
45 2 Mathematics and Computers in Simulation XXIV (1982) 452-459 
North-Holland Publishing Company 

THE INVERSE PROBLEM FOR COMPARTMENTAL SYSTEMS 

John A. JACQUEZ 

Departments of Biostatistics and Physiology, The University of Michigan, Ann Arbor, M1 48109, U.S.A. 

The current state of the inverse problem for compartmental systems is reviewed and 
analyzed in terms of three major phases, viz. model specification, identifiability 
and parameter estimation. Emphasis is given to a review of identifiability for 
linear compartmental systems and the need to put identifiability in perspective in 
the context of the inverse problem. 

I. INTRODUCTION 

In its general sense the inverse problem is 
the scientific process that we use in trying to 
unravel the nature of the world around us. Its 
main stages are hypothesis formulation, design 
of experiments to test our hypotheses, 
experimentation and analysis of experimental 
results. In light of the new knowledge gained 
the process is then repeated. I shall restrict 
my discussion to biological systems and 
specifically to compartmental systems but much 
of the material which follows is extendable to 
other systems. Furthermore, I shall refer 
primarily to linear time-lnvariant systems but 
when possible will add remarks about nonlinear 
systems. 

The nature of the inverse problem for linear 
compartmental systems stands out most clearly 
when contrasted with the forward problem. In 
the forward problem we are given the structure 
of the compartmental system, i.e. the number of 
compartments with their connections including 
inputs and outputs, and the values of the 
fractional transfer coefficients and the input 
functions. The forward problem starts with the 
system structure known and all parameter values 
specified and requires us to calculate the 
behavior of the system. In the inverse problem 
some of the parameters are unknown or some 
parameters and structure are unknown and we 
want to work backwards. I like to break the 
inverse problem into the following stages, 
model specificat'~on, definition of the allowed 
experiments, iden~ifiability, parameter 
estimation, experimentation and analysis and 
model checking. Again, this is an iterative 
process. There is some variation in the 
breakdown into stages given by different 
authors but I think there is good agreement on 
the content and the major stages. For this 
paper I focus on model specification, 
identifiability and parameter estimation. 

One of the stages mentioned above may be 
unfamiliar to scientists from the physical 
sciences, the definition of the allowed 
experiments. For biological systems it is 

invariably true that only a few of the 
conceptually possible experiments can actually 
be done. This is so because not all parts 
(compartments) of the system are available for 
signal input or for observation without 
severely damaging the system, a sort of 
biological uncertainty principle. In addition 
ethical and humane considerations limit the 
allowed experiments for some biological systems. 

2. MODEL SPECIFICATION 

The first problem is to decide whether a 
compartmental model is appropriate or useful. 
We now have available such an extensive body of 
theory about compartmental systems that it is 
often tempting to try to fit a problem into the 
compartmental mold. The decision should be 
based on detailed knowledge of the biology, of 
the anatomy, biochemistry and physiology of the 
system and problem. Like all models 
compartmental models are approximations but one 
can distinguish two extremes which differ in 
the nature of the approximations. The first 
might, for emphasis, be called compartmental 
models of compartmental systems. The system 
has an obvious partitioning into a 
compartmental type of structure, spacewise or 
in terms of chemical species or both, and the 
model is an approximation because mixing within 
the presumed compartments is not instantaneous, 
nor are the transfers between the compartments 
instantaneous. The compartmental model is a 
good approximation if mixing within the 
presumptive compartments is rapid in relation 
to the transfers between them and it is poor if 
it is the other way around. The other extreme 
is one in which a compartmental model is used 
as a discrete approximation to a continuous 
system. Now there is no natural partitioning 
of the system to guide compartmentation; 
compartmentation is just one way of 
discretizing. Such models usually have a 
repetitive structure determined by the nature 
of the system and the approximation but the 
size, the number of repetitive units, increases 
as the approximation is improved. The 
important point is that the size is not 
uniquely specifiable except as a measure of the 
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closeness of approximation. I assume that 
these considerations have been addressed and 
that there is reason to choose a compartmental 
model. For compartmental systems model 
specification means the determination of the 
connectivity diagram of the system, i.e. the 
structure, the number of compartments, their 
connections and the inputs and outputs. The 
main point to make here is that this phase of 
the inverse process depends strongly on our 
knowledge of the structure and function of the 
biological system. The non-biologist tends to 
overemphasize the importance of looking for the 
number of exponential modes of decay in 
determining the structure of the system. In 
general the number of exponential decays is 
less than or equal to the order of the system. 
But when we take into account the experimental 
error a choice of sample times is in fact a 
choice of eigenvalues detectable by that 
experiment. The major inputs to model 
specification come from what we know of the 
anatomy, physiology and biochemistry of the 
system. 

