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The problem of scale construction has received 
considerable attention outside the discipline of eco- 
nomics.’ At the same time the use of maximum- 
likelihood estimation techniques such as probit and 
logit analysis to study qualitative choice problems has 
become quite popular. Within the purview of eco- 
non&s, relatively little attention has been paid to the 
relationship between scaling techniques and the 
analysis of models with qualitative dependent variab- 
les. This paper attempts to fill in some missing ground 
by stressing the link between multiple regression and 
models in which one seeks to determine a scale: to 
represent a qualitative dependent variable. We de- 
scribe methods by which a single set of scores for the 
dependent variable can be estimated simultaneously 
with the coefficients of the “independent” variables of 
a model.2 Although the results may be interpreted in a 
multiple regression framework (e.g., as an extension of 
the linear probability model), we stress that the 
estimation technique need not involve multiple re- 

’ The problem of scale construction has received substantial 
treatment in the statistics literature. One prooxiure similar to the 
scaling technique described in this paper was devised by Quttman 
(1941,1950). Guttman deals with the case in q.T.Gch the independent 
variables take the form of responses to a series of survey questions. 
Other discussions of scale construction appe;,: in Shepard, Romney, 
and Nerlove (1972) and Green and Rao (1973). 

’ The search for a single wt of scores is a restrictive one and thus 
substantially limits the scope of our analysis. We shalt return to this 
issue later in the discussion. 

From the University of Michigan, An? Arbor, Michigan. 
Address reprint requests to Dr. Daniel L. Rubinfeld, Associate 

Professor of Economics and Law, University of Michigan, Ann 
Arbor, Michigan 48109. 

Journal of Fxonomics and Business 34.67-78 ( 1983) 
@I 1982 Temple University 

However, tbe paper goes 00 to show an iterative kost- 

squadfs multiple qresshm technique can provide a 

lfidbl~tbntotbeaelnore~dpracedrws. 

TIK tcctuaiques orr! ilhstmted witE3’labor force par- 
ticipation md voter hmout examples. 

gression calculations. Because most of these tech- 
niques involye nonlinear estimation techniques that 
can be time-consuming and expensive for large data 
sets or large models, we propose an ad hoc multiple 
regression scaling technique that is relatively inex- 
pensive to use. The multiple regression technique 
provides a useful approximation of some of the more 
general multivariate statistical techniques. 

Assume that we know that a given individual unit 
of study, family, firm, city, and so on is characterized 
by a vector of attributes. Each individual population 
member is assumed to belong to one ;bf severat 
mutually exclusive groups, and the attribL . va:;ars 
associated with each group are known to hz c>imafIj/ 
distributed with different means but ;de~?tl~~~l 
variance-covariance matrices. The problem % to l? ! 
a single linear decision rule that predicts the grc .F 
“score” of an individual after the vector P .r~trib~. :es 
describing that individual is observed. The Cndicted 
group scores can be interpreted as provi?ing f01 a 
qualitative “‘dependent” variable in a multiple regres- 
sion procedure. The predicted scores also provide for 
a method that allows for the classification of in- 
dividuals into groups. The procedure is related in 
terms of distributional assumptions to slultiple dis- 
criminant analysis and is identical when thr scimple 
means of the group attribute vectors lie on a straight 
line. 

The techniques described here should be of use in 
economics as well as in related social science disci- 

plines. Examples of some relevant applications are as 

follows: 
1. In survey analysis, respondents to a question- 

naire might be classifkd into one of several 
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groups (e.g., Agree. Disagree, No response). 
,%ttribute data are available for each of the 
respondents and al I respondents in each group 
arc astuned to be drawn frorI1 a population with 
the same mean attribute vector. One can attach a 
score to each of the groups in an attempt to 
determine whether those who do not answer a 
given question are mQre like those who agree or 
more Lae those who disagree. 

2. In a study df the work status of a certain segment 
of the labor f~irce. one may wish to emphasize the 
dtstinc!lon between those who work part-time 
and those u,ho work full-time. If the individuals 
sampled can be properly classified into distinct 
groups such as unemployed, part-time employed, 
and full-time employed, and if attribute and labor 
market data are available, the scaling technique 
t’dn provide a useful mode of analysis. The 
technique will be particularly valuable if one 
wishes to determine those individual attributes 
that best distinguish between the labor force 
categories. 

3. Assume that corporate r.r municipal bond ratings 
have hcen attached to a list of bonds to be 
studied.’ The scaling procedure can be used in an 
attempt to replicate the behavior of the rating 
agenclcs. One can determine weights for each of 
the attributes that determine ratings as well as a 
quantitative Score for each of the rating cate- 
goxs. Classificaticn rules can be obtained and 
ued in the sample to test the validity of using a 
\tngle ilncar decisions rule to describe the rating 
p0LX%. 

I-he remainder of the paper is divided into five 
sectIons_ The first introduces the formulation of the 
multiple regression model. with the unkr,awn group 
KOI-,LY~ Interpreted artificially as the dependent 
I arlable in the regression model. Least-squares mini- 
mvation subject to a constraint on the estimated 
parameter!, Eeads to the simultaneous determination 
~uwn;! cigen\ectors and eigenkalues) of a set of group 
\icrres and the Heights attached to the vector of 
Indl\ldual attributes. The second discusses the inter- 
pretation of the regression model with particular 
cmphasls on its use lor classification purposes. Tkc: 
third dexxbes an alternative vie% c4 the identical 
xoring problem through a generalized analysis C,I 
\ arlance approach. Tlx fourth describes a met hod by 
ti hlch ordinar! least squares can be used to er.timate 
the dependent variable scale and the attribute 

weights. The fifth contains two examples of the 
application of the ordinary least-squares regression 
technique. 

