 88 23
Full-time G 41 213

Percent of observations correctly clas "4

Nate Classifications were made using cutoff points midway between the group sco:

growth of state and local governinent to a fixed
fraction of state personal iicome. The vote on the
“Headlee™ amendment is analyzed in Courant,
Graralich, and Rubinfeld (1980) and the behavior of
nonvoters is described in Gramlich, Rubinfeld, and
Swift (1980). The example that follows uses a substan-
tially simplified version of the model presented in the
latter paper. The simplification is for pedagogic
reasons and does not alter the qualitaiive nature of
the results.

Assume that voters favor tax limitation because
they want less public sp»ading, but oppose it when
they would iike less. Of - ecial importance for us are
the views of those who do not vote. Are nonvoters
tvpically those who ... indifferent in the sense of
being relatively happy about the current level of
service provision, or do they have strong views for or
against spending—sufficiently different from most of
the rest of the population to alienate them and
encourage them not to vote at all? )

To pursue this issue we estimated a model using
responses from #n interview survey of Michigan
volers taken immediately after the November elec-
tion. The canonical correlation: regression results are
presznted in Table 5.

Overall. the simple preference model of voting is
not a particularly good one (note the low R?). The
scaled regression result does illustrate a point that
remains true when mors elaborate voting models are
estimated. The estimated scale variable “Vote” sug-
gests that nonvoters are simitlar to no voters (in terms

of voting preferences). Whereas their individual
characteristics may be (and are) different, their pre-
dicted voting behavior suggests that they would
oppose the tax limitation amendment. Since turnout
was in the neighborhood of 50 percent and the tax
limitation amendment passed with only 54 percent of
the vote, our policy conclusions are strong.
Nonvoting on the amendment was not random—yes-
leaning voters turned out at a higher rate than those
leaning toward no. Had turnout in the election been
substantially higher, our resulis suggest that the tax
I'mitation amendment would have failed.

We might note also that the iterative least-squares
apyroximation to the canouical correlation scale

TABLE 5. Voter Turnout Results

Vote = 1if vote yes, 0.096 if not voted, 0 if vote no

More = 1 if desired more public spending, 0 other-
wise

Less = 1 if desired less public spending, 0 other-
wise

DK = 1ifdon’t know; 0 otherwise

NA = 1 if response was not available; 0 otherwise

Vote = .304—.094 More+.124Less—.039DK—~100NA

(013)? (.032) (0.21) (.064) (.€97)
R2=0.03

¢ Standard errors are in parentheses.
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converged rapidly to the solution. To obtain the scale,
we regressed a yes-no dummy on the right-hand
variables including a nonvoting dummy and «;btained
an estimated scale of 1, 0.155, 0. Using this scale to
form a new dependent variable, we estimated a new
regression and formed a new scale, 1, 0.102, 0. The
third iteration yielded a scale of 1, 0.096, 0, essentially
the same as the canonical correlation scale. For large
models, this iterative technique can save substantialiy
on computer cost.

CONCLUSIONS

We have described a procedure whereby a set of
scores or scale for a “dependent™ variable can be
estimated simultaneously with the coeflicients of the
independent variables of an equation. Although the
estimation procedure involves the search for the
eigenvalues of a matrix, the resulting scores and
attribute weights may be interpreted in a regression
setting. The scale for the dependent variable provides
the basis for a decision rule that aliows for the
prediction or classifcation of individual observations
into categories and also provides for a measure of
success of the regression procedure. We have seen that
the scaling procedure can be viewed alternatively as a
process that involves the maximization of the among
group variance relative to the within group variance.
The resulting scale is equivalent to one that would be
obtained by the suggested scaling techniques of
Guttman and others.

The ordinary least-squares regression package can
be used to approximate the scale obtained through
the previously discussed technique. The OQDYV regres-
sion technique and the more general scaling pro-
cedure are seen to be equivalent to multiple discrimi-
nant analysis when the meins of the attribute vectors
for each category lie on & straight line in attribute
space.

There are several limitations to the kind of scaling
procedure described in this paper. A decision must be
made as to whether an inherently multidimensional
problem should be reduced to an unidimensional one.
The benefits of determining a single linear set of
weights for the group attributes and interpreting the
calculated scores in a regression framework may be
outweighed by tie costs associated with the loss of
predictive power in the model. If the decision to use a
single linear function is made, a choice of compu-
tational techniques is availiible. The OGVD technique
has the advantage of simpiicity of computation, but it
may cause misleading results if the assumption that
the sample group means lie on a straight line is not
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approximated. Further rescarch is needed into the
convergence properties of the iterative least-squares
procedure a: well as the tradeoffs involved in the
choice of a cne-dimensional scaling objective.