But given a model of a compartmental system, 
the first type of compartmental model, of a 
known size the structure may not be fully 
specified. The connectivlties may not all be 
known. In that case we may have a set of 
possible models to examine for identifiability 
and parameter estimation. For the experiments 
that are run we have to generate a set of 
structurally equivalent models [I]. 

3. IDENTIFIABILITY 

3.1 Background 

For systems described by a vector of parameters 
the term ideutifiability refers to whether the 
information theoretically available from an 
experiment or set of experiments is sufficient 
to give a unique solution for the parameters. 
Unfortunately there is considerable variability 
in usage for a number of terms. Partly this 
arises from the multiple origins of the 
identification problem. The problem has been 
recognized in statistics, econometrics, control 
theory, communication theory, systems theory 
and in biology. Recently Nguyen and Wood [2] 
have reviewed linear identifiabilty; references 
to early papers in a number of fields will be 
found there. To my mind there are two major 
sources of confusion. One is that the term 
identification or system identification has a 
different meaning from identifiability. The 
former refers to the overall problem of 
determining system structure and parameter 
values from input-output data whereas 
identifiability as usually used refers to the 
more narrow problem of the theoretical 
existence of unique solutions. But they are 
sometimes confused. The other is that the 
boundaries of the identifiability problem 
differ in different fields; some include 
observation error, some do not. 

For applications in biology a significant step 
was the recognition that once the model was 
specified, estimation of parameters could be 
broken into at least two stages. In the first 
stage we ask, given the model and the 
compartments which can be injected and those 
which can be observed, are the parameters 
uniquely defined if we have error free 
observations? This is the identifiability 
problem for compartmental systems. It is 
useful to separate the effect of observation 
error from the purely mathematical question of 
existence of unique solutions. Obviously one 
would want to know whether the parameters were 
in theory uniquely defined by the observations 
before going into the parameter estimation 
phase. This division of the problem is 
particularly important for compartmental 
modeling in biology because we often do know 
the structure of the system and because the 
nature of biological systems limits the allowed 
experiments. 

What of the effect of a finite number of 
discrete observations and of the truncatin of 
sampling time. It is common to put these into 
the next stage, parameter estimation, because 
of the interaction of these constraints with 
observation error so they must be included in 
questions of the design of experiments. 
However, one could argue for their inclusion in 
the deterministic identifiability problem or 
for splitting identifiability into a two stage 
question which takes them into account in the 
second stage. 

The recognition of the utility of splitting the 
overall problem into stages came slowly. 
Kalman's work [3] showing that the impulse 
response matrix of a linear time invariant 
system identifies only the completely 
controllable and completely observable part of 
a dynamic system has played an important role, 
as have a number of others, see references in 
[2] and [4,5]. An early and important paper in 
compartmental analysis that took up problems of 
parameter estimability and foreshadowed some of 
the modern ideas on identifiability was that of 
Berman and Schoenfeld [6]. But the first 
statement of the identifiability problem in the 
compartmental context comes from Bellman and 
Astrom [7] who introduced the term structural 
identifiability. 