GROUP SCORING IN A MULTIPLE 
REGRESSION SFXTING 

We assume that each individual unit under study is 
represented by an attribute vector, and that the popu- 

lation of attribute vectors may be partitioned into G 
groups. We also assume a quantitative score rs can be 
attached to each group, with no presumption that tne 
31,s will ;lecessarily be distinct. We proceed in this 
section to determine a set of scores and attribute 
weights that minimize the sum of squared residuals of 
an artificially defined regression problem. We stress 
the artificiality of the procedure because the ‘de- 
Fndent” variable is not known and is clearly not 
normally distributed. We shall see that the multiple 
.-egresiion approach yields a technique that is ident- 
ical to other ad hoc scaling procedures computation- 
ally, and has the advantage of providing a useful 
means of interpreting the estimated scale and at- 
tribute weights 

We define tl unknown dependent variable y ah 
follows:4 

x1 if the observation is in group ‘. 

!lr= CI~ if the observation is in group 2 

LX(; if the observat!qp is in group C;. 

(O 

f= 1. 2. ***, N 

There are .V!, observations in each of the S groups, 
and a total of N observations in the sample. 

It will be helpful to represent the vector J as the 
product of a grouping matrix and a vector of 
unknown scores. i.e., 

where 

31=\x,. *.., xc;)’ (1 G x 1 vector 

- _-- 

a None wcrc able to specify a priori the probabilities with which 

J, takes each of the G possible values. then further pursual of a linear 

probability nt .~del approach? might be juGed. The linear probability 

mcxki IS desccnbeci in Ladd [XJ. An attempted extension of the linear 

probanllit~ appears in Warner [ 123. Since our primary olz_lpctive 15 to 

e:stImatc a set t)f scores or scale that can be interpreted in a rt,-&on 

setting, we shdll proclz in a different direction. 
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,+y”. . . .* D”‘j an A x G matrix 

D(cl’g= i.z.-.* . G = 1 if the observation is in group 
p and 0 other. ise. 

The artificial linear regression model is 
_V = DZ = X/I. Our objective is to find estimates of the 
parameter vectors z and fi that minimize the sum of 
squares (Dr -Xfi)‘(Dr - X0). where X is an N x k 
matrix of attribute observations (measured as devi- 
Ptions from the mean), and Iy is a k x 1 vector of 
attribute weights. Throughout the paper, superscripts 
within parentheses will be used to represent group 
labels (g), while subscripts will refer to observations (1) 
and variables (i. j, k, h, r). 

The parameters of the scaled dependent variable 
will not be uniquely determined, but such a procedure 
does yield a unique solution when a normalization is 
made on the vector of group attributes. We choose the 
normalization that the variance of the predicted 
values $f be constant? The Lagrangian expression to 
be minimized is the followirq: 

L=(Dr--Xfl)‘(Dr-X/3) 

- (1 - i)(B’X’Xj? - k). (1) 

Differentiating equation (1) with respect to 01, Iy, and 
(1 -i) yields the following first-order conditions (b 
and a refer to the vectors of parameter estimates of /? 
and a): 

D’Da - D’XP = 0 

X’XjV-X’Da-(1 -i)(X’XjY)=O 

/3’X’Xp--k=O 

which yields 

b=( 1 /i)(X'X)- ‘D’a (2) 

a=(D’D)-‘D’Xb=X’b (3) 

where X is a k x G matrix of the means of independent 
variables in each group. Notice that the vector of 
scores a is a f.imple weighted average of the within 
group means o’ X b. To solve explicitly for b, substitute 
equation (3) ir to equation (2) to get 

[A -il]b=O (4) 

5 This normslization has been chosen primarily because it yields 
an estimation procedure that is tractable and relates closely to the 
scaling work of Guttman and others. 

where I is a k xk identity matrix and 
A =(x’x)‘-‘x’~!I(D’D)-‘D’x. 

In general a solution for b must involve the sear& 
for the largest eigenvalue of the matrix A and the 
corresponding eigenvector b? WC shall returnaa this 
point later, but for the moment we sbaEl con&ntrate 
on the use of the estimated vector of group scores. 
Once the group scores are known they may be 
interpreted in light of the regression approach used. In 
particular, if we utilize the scores determined from 
equation (4) as the dependent variable in an ordinary 
least-squares regression, then we obtain a set of 
estimated coefftcients that are identical up to a scalar 
multiple to the vector b.’ This can be most easily seen 
by recalling the form of a least-squares estimator and 
comparing this to equation (2). Equation (2) also 
makes it clear that the equality of the estimated vector 
of attribute weights can be guaranteed by the ap- 
propriate renormalization of the group scores (each 
group score must be divided by A). To simplify 
matters we often utilize the vector (1 /@I as the vector 
of group scores. 

