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The boolean distance between twc points x and y of a connected graph G is defined as the
set of all points on all paths joining x and y in G (@ if x =y). It is determined in terms of the
block-cutpoint graph of G, and shown to satisfy the triangle inequality b(x,y)<
b(x, z)Ub(z, y). We denote by B(G) the collection of distinct boolean distances of G and by
M(G) the multiset of the distances together with the number of occurrences of each of them.
Then |[B(G)|=1+(®3") where b is the number of blocks of G. A combinatorial characterization
is given for B(T) where T is a tree. Finally, G is reconstructible from M(G) if and only if every
block of G is a line or a triangle.

1. Boolean distance

All notation and terminology in this paper not defined below caii be found in
[1]. In particular a path does not have refzated points. If G is a connected graph,
we define the boolean distance b(x, y) between points x and y of G as follows: if
x =y, then b(x, y)=0. and if x# y, then b{x, y) is the set of all points on all paths
joining x and y. The boolean distances of G can be determined by its block
structure, as will be shown below. To thi. end recall that the block-cutpoint graph
of G, bc(G), is the bipartite graph having as points the blocks and the cutpoints of
G, in which block b is adjacent to cutpoint ¢ if and only if ce b in G. For any
point x of G, let b(x) be x itself if x is a cutpoirt of G and the unique block of G
containing x if not. Since be(G) is a tree [1, p. 37], for any points x, y of G there
is a unique path joining b(x) and b(y) in bc(G), which will be denoted by P(x, y).
The study of the cutpoints of G on P(x, y) suggested the concept of a *‘cutting
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center” of a tree in [2]. The following result relating the boolean distances of G to
its block structure can now be stated.

Theorem 1. For any distinct points x, y of G, b(x, y) is the union of all blocks of G
(considered as point-sets) lying on P(x, y) in bc(G).
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are cutpoints and the b, are blocks of G such that ¢; € b,_, N b,. The first ~utpoint

¢o appears only if x is a cutpeint and then ¢, = x, otherwnse x € b,, and similarly at
the other end. First we prove the inclusion b(x, y)c b, U - -+ Ub,. If a path of G
leaves a block, it cannot return to this block, because that would necessitate
repeating a cutpoint. Therefore if P is any path joining x and v in (r then the

sequence of blocks and cutpoints encountered by P is a path joining b(x)} and b(y)
in be{G). Rut the latter nath must be Plx v) and so all the noints nf P are
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contained in b, U - b,. Now we prove the opposite inclusion by U -+ - Ub, €
b(x, yj. Let z be any point of b,. Then by [1, p. 28] G has a path P joining ¢; and
¢;.; and containing z (if i = 1 and ¢, does not appear, then G has a path P joining
x and ¢, and containing z, and similarly at the other end). Let Q be any path

joining x and ¢; and R any path joining Cix1 and y in G. Then by the previous
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and vy and contains z. O
As a coroliary we can see that b(x, y) is a boolean metric in the sense of [4].

Corollary 1a. (1) b(x, y)=0 if and only if x =y.
(2) b(x, y)=b(y, x).
(3) bix, y)=b(x, z)Ub(z, y).

Proof. The first two statements are obvicus, and third follows from Theorem 1.
In fact for x # y there is equality in (3) if and only if b(z) appears in P(x,y). O

2. Distance sets
The set of all boolean distances betweer. =oints of G is called the distance set of

G and is denoted by B(G) it is understood that @ is always included as a boolean
B(G)|=2 u and Only if G is a bleck. If G contains a8 cycle,
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no confusion betwee the symbol nd b( X, y).
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Proof. By Theorem 1, B(G)— {§} is the set of unions of blocks of G (considered
as point-sets) lying on paths of bc(G) beginning and ending in blocks of G.
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Therefore |B(G)|~1 is equal to b (single blocks) plus (5) (paths joining distinct
blocks). The result on trees follows from this and from the fact that a connected
graph has p—1 blocks if and only if it is a tree (certainly a tree has p — 1 blocks,
and if new lines are aided to a :ree, the number of blocks first decreases and ihen
never increases). [

We rema.k that for almost all graphs G on p points |B(G)i =2 as p—x, as it is
observed in {3, p. 207] that almost all graphs are blocks. We also note that when
p=3, G is a star if and only if B(G)—{@} contains only sets with two or three
points. The next thecrem characterizes the distance sets of trees.

Theorem 3. Let X be an n-element set and let F < P(X) be a collection of (3)
subsets of X. Then there exists a tree T with point-set X and B(T)—{@#}= % if and
only if the following three conditions are fulfilled:

(i) For any Fe %, |F|=2.