The deterministic identifiability problem is so 
clean and has so many interesting facets it has 
drawn most of the attention in the last 
decade. So much so that at times it appears we 
have forgotten it is only one stage of the 
inverse problem. Bekey and Hadaegh [8] inveigh 
against deterministic identifiablity because of 
its neglect of modeling error and of 
observation error. However, it would seem 
preferable to keep deterministic 
identifiability as a separate stage because of 
the insights it gives into problems and look at 
the effect of error as a separate issue. 
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3.2 Definitions and Terminology 

For the most part I shall use the terminology 
proposed by Cobelli and DiStefano [9] who have 
reviewed the field with an eye to clearing up 
ambiguities of usage in applications to 
biological systems. A parameter is 
unidentiflable on an interval if there exist an 
infinite number of solution values and the 
system is unidentifiable if at least one of its 
parameters is unidentifiable. A parameter is 
identifiable on an interval if there are only a 
finite number of solution values in that 
interval and it is uniquely identifiable if 
there exists only one solution. A system is 
identifiable if all of its parameters are 
either identifiable or uniquely identifiable 
and at least one of the parameters is only 
identifiable. Finally, a system is uniquely 
identifiable if all parameters are uniquely 
identifiable. 

Other important terms are local and global 
identifiabillty. Local identifiability refers 
to uniqueness of solution in a small 
neighborhood of a point in parameter space. If 
the solution is unique for the entire parameter 
space we have global identifiability. 

If stochastic considerations are included one 
can define maximum likelihood (ML), least 
squares (LS) and consistency-in-probability 
(CP) identifiabillty [2]. For a class of 
linear time invariant stochastic or 
deterministic systems Nguyen and Wood [2] show 
that local ML, LS, and CP identifiability are 
equivalent to local parameter identifiability 
of the deterministic systems. 

3.3 System and Experiment 

It is i~portant to keep clearly in mind the 
distinction between the system and the 
experiment we do on the system. For 
compartmental systems, linear or nonlinear, but 
with coefficients independent of time, a very 
cormnon type of experiment is to have the system 
in a steady state and to inject a tracer into 
one or more compartments and follow the time 
course of the tracer in one or more 
compartments. To take a simple example, the 
system diagram ~ay be l(a) in which i I is a 

J. 

ta) (b) 
Figure I 

constant input into compartment I. If the 
experiment consists of an injection of tracer 
into 2 and observations of specific activity in 
3, the connectivity diagram for tracer flow 
will be l(b). The equations for the system are 
(I) in which q is the vector of amounts of 

= fq + i , q(0) = qo (I) 

material in the compartments and f is the 
matrix of fractional transfer coefficients. 
Let x be the vector of tracer amounts in the 
compartments and let y be the vector of 
observations. Then the equations for the 
tracer experiments are (2). It is useful to 

= f x  + u , x ( O )  = 0 

(2) 

d i s t i n g u i s h  the  experiment by using double 
arrows for  exper imenta l  input and for  
observations and to superimpose these on the 
system connectivity diagram as in Figure 2. 

I L, ~/U, 

3 

Figure 2 

In general then the equations of an 
experiment will consist of the homogeneous 
equations for the system plus the inputs of the 
experiment, initial conditions, the equations 
for the observations and equations for any 
other constraints. The first three are given 
in equations (3). Here u is an input vector for 

= fx + Bu , x(0) = x o 

y = Cx 
(3) 

the experiment and B is the matrix which 
defines the inputs to the different 
compartments, C is the observation matrix. In 
general system theory it is common to write y 
in the form y = Cx + Du but the last term so 
rarely enters the observations for 
compartmental systems there is no point to 
carrying it. 
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In compartmental analysis usually all of the 
elements of B are known and the zeros of f are 
known because we know the digraph for the 
system. But not all of the elements of C are 
always known; unknown elements occur when we 
measure a specific activity or concentration of 
a tracer in a sample, i.e. xj/q~ or 
xj/V~) and we don't know the dilution by 
abundant isotope, qj, or the volume of 
distribution, Vj. In addition there may be 
constraints that take into account prior 
information on the system. 