INTERPRETATION OF THE 
REGRESSION MODEL 

The bs measure the effect of a change in one or more of 
the independent variables on the normalized numeri- 
cal index of the dependent variable, but :he normaliz- 
ation renders any cardinal interpretation of the 
coe!Iicients meaningless. The most appropriate use 
for the regression results is to classify observations 
into groups in the spirit of multiple discnminant 
analysis by calculating the residuals between the 
measured index Q and the fitted values of the original 
equation Xb. The residual vector for each of the 
groups can be used to calculate an estimate of the 
variance associated with each category of the de- 
pendent variable. 

The R2 statistic calculated from the multiple 
regression procedure provides one measure of good- 

h There will, in general, be more than one eigenvalue askated 
with the matrix A. The choice of the largest eigenvalue is a result of 
our desire to emphasize the ‘one-dimensional” aspect of the scaling 
problrm. If tile largest eigenvalue does not give sulkient explanatory 
power, then it may be advisable to utilize more than one. See 
Guttman (1931, 1950) for details. 

’ Some normalization must be made when the scoring problem 
is set up. Without .I normalization, it is easy to see that if a wd b 
satisfy the first-order conditions that &a and kk will also. Thus our 
inteKst in the estimated vector of weights b must be relative, not 

absolute. 
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ness of lit of the scoring procedure. R2 measures the 
proportion of the variation in y = Da explained by the 
variation in the w~@:ted average of group attributes 
Xb. The calculated R2 will be identically equal to k, 
the value of the largest eigenvalue of the matrix A in 
equa?ion (4). This follows directly from the fact that 

t’X’Xb 
R’= ._ 

b”X’Xb 
= -Ye 

y ’ y a’D’Da 

where a has been renormalized so that: 

i, t. ; 

Then 

r 
R' 

1 

b’X’Xb - 
= i _ _-. - __- -.-_ 1 b’i’D(D’k)- ‘D’XbJ 

= i from equation (4) 

Perhaps a more proper measure of success of the 
procedure would involve a comparison with alternat- 

ivc techniques ti2f estimation and classification. One 
reasonable approilch would be to compare the 
multi; le regression classification errors with the 
number of classification errors associated with a 
multiple discrimiriant analysis procedure. This 
measure of success is daptive, because multiple 
discriminant analysis involves the estimation of G - 1 
independent equations, and thus uses more degrees of 
freedom than the regrcssiol technique. 

GROUP SCORING IN AN ANALYSIS 
OF VARIANCE SETI’ING 

The group Ncaling or scoring problem has frequently 
beep described in the literature in terms of generalized 
analysis of variance and canonical correlation. We 
shall describe the former approach here and leave the 
latter derivation to the reader.’ Assume that we wish 
to find a vector b which maximizes the variance 
among group means relative !o the total varianclt 
within groups. To accomplish this we define 

1. S = (S,,) = matrix rif pooled sum of cross-product:; 
using deviations about overall means 

--_-- -- 

* E or further deta& ccmcernmg borh approaches, see Gurtman 
I !UW. 4ndersun I 1958~ Cooiej and Lohnes (1962, 1971 J, am? Rao 
4 iuii,‘a 

2. 

where X(e) refers to the N, x k matrix of observ- 
ations associated with the gth group. 

Then with variables mesured as deviations 
about means S= X’X, 
C =(Cij)= matrix Of pOOled sum Of CrOsS- 
products using deviations about within group 
means 

Then 

C=X'X-X'D(D'D)-'D'X. 

The variance among group means can be represented 
by b’Yb where 

b'=S--C=X'D(D'D)-'D'X, 

while the total variance is given by b’Sb. 
We can maximize b’Vb subject to b’Sb being 

constant by writing the Lagrangian 

L=b’X’D(D’D)- ‘D’Xb-i(b’X’Xb-k). 

Diflerentiating with respect to b and solving we 
obtain 

X'D(D'D,- ‘D’Xb=iX’Xb 

or 

(A - E.Z)b=O (6) 

where ,4=(X’X)- 'X'D(D'D)-'D'X and J is a k x k 
identity matrix. This can be seen to be identical m 
form to equation (4). The soLon to equation (41 is 
once again obtained by choosing the largest eigen- 
value i. (which satisfies the constraints).“ 

’ Nor infrequently the derivation just described is given as one 
that maximizes b’Vb subject to b’Cb being constant. The attribute 
weight> and group scores obtained will be equivalent up to a scalar 
multiple, but the ne* eigenvalue obtained will not be equal to i. In 
particular, it IS possrble to show that O=i,/(l +A) where 0 is the 
eigenvalue of the matrix c’- ’ V. See Cooley and Lohnes (1971) for 
some details. This has relevanLz here because the canonical corre- 
lation package used in the application provides an estimate of 8, not 
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ORDINARY LEAST SQUARES WITH 
A QUALITATIVE DEPENDENT 
VARIABLE (OQDV) 

The scoring procedure just described su@ers from the 
disadvantage that a solution cannot be obtained 
using a standard multiple regression package. In this 
section we briefly outline an estimation process that 
will enable us to obtain an estimate of the vector of 
weights fl (and the scores a) using ordinary least 
squares. 

Recall that the original formulation of the model 
was Da = X#YI. We can utiliz ordinary least squares by 
normalizing the vector a, arbitrarily choosing a 1 = 0 
and uG = 1. Ordinary least-squares estimation can be 
used if we rewrite the model in the following form: 

B 
f \ U2 

pqx _~‘2’_~‘3’_....4yG’- I’) f3 
. 