The author wishes to thank Franklin Fisher for stimu-
lating his intcrest in this problem. Franklin Fisher, W.
Locke Ande:son, Saul Hymans, and an anonymous
referee made helpful comments at several points in
the development of the paper.

APPENDIX

The relationship between the iterative least-
squares scale estimation procedure (QQVD) and
multiple discriminant analysis.

In the discriminant analysis approach {or the
multiple group case (and equal costs of misclassifi-
cation) the attribute vectors associated with each
group are assumed to be normally distributed with
diferent means but identical variance-covariance
matrices. Let 4 be the mean of X in group and X the
variance-covariance matrix of X and let
X=(X"X?, - X¥) where X is an N, x k matrix
forg=1,2, -, G. Taking the logarithm of the ratio of
the probability density functions for two arbitrary
groups, one can obtain regions for classification. The
decision rule that minimizes the costs of misclassifi-
cation involves the evaluation of G(G - 1),2 funct:ons
in which all pairwise comparisons of groups are :1ade.
These functions are as follows:

D, (X)=[X — (' +u")/2]
x T — )
g h=1,2-G g=h (Al

From these discriminant functions hyperplanes are
calculated that span a (G — 1) dimensionzl space. If the
a priori probabilities of an cbservation fa:ling 1ntc any
category are equal, then the classification rule is to
place an observation in category g if D, =0 for all h.!
In actual practice sample estimates of the true 4*' and
T must be utilized.> With this background, it is now

' For a complete derivation utilizing this approach. »ec
Anderson (1958).

 The matrix of pooled sum of cross-products using dev 1ations
about within group means C can be used to obtamn a consistent
estimator of the unknown variable covariance-matrix .
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possible to compare multiple discrim nant analysis
with our scoring processes.

temma 1. If X9, the mean vectors of each of the
categories. fall on a straight line (in the parameter
spuce), then the discriminant analvsis hyperplanes
are parallel and only one discriminant function is
needed to represent the process.

PROOF. The fact that the means lie on a straight line
may be written algebraically as X =y +k 0 where
the k, are scalars and 9, y are vectors. The discrimin-
ant functions to be calculated may be written

D X)=XC "(X9—-X"

X9+ X" 2]1C" (A9 - XM (A2)
where the second term of the equation is a scalar
representing  the ntercept of the hyperplane.

Substituting for X' and X™ in the equation above,
we find that

DX =th,—k)X'C o
L .V VR W
"”‘.l""‘h 4 5 ('))l/ 0. (A3)

Since ihe ks are scalars and the second term is a
scalar, all D s will represent parallel hyperplanes.
Only one discriminant function and a set of cutofl
points or rules is needed for the classification pro-
cedure. The coefficients in the discriminant function
D,(X) may be written as
Coeflicients in D_(}) may be represented as
0,0 X" — X'y where Q,, is a scalar whose value
depends on g and h. Coefficients in each discriminant
function are a scalar multiple of coefficients in every
other discriminant fun<tion,

In discriminant analysis the pooled cross-products
of deviations of X, and X, about the within class
means are used to approximate I (f and j represent
independent varables here). But ordinary least
squares involves the use of pooled cross-products of
deviations of X, and X _about the overall mean of the
sample. To compary discriminant analysis with
OQDV. a lemma relating these two matrices is
necessary. Since the lemma is standard in the analysis
of variance literature a proof is not presented here.*

Lemma 2
G G

€ =8,- ¥ 3 NN, MXP-X)

LI ) 1
XX — X (A4)
h>r
hor=1.2.-0.

* I'his as equinalent to the statement in equation (5).

(~—1(er__X/(2)). i

D. L. Rubinfeld
Corollary. If the means of the groups lie on a straight
line (i.e.
(X9 =y +k,3) then C;;=S;;,— Q(X{"'—X{?)
x(X{" - X (AS)

where Q, is a scalar and X{", X\", and X?, X'® are
the means of the ith and jth variables in the first two
categories.

PROOF. If the means lie on a straight line then for any
groups h and r,

(X':_h) _ X:’”)=Qh (X'(_ll_ X(‘_Z))

where
k,—k,
= (A6)
kl—'kz
Then
G G
Cij=sij— Z Z (QmNnNr/N)‘X':'“"X:'I))
h=1r=1

X(X;“—-X"f’)
=Sii—Q2(X§"—X}2’X.f;"~f(}l’).

One final lemma is necessary to make comparisons
possible between the regression techniques and mul-
tiple discriminant analysis.