3.4 Necessary Conditions 

3.4.1 Input and Output Reachabillty 

For this section assume the only unknown 
parameters are the non-zero elements of the 
system matrix, f. The most general sort of 
condition that must be satisfied is that the 
inputs must excite all of the modes of the 
system and all of the modes must appear in the 
observations. The first can be put in terms of 
input reachability; all compartments must have 
at least one path leading to them from some 
input. The second is the condition of output 
teachability. For all compartments other than 
terminal compartments (simple traps) there must 
be a path going from the compartment to one of 
the observed compartments. These conditions 
are easily checked by examining the 
reachability matrix of the system digraph. The 
terms input and output connectability [I0,II] 
have been used as well as input and output 
teachability [12]; I prefer teachability 
because it conforms with standard usage in 
graph theory. 

Input and output reachability are necessary 
conditions for all systems, linear and 
nonlinear. 

3.4.2 A Stronger Necessary Condition. 

A general necessary condition for all systems 
is that the observations and prior information 
provide at least p relations in the p 
parameters which have to be estimated. For 
linear systems this means that the transfer 
function for the input-output experiment plus 
the prior information not in the transfer 
function must provide at least p equations in 
the p parameters. If there are p relations 
there is no guarantee that the system is 
uniquely identifiable or even identifiable. 
But.if p relations cannot be obtained the 
system is unidentifiable. Cobelli et al. [I0] 
have published a condition for time invariant 
linear systems which was obtained by comparing 
the terms of the transfer function with 
properties of the system connectivity diagram 
to give a count of the number of non-redundant 
relations obtainable from the transfer function. 

invariant linear systems reduces to a question 
of the existence of a unique solution to a 
system of nonlinear equations. So far as I 
know a general solution for this problem is not 
available. However a number of constructive 
approaches have been proposed which amount to 
recipes telling one how to determine whether or 
not a compartmental system is identifiable. 
All work well with small systems but the effort 
needed mounts rapidly with the size of the 
system. 

Four major methods have been proposed; they are 
obviously related through the basic theory of 
linear compartmental systems. 

3.5.1 The Transfer Function or Impulse 
Response Method 

Bellman and Astrom [7] pointed out that if a 
system is identifiable from any input it is 
identifiable from the impulse response so 
Bellmen and Astrom suggested that we examine 
the transfer function for the experiment. The 
method has been used by many and in particular 
by Cobelli et al. [10,13]. 

In theory the method is simple. Consider the 
system with experiment given by equations (3) 
but let us assume a zero initial state problem, 
i.e. x = 0. Laplace transforms give us the 
set (4?. 

(sl-f)X = BU 

y = cx (4) 

y = C(sl-f)-IBu 

We call H(s) = (sl-f) -I the transfer function 
for the system, Hi~(s) gives the observation 
in compartment i for unit impulse into 
compartment j. C(sl-f)-iB is the transfer 
function for the given experiment; it tells us 
what components or combinations of the elements 
of H(s) are available from the given 
experiment. The problem then reduces to 
looking at the coefficients of the terms of 
this transfer function to see if all of the 
components of f are uniquely determined and 
this is a problem in simultaneous nonlinear 
equations. 

Related to this is Eisenfeld's [14] use of 
integral transforms to generate irreducible 
representations. Eisenfeld includes the 
restriction that data are truncated in time so 
that instead of using Laplace transforms he 
goes to a finite sequence of general integral 
transforms over an interval. This restricts 
the identifiability problem by introducing one 
of the practical constraints on data gathering. 

3.5.2 Markov Parameters 

3.5 Sufficiency The impulse response in the experiment is given 
by equation (5). 

Basically the identlfiability problem for time 
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y = CeftB (5) 

Expanding e ft in a matrix infinite series 
gives equation (6). 

y = CB + CfBt + Cf2B t2 + ... + cfkB tk + ... (6) 
2: --fY. 