\ / 

. 

aG-1 * 

(7) 

The least-square% technique applied to equation (7) 
provides for an estimate b of the parameter #I. The 
estimated scale is simply the vector a = R’b. There is 
no guarantee that the estimation procedure will yield 
3 scale consistent with one’s prior notions about the 
ordering of the groups. More importantly, there is no 
guarantee that OQDV will yield scores identical (up to 
a suitable transformation) to those derived earlier. 
This can be realized intuitively by noting that the 
calculated scores for all groups other than the 1st and 
Gth will be identical to those obtained by the ordinary 
least-squares procedure. But the scores for the 1st and 
the Gth groups will not necessarily equal 0 and 1, 
respectively. lo 

The scale estimate obtained for the set of group 
scores can be used to obtain improved parameter 
estimates through the use of an iterated least-squares 
procedure. The second iteration is accomplished by 
regressing the vector Da on the vector of attributes X. 
This will yield a new set of estimated attribute weights 
b’ and a new set of group scores a’. Then the new 
group scores yield a new set of attribute weights, and 
so on. The iterated set of group scores and attribute 
weights will remain unchanged frcjm the previous set 
only when the esti,mated scale and weights co’rre- 

I’ The estimated scores will be equivalent to those derived carlier 
when the sample means of the ,t’:ibute vectors lie on a straight line. 
See Appendix for proof. 

spond to the generalized analysis 0;” variance solution 
(and when the R2 is identically equal .to the eigen- 
value of the matrix A). We have been unable to prove 
convergence under a geileral set of conditions, but the 
lack 0: a general set of cc?vergence conditions is not 
likely to be of practical consequence. The reason is 
that when convergence does occur, the estimated 
scale ipnd weights will correspond to the generalized 
analysis of variance solution, with R2 being equal to 
the largest eigenvaluz of A. And conversely when the 
scale is equal to the analysis of variance scale, the 
iterative process will end-additional iterations will 
yield the same scale. * I Thus convergence guarantees 
that the “‘optimal” solution has been reached, whereas 
nonconvergence will be rapidly apparent if it occurs. 
In practice, in a number of experiments conducted 
with different data sets, the estimated scale converged 
rapidly with the genera&& analysis of variance 
scale.’ * 

We have chosen to focus on a single linear function 
of the group attributes, but the techniques discussed 
should be viewed as a special case of the more general 
decision rule used for multiple classification. In fact, 
the scoring procedures (both OQDV and the more 
general iterative procedure) can be shown to be 
identical to multiple discriminant analysis when the 
sample group means of X lie on a straight line. ’ ’ This 
suggests a set of conditions under which the use of a 
single set of group scores involves no loss of ex- 
planatory power as well as the conditions under 
which OQDV is likely to approximate closely the 
more general scoring procedure. 

Statistical Testing 

As a final item, it is reasonable to ask whether the 
statistical tests associated with the ordinary least- 
squares regression are valid in the scoring procedure 
described in this paper. Assume that we are working 

- -- 

’ ’ Recall that the scale is a = S'b. II e dependent variable is Da 
and the regressor b. The newly calculatcL coellicient vector is then 

v=(,y XI- ‘x’h=(x’x)- ‘X’DR’b 

=(X’X)-‘X’D@‘Dj- 'D'Xbr rib. 

Fram equation (4). if b is the g:neralized analysis of variance solution 
(/1- il)b= 0. Therefore b* = db = ib, so that I9 is a scalar multiple of 
b. 

” The initial set of group scores obt tined will depend on the 
?articular O-1 normalization chose. This zan be seen most clearly 
*Nilen the labor force example is discussed below. 

* 3 A &t&d proof of this result is given in the Appendix. 
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under the set of conditions described by multiple 
discriminant analysis (the Xs are assumed to be joint- 
normally distributedj. Then it is clear that under the 
condition that the true means of the group attribute 
vectors lie on a straight line, the distributional results 
of multiple discriminant analysis ho!d.‘4 In this case, 
small sample tests are appropriate, but since the 
conditions of the previous theozem are likely to hold 
approximately at best, any tests based on the meth- 
odology of discriminant analysis are Xikely to be 
inexact. If we view the scoring model as an approxi- 
ma!ion to the logit or probit model, large sample tests 
can be appropriate. 

IWO EXAMPLES 

L&or Force Particiption 

The following application is b$ased ori a study of the 
labor force participation of married female teachers.’ ’ 
Ths focal point of the study was the breakdown of 
labor supply status into three croups----those working 
full-time. those working part-time, and those not 
working at all. One of the objectives of the study was 
to determine those variables that best help to dis- 
tinguish between the three labor force groups. 
Discriminant analysis (two types) was the sole tech- 
luque used. 

CJsing the same data set. we have attempted to 
cztimate a scale of set of scores for the three labor force 
groups. A brief description of :!he data set and a list of 
the relevant variables appear in Table 1. The reader is 
refer::d io the original source article for more 
sompiete details about the d;ata set. 

Tables 2.3, and 4 contain the results of several of the 
e,.:imation experiments. Each of the scales listed in 
Table 2 was renormalized (through an appropriate 
ailine transformation) to mlake the results of the 
alternative estimation procedures comparable. Such 
a renormalization has no effect on the relative 
magnitude of attribute coeficients and no effect on 
the statistical tests esed. The complete multiple 
regression results for three of the experiments are 
!i:;ted for illustrative purposes. 