(ii) Any set F in ¥ contains exacily |F|—1 2-element subsets of #. These
2-element subsets have the form {x,,x,}, {x5, x5}, ..., {xk_1,x}, where
{x%1, %3, ..., X} =F. We cai x; and x. end-elements of F.

(iii) If F,, F,€ % arnd F,NF, ={x} where x is an end-element of both F, and F,
then FLUF,e %.

Proof. The necessity is obvious. In order to prove the sufficiency of the condi-
tions, construct a graph G having point-set equal to X and line-set equal to the
family of 2-element subsets of %. Then G has no cycles, for if xo, X3, ..., %
were the points of a cycle of G in that order, then {x; x;.;}€ & for each i (indices
mod r), hence by repeated use of (iii), {xg, X;,...,%_1}€%. Then by (ii)
{xq, X1, - - - » X,—1} Would have to contain exzactly r—1 lines of G, but it contains at
least r of them, a contradiction showing that G has nc¢ cycles. Now if any two
points of G appearcd more than once as end-elements, then by a standard
argurnent G would contain a cycle, which is impossible. Hence there appear at
most (3) pairs of enc-clements, so |#|=<(5). But by assumption |%|=(5), and it
follows that every two points of G appear as end-elements, and G is connected.
Thus G is a tree and the point-sets of its paths are precisely the singletons and the
members of #. Hence B(G)-{}=%. [

3. Reconstructibility from boolean distances

The collection <¢ boolean distances of G can be regarded as a multiset by
taking the multiplicity of the sets of points into account. For example, § has
multiplicity p and the set of endpoints of a bridge has multiplicity 1. We thus
define the boolean distance multiset M(G) as the pair (B(G), m), where m is the
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function

m: B(G)——>{l, 2,..., (;)}

that associates with each set S e B{(G) the number of unordered pairs {x, y} of
points of G such that b(x, y)=S. A graph G with given point-set is said to be
reconstructible from its boolean distance multiset if G is uniquely determined by
M(G), i.e.. there is a procedure to identity the lines of G using only M(G).

We now determine the multiplicities of the blocks of G considered as point-
sets.

Theorem 4. A set Se B(G) has multiplicity m(S) = (%) if and only if S induces a
block of G.

Proof. Clearly we may axsume S# ). Then by Theorem 1, bc(G) has a unique
path of the form by, cy, .. ., C,-1, by, Where the b; are blocks and the ¢; cutpoints
of G, such that S=b,U -+ Ub,. Thus S induces a block of G if and only if
n=1.1f n=1, then

\b
- (2)-()
If n=2, then
) . /IS
m($) =35, - Db~ < ('5)).
If n=3, then
|S
m=3b boi<(5). 0
We define the block completion K(G) as the graph obtained by replacing each
block of G by a complete subgraph on the same set of points. Thus K(G) is a

‘block graph’: see [1, p. 29]. Obviously G and K(G) have the same cutpoints. We
then have the following corollary of Theorem 4.

Corollary 4a. For any connected graph G, the block completion K(G) is reconstruc-
tible from the multiset M(G).

Proof. The blocks of G are uniquely determined from the condition m(S) = (%),

and then two points are adjacent in K(G) if and oaly if they belong to the same
block of G. [OJ

We conclude with the following corollary showing which graphs G are recon-
structible from M(G).
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Corollary 4b. A connected graph G is reconstructible from M(G) if and only if G
has no cycle of length greater than 3.

Proof. Assume that G contains a cycle C, of length n=4. Then C, is contained
in some block H having at least four points. If H is complete we denote by G, the
graph obtaired from G by deleting an arbitrary line of H. If H is not complete we
denote by G, the graph cbtained from G by adding a line between two
nonadjacent points of H. In both cases G and G, have the same cutpoiits and
blocks (considered as point-sets). Hence be(G) = be(G,) and M(G) = M(G,),so G
is not reconstructible from M(G). Conversely, assume that G has no cycle of
length greater than 3. We show that all blocks cf G are lines or triangles. For
otherwise there is a block H with at least four points and the longest cycle of H
contains exactly three points, say x, y and z. Then z, say, is adjacent to a fourth
point t of H, and there is a path P=(¢,. .., y) not containing z. If x is not a point
of P, then (1,...,y,x, z, t) is a cycle of length greater than 3, and if x is a point of
P, then (t,...,x,y, z, t) is such a cycle. This contradiction proves that the blocks
of G are lines or triangles. Therefore K(G)=G and by Corollary 4a, G is
reconstructible from M(G). [
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