The coefficients CB, CfB, ... are the Markov 
parameters and we consider them to be 
obtainable from the impulse response. If f is 
N x N, we need consider only the first N of 
them; a recursion relation of degree N + i 
defines the remainder [14]. Identifiability 
now amounts to asking whether the parameters 
are all defined by the Markov coefficients. 

The relation to the transfer function method is 
then obvious if we write out the transfer 
function. The transfer function for the 
experiment is given by (7). A(s) is the 
determinant of (sl-f). 

G(s) = C(sl-f)-IB = C adj(sl-f)B (7) 
~(s) 

A(s) = det(sl-f) = sN+ ~isN-l+... 

+ aN_is+ a N (8) 

But C adj(sl-f)B can be written (15) in the 
form of eqn. (9). 

N-2 
C adj(sl-f)B = CB[sN-I+ elS +...+aN_ 1 ] 

+ CfB[sN-2+ ~IsN-3+...+ ~N_2 ] 

(9) 

+ cfN-2B[s+ a I] 

+cfN-I B 

3.5.3 Similarity Transformations and the Set 
of Equivalent Models 

An approach which I believe gives more insight 
into the problem is to seek all models which 
give the same input-output response for the 
given experimen t and which satisfy the known 
constraints such as having the same 
connectivity diagPam. It has been called 
exhaustive modeling by Walter and Le Courtier 
[16] and the direct method by Travis and 
Haddock [17]. The method was anticipated but 
not fully developed in the early work of Berman 
and Schoenfeld [6]. 

Given the system and experiment of equations 
(3) all systems equivalent to it must have a 
system matrix which is related to f by a 
similarity transformation and which satisfies 
the constraints on the system matrix. Thus we 
seek a nonsingular matrix P such that the 
equations for the experiment are (I0). 

= (P-Ifp)x + Bu 

y = Cx 
(IO) 

Taking transforms we obtain (II) for Y. 

y = cp-l(sl-f)-IpBu (11) 

For the input-output kinetics to remain the 
same, eqns. (12) hold. Relations (12) 

CP -I = C , PB = B (12) 

determine some of the elements of P. Then 
apply the known constraints on the system 
matrix to p-Ifp, i.e. the zero elements and 
any relations between the non-zero elements, to 
try tO determine the remaining elements of P. 
If P = I is the only solution the system is 
uniquely identifiable. If P = I is a solution 
and a row (column) permutation of I is also a 
solution, it means there is only one set of 
values for the elements of the system matrix 
but there is a syrmnetry in system structure 
such that the compartments corresponding to the 
permuted rows play interchangeable roles [17]. 
If there is a finite set of solutions for P # I 
the system is identifiable, otherwise it is 
unidentifiable. 

An important extension of this occurs when the 
connectivity diagram is not fully known so we 
are back in the model specification phase. We 
then have the problem of generating the set of 
what Vajda [I] calls the structurally 
equivalent models for the input-output 
experiment. This is then a problem of 
generating realizations of an input-output 
experiment under constraints. 

3.5.4 The Modal Matrix Approach 

Another approach is to identify the elements of 
the matrix of eigenvectors, the modal matrix, 
and the eigenvalues. Delforge [18,19] and 
Norton [20] have used this idea but with 
different approaches to obtaining solutions. 

The basic idea is simple. Again we start with 
the impulse response, eqn. (5). Let M be the 
modal matrix and A be the diagonal matrix of 
eigenvalues so f = M AM -I. Hence we can 
write the impulse response. 

y(t) = Ce MA M-ItB = CMe AtM-IB = Ee AtD (13) 

If the f matrix is pxp we have. 

fij = m~A nj, (14) 

T 
where m i Is row i of M and n. is column 

] 

j of M -I = N. Also, 

foj = - Z m~A no, and (15) 

m~nj = dij (16) 
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Because the eigenvectors are determined only to 
within a multiplicative constant we can set one 
element of each column of M arbitrarily. Note 
that equations (14)-(16) are bilinear relations 
in elements of M and N. To these we add (17). 

f2 x ( t )  = e f t x (O )  ÷ e f ( t - X ) B u ( x ) d T  (17) 

So for zero initial conditions and impulsive 
input for example, intO j. 