Scale 1 was determined from a canonical corre- 
laGon package as a solution to the original scaling 
problem, The regression results using Scale 1 to form 
the ordered dependent variable are given in Table 3. 

!’ Thewz tests are described in some dctall b> Anderson (1958) 

anil RdC I1952). 

TABLE 1. Definition of Variables 

Sample* 414 married women consisting of 254 full- 
time teachers, 118 substitute teachers and 42 nonwork- 
ixlg teachers 

Wsi = part-time wage of wife in $1000 

WV9 = full-time wage of wife in $1000 

WWI = wage of husband in $1000 

T = household age in years 

ASbTETS = household assets in $1000 

##cH = number of children under six years 
of age 

Dl = dummy variable equal to 1 if not 
working and zero otherwise 

02 = dummy variable equal to 1 if part- 
time and zero otherwise 

03 = dummy variable equal to 1 if full- 
time and zero otherwise 

Source: Gramm (1973). 

What value does such a scaling procedure have in the 

context of this labor force problem? First, recall that 
the implicit assumption here is that one set of 
regression parameters can be used to explain the full- 
time, part-time, no work decision. Given this assump- 
tion, the estimated sca!e of 1,0.77,0 suggests that the 
characteristics or attributes of part-time workers ;s 
such that they are more similar or like those not 
working than those working part-time. This may 
hzve implications for policy not apparent in the 
C;ramm study because it suggests that labor force 
participation responses to policy changes may be 
substantial as workers move into the labor force to 
part-time jobs and out of the 1aMr force with relative 
ease. The regression results themselves make it much 
easier to evaluate the importance of individual 
characteristics in explaining the ordered labor force 
choice. The use of asymptotic tests in Table 3 allows 
us to say that the full-time wage of the wife has a 
significant positive effect on the probability of the 
woman’s entrance into the labor force (recall that 1 
represents the nonworking choice). Significant but in 
the opposite direction is the wage of the husband, as 
one would expect. ‘41: of the coefficients have the 
f=xpected sign, and only one is insignificant at the 10 
percent level. The overall results suggest that taking 
into account the part-time status of women teachers 
does not alter the behavior that would !x predicted by 
labor economics theory. These results are also im- 
p!icit in the more genera! discriminant analysis 
approach, btkt the multii4e regression does simplify 
the analysis. in OH case, the lost precision or 
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TABLE 2. Scale Variables Defined’ 

Labor Force 
Status Scale 16 Scale 2C State 3d Scale 4e Scale Sf Scale 68 

Not working 

Part-time 

Full-time 

1 .ooo I.000 1 .ooo 1 .ooo 1 .ooo 1.000 

0.770 0.858 0.662 0.399 0.699 0.757 

0.000 0.000 0.000 0.000 O.OGO ’ 0.000 

’ All scale variables have heen renormalized for purpow of comparison by means of suitably chosen afke transformations. 
* Obtained through the solution of equation (6) using canonical correlation computer program. 
’ Obtained by regression of D2 on Dl. 

d Obtained by regression of D3 on D2. 
6 Obtained by regression of Dl on 03. 
I Obtained through second iieration using least-squares regression of Dl on D3. 
” Obtained thr0uB.n third iteration using regression of Dl on 03. 

explanatory po~ver of the model is small, since our 
results predict almost as well as do those obtained 
from the multiple discriminant analysrs approach. 

How does our iterative least-squares approach to 
estimation work in this case? To evaluate this 
question, the remaining scale variables were ob’rinti 
using the OQDV approximation and a stan&d 
multiple regression package. What is most striking 
about the OQDX approximation is the degree of 
accuracy associated with the first iteration of the 
procedure. The Scale obtained through the regression 
Dl on 03 and the vector of attributes (-kale 4) yields 
the poorest results, but even in this case W2 is only 0.04 

below the maximal R2, all signs are identical, and only 
one additional coefficient (the r variable) is insignific- 
ant. When the Scale 4 variable was used iteratively to 
obtain new scale variables I’&aie 5 and Scale 6) the 
results were again very promising. By the third 
iteration the difference in scales was small and no 
substantive difference in regression results could be 
seen. 

Voter Turnout 
In the 1978 congressional election, Michigan voters 
passed a tax limitation amendment that limited the 

TABLE 3. Regression Results 

Constant W(S) W(F) W(H) T Assets 

Scale 1 

(St. Err.) 

0.422a -0.0063 -0.056a 0.018’r 0.0045= 0.0013b 0.35@ 

(0.116) (0.022) (0.008) (0.002) (0.0020) (0.0007) (0.035) 

I?* = 0.443 S.E. = 0.308 
Percent variance exv-lained by Crst eigenvalue = 91 .l 

scale 2 

(St. Err.) 

0.4w -0.006 1 -0.06 la 0.019a 0.0054a 0.0014b 0.370a 

(0.124) (0.024) (0.009) (0.002) (0.0022) (0.0007) (0.037) 

I?* = 0.442 SE. = 0.330 

Scale 4 

(St. Err.) 