Let

yi"=the tth observation of the gth group

=12, N,and g=1,2,---. G
G
v=meanof y= Y a,N,/N
g=1
G N,

Siy= }_: Z X"y - NiX,

g=11=1

S;,=covariance of y with ¥,

{emma 3
G G
Si_rz(l }V) Z Z Nth(“h‘ar)
h=1r=1
(X(iin_ X':_r)) (A7)
h>r

where a,. ah, v=2, -+, G represent the estimated
numerical scores described earlier.*

* The covariances are calculated with the estimated scores in
preparation for a description of the regression estimation procedure.
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G
Nhahx(i“-)—' z N, X®

h=1

iy

©
I

*

[ as)

(9
= ¥ NX™a,—7)
h=1

=(1/N) [)E (ﬁ N,} N, X®a,

h=1 =1

G
—thz-'“ (Z N,a,.)]
r=1

G

TP e

L}

=(1/N) [ (N,N,a, X" — N,,N,a,X'}"’)]
1

1r

=(I/N)
h

[N',AV'X }“(a,, - a,)]

1

DIMQ

lr

e 1Mo

G
=(1/N) }

k=1r=

Nth(ah - H'NX:-M - X’E’”)
1

k>r

Corollary. If the means of the groups lie on a straight
line, then

Si!'=Q3‘X:'],_X}2))

where Q. is a scalar and X\" and X\* are the means
of the first two categories.

PROOF. If the means lie on a straight line, recall from
equation (A6) that

(X'(.h)__ X“")=Qh (X%l)__' X'('Z))

kh""’r
where Q). = r,:jk; .
Then
G G
S;=(1/N) Y ¥ NyNJ(a,—a)Q, (X" - X

h=1 =1

= QK- X

Theorem. The coefficients of discriminant functions in
multiple discriminant analysis are identical (up to
scalar multiples) to the regression coefficients of the
multiple regression procedures of the sample means
of the G categories lie on a straight line.’

PROOF. Discriminant analysis coefficients are equal
to

b*=Qy,,C‘ A(er__xvm)

5 The theorem applies to the coefficients of the independent
variables in the regression procedure, not to the constant tcrm or to
the estimated numerical indices.
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where @, is a scalar and

Xm - ( X‘f’, e X‘a))

if the sample means lie on a straight line (by lemma 1),
Regression estimates are best viewed it deviations
around the mean are used. The regression coefficients
are b*=A4"'S where Sy+(S,,, -+, §,). Proof of the
theorem involves proof that b** = Q,b* where Q is a
scalar, if the group means lie on a straight line. If the
means do lie on a straight line, then writing the resuits
of the corollaries to lemmas 2 and 3 in matrix
notation, we obtain

C=S-0,dd’
S,=Q.d
where
d'=(4,, -+, d) and d,=(X!" - X))
Q, and Q, are scalars, C and S are k x k matrices,

and
Sy=(S1,0"% &) S, d, b* and b** are k x 1 vectors.

Since b**=(S™ '3, it follows by substitution that
Cb* =(S—0.4d)S 'S, =(S— 0,dd)S ' 0,d

where Q,=dS"'d is a scalar. Then
b* =Q.C " 'd=Qb* where Q. and Q are scalars that
are properly chosen. Q.E.D.

The theorem that has been proved is stated in ierms
of the sample means of the categories, but an
equivalent theorem is tru:: for the population parame-
ters. This can be seen by retracing the steps of the
lemmas and the theorem while replacing sample
means and variances ‘with their population counter-
parts.® If the sample means do lie on a straight line,
then the normalizatica is unimportant in the sense

® 1t might be valuable to compare the scaling procedure
described earlier to the multivariate regression technique described
by Warner (1963). Warner's regression approach is distributionally
quite similar to that of raultiple discriminant analysis. It is not
difficult to show that if prior probabilities associated with each
category are equal and there is a common covariance matrix
associated with each of the group attribute vectors, then Wamer's
results are comparable to that of multiple discriminant analysis.
When the sample means of the atitit ¢ vectors associated with each
group do lie on a straight line. a sc. e iwe=tical 10 the scale described
previously will aresult. There doex rot 2ppear to bz an obvisou
method of collapsing Warner's multidimensional model to a un-
idimensional one (and determining an: appropriate scale) when the
means of the group attribute vectors do not lie on a straight line.
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that the estimated coefficient vector will be uniquely
determined (up 1o a scalar multiple) no matter which
categories are arbitrarily assigned the values of 0 and
1. This can best be seen by 1.oticing in the corollary 10
Lemma 3 that if the sample means li= on a straight
line, then the estimated covariance vector S, is
uniquely determined (again, up to a scalar multiple)
whatever the values of a,. If the sample means do not
lie on a straight line, then the estimated coefficient
vector will not be uniquely determined.” In practice,
the normalizaticn is unlikely to matter very much if
the terms of the theorem are closely approximated if
the fit of the equation is very goed, or if the iterative
least-squares process is used.

Note that the choice of 0-1 values for the normalization rather
than other constants 1s not what causes the difficulty; it is the choice of
whih numertcal indices will be unknowns 2nd which corresponding
dummy sariables will appear as “widependent” variables in the
FERICSSION equation
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