= Me Atnj x(t) 
(18) 

xi(t) = mTe Atnj 

Using the constraints on f and equations (16) 
and (18) we try to determine the elements of M 
and N. Delforge counts the number of 
nonredundant equations to see if the set as a 
whole provides a solution. Norton tries to 
determine the rows of M and columns of M -I in 
a stepwise manner, using the known constraints 
to try to obtain a sequence of linear 
problems. The point to the latter is that as 
soon as a row of M is known all bilinear forms 
in that row and any of the columns of M -I 
become linear equations. 

All of the methods just reviewed work well with 
small systems but become increasingly more 
difficult to use as system size increases. In 
theory all could be prograrmued but might be 
seriously limited by computability bounds. An 
approach worth investigating is to look for a 
decomposition into subsystems in a way that 
allows one to say something about 
identifiability of the whole system from 
properties of the subsystems. Eisenfeld (21) 
has reported on some initial steps in this 
direction. 

3.6 Nonlinear Systems 

Much less has been done with nonlinear systems 
or with linear systems with time varying 
coefficients. Grewal and Glover (5) look at 
identifiability of nonlinear systems by looking 
at the linearized system. This fits in with 
the practical approach of the physiologist who 
puts nonlinear compartmental systems into 
steady states in which the movement of tracers 
follows linear kinetics. Pohjanpalo (22) 
however looks at identifiability of the 
derivatives at t=0 for a Maclaurin series 
expansion for nonlinear systems. 

4 PARAMETER ESTIMATION 

4.I Identifiability, Conditional Estimation, 
Estimability 

It is important to look st identifiability 
first because of the information it gives about 
what an experiment can potentially tell us 
about a system. Nonetheless it is possible for 
a system to be unidentifiable and for its 
parameters to be restricted to small enough 

ranges for the system to be "identifiable for 
practical purposes". More importantly if a 
system is unidentifiable it is always possible 
to set a subset of the parameters to make it 
identifiable; estimates of the remaining 
parameters are then conditional estimates. For 
small parameter sets one can often obtain 
considerable insight into a system by plotting 
both the optimum values of the object function, 
the minimum of a sum of squares for example, 
and the values of the conditional estimates of 
the estmated parameters as functions of the 
values of the one or two parameters that are 
set arbitrarily. 

It is also possible for a system to be 
identifioable for a given experiment but for 
the measurements to be so insensitive to 
variation in one or more of the parameters that 
their estimates have high variances and so they 
are poorly estimable. This impels us to 
consider a theory of estinmbility in which we 
take into account the restrictions on sampling, 
the errors of observations and possibly other 
contraints. The path to estimability is by way 
of studies of sensitivity and then to 
optimization of estimability, i.e. design of 
experiments. 

4.2 Sensitivity 

Given a function differentiable in the 
parameters the local or point sensitivities are 
the derivatives with respect to the 
parameters. In a global sense we are 
interested in the sensitivity of the 
observations, y, to change in the parameter 
values. As a first step this could be examined 
without taking into account errors of 
observation by looking at the functional 
dependence of the observations on the 
parameters, the fractional transfer 
coefficients, or by direct eompution of 
solutions of the forward problem for sets of 
values of the parameters. But that can be a 
tall order; it means looking at sensitivities 
of the observations as functions of the 
parameters over the parameter space. But the 
sensitivities at the parameter estimates are 
the most important. 