0.279a -0.0072 -0.035” 0.013~ 0.0005 0.0010b 0.3ooa 

(0.094) (0.018) (0.007) (0.002) (0.0016 j (0.0005) (0.028) 

R* = 0.399 S.E. = 0.250 
- 

Notes: 1. The standard error is an estimate. 
2. Regression coeffkients and standard errors of the regression are not directly comparable, since the variance of the dependent 

variable has not been fixed. 
3. The results of Scale 1 are not identical (up to a scalar multiple) to those given in Gramm (1973). owing most likely to an errof ln the 

transmission of the data. 
’ Signilicant at the 5 percent level (using standard r test). 
’ Significant at the 10 percent level. 
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TABLE 4. Classification Matrices 

Actual Labor 
Prsdicted Status 

Force Status No Work Part-time Full-time 

Scale 1 No Work 6 28 8 

Part-time 10 76 32 
Full-time 0 27 227 

Percent observations correctly classified = 73 

scale 2 No Work 5 29 8 
Part-time 10 72 36 
Full-time 0 27 227 

Percent of observations correctly classified = 73 

Scale 4 No Work 6 33 3 

Part-time 7 88 23 

Full-time G 41 213 

Percent of observations correctly clas ‘4 
_ ._ 

.Colt- ~‘ladic~~~ons were made using cutoff pods midway between the group sco-s 

growth of state and local govermnent to a fixed 
fraction of state personal income. The vote on the 
“Heddlee” amendment is analyzed in COurant. 

Granlich. and Rubinfeld (1980) and the beha;-ior of 
nonvoters is described in Gramlich, Rubinfeld, and 
Swift ( 1980). The example that follows uses a substan- 
tially simplified version of the model presented in the 
lstter paper. The simplification is for pedagogic 
reasons and dcej not alter the qualitalive nature of 
the results. 

Assume that voters favor tax limitation because 
they want less public sy:tnding, but oppose it when 
they would iike less. of Y ecial importance for us are 
the views of those who do not vote. Are nonvoters 
tkpically those who ,,r‘~’ indifferent in the sense of 
being relatively happy about the current level of 
servtce provision, or do they have strong views for or 
against spending-Psu&iently different from most of 
the rest of the population to alienate them and 
encourage them not to vote at all’? 

To pursue this issue we estimated a model using 
responses from a:~r interview survey of Michigan 
voters taken immediately after the Nov*ember elec- 
tion. The canonical correlatioii regression results are 
pre_vted in Tdb!e 5. 

Overall. the simple preference model of voting is 

not a particularly good one (note the low R’). The 
*tiled regression result does illustrate a point that 
remains true wheu more elaborate voting models are 
estimated. The estimated scale variable “Vote” sug- 
gests that nonvoters are similar to no voters (in terms 

of voting preferences). Whereas their individual 
characteristics may be (and are) different, their pre- 
dicted voting behavior suggests that they would 
oppose the tax limitation amendment. Since turnout 
was in theneighborhood of 50 percent and the tax 
limitation amendment passed with only 54 percent of 
the vote, our policy conclusions are strong. 
Nonvoting on the amendment was not random-yes- 
leaning voters turned out at a higher rate than those 
leaning toward no. Had turnout in the election been 
substantially higher, our results suggest that the tax 
limitation amendment would have failed. 

We might note also that the iterative least-squares 
spy roximation to the canoriical correlation scale 

TABLE 5. Voter Turnout Results 

Vote = 1 if bate yes, 0.096 if not voted, 0 if vote no 

More = 1 if desired more public spending, 0 other- 
&e 

Less = 1 if desired less public spending, 0 other- 
wise 

DK = 1 if don’t know; 0 otherwise 

NA = 1 if response was not available; 0 otherwise 

Vote = .304- .094 More+.l24Less--.039DK-lOONA 
(013)” (.032) (0.21) t.064) (X197) 

R2 = 0.03 
..- 

’ Standard errors are in parentheses. 
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converged rapidly to the solution. To obtain the scale, 
we regressed a yes-no dummy on the right-hand 
variables including a nonvoting dummy ant’ ijbtained 
an estimrated scale of 1, 0.155, 0. Using this scale to 
form a new dependent variable, we estimated a new 
regression and formed a new scale, 1, 0.102, 0. The 
third iteration yielded a scale of 1,0.0!96,0, essentially 
the same as the canonical correlation scale. For large 
models, this iterative technique can save substantially 
on computer cost. 

CONCLUSIONS 

We have described a procedure whereby a set of 
scores or scale for a “dependent” variable can be 
estimated simultaneously with the coeficients of the 
independent variables of an equation. Although the 
estimation procedure involves the search for the 
eigenvaiues of a matrix, the resulting scores and 

attribute weights may be interpreted in a regression 

setting. The scale for the dependent variable provides 
the basis for a decision rule that allows for the 
prediction or ciassifcation of individual observations 
into categories and also provides for a measure of 
success oft he regression procedure. We have seen that 
the scaling procedure can be viewed alternatively as a 
process that involves the maximization of the among 
group variance relative to the within group variance. 
The resulting scale is equivalent to one that would be 
obtaine j by the suggestd scaling techniques of 
Cuttman and others. 

The ordinary least-squares regression package can 
be used to approximate the scale obtained through 
the previously discussed te&nique. The OQDV regres- 
sion technique and the more general scaling pro- 
cedure are seen to be equivalent to multiple discrimi- 
nant analysis when the me;lns of the attribute vectors 
for each category lie on aI straight line in attribute 
space. 

There are several limitat ions to the kind of scaling 
procedure described in this paper. A decision must be 
made as to whether an inllerently ma.lltidimensional 
problem should be reduced to an unidimensional one. 
The benefits of determini,ng a single linear set of 
weights for the group attributes and interpreting the 
calculated scores in a regression frarrlework may be 
outweighed by 5s costs associated with the loss of 
predictive power in the model. If the decision to :lse a 
single linear function is made, a choice of compu- 
tational techniques is avaiksble. The WVD technique 
has the advantage of simplicity of computation, but it 
may cause misleading resLJts if the assumption that 
the sample group means ire on a straight line is not 

approximated. Further research is needed into the 
convergence properties of the iterative least-squares 
procedure a:, well as the tradeoffs involved in the 
choice of a one-dimensional scaling objective. 

The author wishes to thank Franklin Fisher for stimu- 
lating his interest in this problem. Franklin Fisher, W. 
Locke Andeison, Saul Hymans, and an anonymous 
referee made helpful comments at several points in 
the developnlent of the paper. 

APPENDIX 

The relationship between the iteratitle least- 
squares scale estimation procedure @QED) und 
multiple discriminant analysis. 

In the discriminant analysis appro& ior the 
multiple group case (and equal costs of misciassifi- 
cation) the attribute vectors associated with each 
group are assumed to be normally distributed with 
di3’erent means but identical variance-covariance 
matrices. Let J.P be the mean of X in group and Z the 
variance-covariance matrix of X and let 
X =(X( 1 ‘XC’, . . . . P’)’ where Xc+’ is an N,, x k matrix 
forg=1,2;.., G. Taking the logarithm of the ratio of 
the probability density functions for two arbitrary 
groups, one can obtain regions for classification. The 
decision rule that minimizes the t ,osts of misclassifi- 
cation involves the evaluation of G(G -- 1);2 func!:ons 
in which ail pairwise comparisons of groups are :,lade. 
These functions are as follows: 

D,,,j X) = [X - ()P” + p) /2] 

x c - I(p _ #I’) 

From these discriminant functions hyperplanes are 

calculated that span a(G - l)dimensionzl,space. lfthe 
u priori probabilities of an observation fatling into any 
category are equal, then the ciassificatidn rule is to 
place an observation in category g if t),,, I~z 0 for all h.’ 
In actual practice Fampie estimates of the true ,u’~’ and 
Z must b; utilized.’ Wifh this background, ie is now 

’ For ;I complete deri\arlon utllrzmg 1111s approach. ~CC 

Anderson (195X). 

L The matrix of pool4 sum of cross-products usmg de\ra!lons 

&our within group meims C can be used to obt;un a consistent 

estimator of the unknown variable coiarian@matrix E:. 
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possible to compare multiple discrininant analysis 
with our scoring processes. 

Corollary. If the means of the groups lie on a straight 
line (i.e.. 

km- 1. if Xc@. the mean vectors of earh of‘ the 
mceg~rius._fdl on a straight dine (in the parameter 
spuce), then the discriminant anaivsis hyperplanes 
ure parallel and only one discriminant function is 
needed to represent the process. 

PROOF, The fact that the means lie (3n a straight line 
may be written algebraically as x(g)=7 +k,6 where 
the A, are scalars and 6,~ are vectors. The discrimin- 
ant functions to be calculated may be written 

(x@‘=y+k,&) then Cii=Sij-Q2(R!IJ-~12’) 

x (y- q’) W) 

where Q2 is a scalar and @ lb, Xi1 1, and Xi2), Xi21 are 

the means of the ith and jth variables in thefirst two 
categories. 

PROOF. If the means lie on a straight line then for any 
groups h and r, 

~,,(,y)=x’(-- ‘(x-p’) (Rlh'-~~')=Qh,(X~1)-X12') 

[(k”“‘+ p) ,q(‘- ‘(A 19)__ jf’h’) 642) 
where the second term of the equation is a scalar 

whert 

representing the intercept of the hyperplane. kh--k, 
Substituting for P and xth’ in the equation above, Q/W= ri- 

we find that 
‘I- ‘2 

(A6) 

Then 

Since ihe k,s are scalars and the second term is a 
.scaIar. all D,,,s will sepresent parallel hyperylanes. 
Only one discriminant function and a set of cutoff 
points or rules is neecfed for the cOassificstion pro- 
c&ure. The coeflicients in the discriminant function 
D,JX) may be u,ritten as C-‘(Xt”-X’2’). 
c‘oefficients in &,( ,% ) may be represented as 
QJ’ ‘(A”“-- x”‘) where Qgh is a scalar whose value 
depends on g and h. Coeficients in each discriminant 
ftinction are a scalar multiple of coefficients in every 
other discriminan t function. 

One final lemma is necessary to make comparisons 
possible between the regression techniques and mul- 
tiple discriminant analysis. 

LA 

! i”’ =the tth observation of the gth group 

ct= 1, 2. *-*. N, and g= 1, 2, Y G 

(; 
In discriminant analysis the pooled cross-products 

of deviations of A’, and X, about the within class 
means are used tL3 approximate I: ( i and j represent 
Independent \ arrables here). B!tt ordinary least 
squares &I\-elves the use of pooled cross-products of 
de\ iations of X, and X, about the okerall mean oft he 
Fample. To cornpap; discriminant analysis with 
O@X’. a lemma relating thtw two matrices is 

j+=mean of _v= c cr,N,/N 
9= 1 

S,,.=covariance of y with *Yi. 

neces.QrJ. Since the lemma is standard in the analysis Lemma 3 
o,f \ariancc litcisturc a proof is not presented here.” 