Of more immediate importance are the variances 
of the parameter estimates and these are 
directly related to the sensitivity of the 
object function used to estimate the 
parameters; the sensitivities of the 
observations at the parameter estimates appear 
within the sensitivities of the object 
function. Let us use least squares estimators 
for illustration. For simplicity assume we 
have a one component observation vector y(t,e), 
parameter vector e and samples at ti, j = 
l,...,m. The sum of squares of deviations is 
given by equation (19), in which wj is a 

S =~ wj[yj-y(tj, 8 )]2 (19) 

J 
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weight at the jth sample point. Let 8o be 
the value of the parameter vector at the 
minimum of the sum of squares. Expanding 
around the minimum gives us equation (20). Here 

AS = S(8o+h)-S(8 o) = hTG o + ~ hTHo h + O(h 3) (20) 
2 

G o is the gradient vector at e o and H o 
is the matrix of second derivatives, the 
Hessian, evaluated at 8 o . By assumption 
8 o is a minimum of S so G o = 0 and H o is 
positive definite. For small h, AS is a 
quadratic function of h which for fixed AS is 
an ellipsoid in parameter space with principal 
axes in general not along the components of 8 . 
To see how AS changes with 0 we need to 
examine the eigenvalues of Ho; the sum of 
squares is most sensitive to change in 8 along 
the principal axis corresponding to the largest 
eigenvalue of H o and is least sensitive to 
change in 9 along the principal axis 
corresponding to the smallest elgenvalue of 

H O • 

For maximum likelihood estimators a similar set 
of considerations leads to a matrix which is 
closely related to the Hessian of the LS 
formulation and whose expectation is the Fisher 
information matrix. 

4.3 Design of Experiments 

In general then we should like to maximize the 
sensitivity of the minimum of the sum of 
squares, to variation in the parameters. But 
given the experiment, the number of samples and 
the sample times the minimum of the sum of 
squares is set for any particular sample. In 
theory if we knew the probability densities of 
the observational errors, the expected values 
of the minimum sum of squares and of the 
Hessian are determined. What we want to do 
then is to vary the number of samples and the 
sample times, within the constraints on the 
experiment, so as to maximize the sensitivity 
of the minimum sum of squares. That 
optimization problem is what is meant when we 
talk of design of experiments. 

In the context of compartmental systems let us 
talk about "design of experiments" in terms of 
a given experiment, i.e. we have a 
compartmental s~stem of known structure and 
identifiable by a specific experiment. The 
problem statement is then as follows. 

Given: 

a) The parameter values (in reality, an 
estimate) 

b) Sampling is restricted to a finite interval 
in time, usually 0 < t < T. 

c) The number of samples is no more than some 
number, N. 

d) The variances of the sampling errors or 
their distributions are known. 

Find the partition of sampling times that 

optimizes the expected value of some function 
of the variances of the parameter estimates 
that is our measure of sensitivity. This is 
obviously an iterative problem because we need 
to know the values of the parameters which are 
to be estimated. Let us put aside questions of 
costs or utilities, for the moment. One 
approach is to minimize the volume of the 
constant error ellipsoid around the parameter 
estimate. If YI, Y2, "'', Y~ are the 
elgenvalues of the Hessian, the volume of the 
ellipsoid of constant error around the minimum 
sum of squares is proportional to the product 
(21). 

P 2 
al l 

P = ~ .~.~) (21) 
j=l ~'O' 

But because we would like all parameters, 
B i , be estimable with ~8i/ ei within to 
some given ranges we really want to minimize 
the volume of the ellipsoid but also constrain 
the allowable deviation from a sphere. The 
latter represents a constraint on the relative 
values of the maximum and minimum eigenvalues 
of the Hessian evaluated at the parameter 
values. These two criteria work in opposite 
directions and we do not have extensive 
experience from which to evaluate the 
trade-offs between them. 

At a broader level, if we may do more than one 
experiment the optimization has to be extended 
over all possible experiments or combinations 
of experiments. If the system is not fully 
specified the problem is really on a new 
level. If all possible system configurations 
are identifiable by the experiment(s) then the 
optimizaton has to be done from a Bayesian 
viewpoint, taking into account prior 
probabilities of different possible system 
configurations. 

5. CONCLUSION 

There are still many interesting things to do 
in identiflability for compartmental systems. 
But from the perspective of the overall inverse 
problem we are far enough along so that the 
field would profit from an increase in effort 
on the design of experiments. 
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