Lvinma 2 
$.,.=(I N) i ; N,,Nr(~~,,--~+) 

/I= I r= 1 

( ._ = s,, _ ; i &J;, &qh’_ XI”) 
047) 

h I t I 

x ( ,qh’ - Jq”) 

17 > I 

/I. 1’ EC f ’ . . c; ._. . 

UW 

-- --- 
a The covariances are calculated with the estimated scores in 

preparation for ii descrlplion of the regression estimation procedure. 
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h=l 

h= I 

1 

=(L’N) i f [NhNr%;h’(~h-ur)] 
h=l r=l 

A=1 r=l 

k>r 

Corollary. l’j’the meuns of the groups lie on a straight 

line, then 

where Q3 is a scalar and Xi ’ ) and xi2’ ure the means 

qf‘ the first two categories. 

PROOF. If the means lie on a straight line, recall from 
equation (A6) that 

k,--k, 
where Qhr= r-k- . 

‘1- 2 

Then 

Sij=(l/N) i i N,,N,.(LJ,, -LJ,)Q,,,(X~~)-$~‘) 
h=l =I 

Thcwem. The co@irients ojdiscriminanr jircnctions in 

multiple discriminc4nt analysis are identical (up to 

scalar mrrltiples) to the regression coqjfwients oj’thr 

mrtltiple regression prowdures cf the sample means 

of’rht~ G cxuegorius lie OH u straight line.’ 

PROOF. Discriminant analysis coefkients are equal 
to 

s The theorem applies to the coefficients of’ the independent 
variables in the regression procedure, not to the constant ~crm or to 
the estimated numerical indices. 

where Qc is a scalar and 

if t he sample means lie on a straight line (by Iemma 1). 

Regression estimates are best viewed it deviations 
around the mean are used. The regression coefkients 
are b*L=A-*& where S&S,,* -, Sky). Proof of the 
theorem involves proof that IP = Q,aYl where Q is a 

scalar, if the group means lie on a straight line. If the 
means do lie on a straight line, then writing the results 
of the corollaries to lemmas I and 3 in matrix 
notation, we obtain 

C=S-Q,dd’ 

S,=Q,d 

where 

d’=(;i,, ..‘, d,) and di =(Xi”- Xi”) 

Q2 and Qj are scalars, C and S are k x k matrjcGs, 

and 

s;,=&., -** , Sk,.) S_,* d, b*, and P are k x i vectors. 

Since Ib**=(S- IS,, it follows by substitution that 

Cb*=(S-Q,dd’)S- ‘S, =(S-Q,dd’)S- ‘Qjd 

= Qd - Q,Q,dW - ‘4 = d(Q3C?2Qa, 

where Q4 =d’S ‘d is a scalar. Then 
b*’ = Q,C- ‘d = Qb* where Qs and Q are scalars tl- at 
are properly chosen. Q.E.D. 

The theorem that has been proved is stated in terms 
of the sample means of the categories, but an 
equivalent theorem is tru: for the population parame- 
ters. This can be seen by retracing the steps of the 
lemmas and the theorem while replacing sample 
means and variances vyith their population counter- 
pa&’ If the sample means do lie on d straight line. 
then the normalizaticll is unimportant in ti)e sense 

I’ It might be valuable to compare the xalinp procxdure 
descrtbed earlier to the multivariate regression technique described 
by Warner ( i963). Warner’s repression approach is distributionally 
quite similar to that of multiple discriminant analysis. It is not 
dificult to show that if prior probabilities associated with each 
category are equal and there is a common covariance matrix 
associated with each of the group attribute vectors, then Warner‘s 
results are comparable to that of multiple discriminant ana)ys;s. 
When the sample means of the at& ‘ie vectors associated with each 
group do lie on a straight line. a sc~.:e ~c~~~+al to the scale described 

previously will aresult. There dm. rot gT.$car to 1~ an obvisou 
method of collapsing Warner’s multidimerkonal model 10 a fin- 

idimensional one (and determining at; appropriate scak) when the 
means of the group attribute vectors do not lie on a straight line. 
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that the estimated coefficient vetor will be uniquely 
determined (up to a scalar multiple) no matter which 
atqories are arbitrarily assigned the values of 0 and 
1. This can best be seen by l,oticing; in tke corollary t.0 

Lemma 3 that if the sample means lie on a straight 
line, then the estimated covariance vector Sy is 
uniquely determined (again, up to a scalar multiple) 
whatever the values of a#. If the sample means do not 
lie on a straight line, then the estimated coeficient 
vector will not be uniquely determined.’ In practis, 
the normalization is unlikely to matter very much if 
the terms of the theorem are closely approximated If 
the fit of the equation is very good, or if the iterative 
least-squares process is used. 

-_-- 

Xotc that the choice of O-1 flues for the normalization rather 

rh,m other ccm\tants IS nor what causes thedtfkult,; It IS thechoice of 

r*hlch numcrtcA mdxes aA be unknowns ?nd whtch corresponding 

Jumm! tartables welt appear as %;dependent” variables in the 

regressjon cquatron 
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