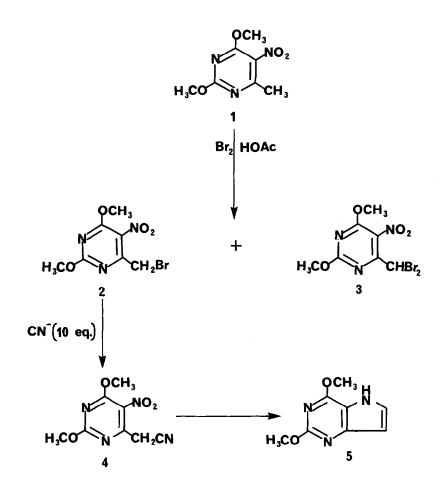
A NOVEL METHOD FOR THE SYNTHESIS OF 6,7-UNSUBSTITUTED PYRROLO[3,2-d]PYRIMIDINES

Thomas L. Cupps, Dean S. Wise, and Leroy B. Townsend* Department of Medicinal Chemistry College of Pharmacy and Department of Chemistry University of Michigan, Ann Arbor, Michigan 48109

Summary: The synthesis of 2,4-dimethoxypyrrolo[3,2-d]pyrimidine (4) is described. This facile, 3-step synthesis involves the bromination of 2,4-dimethoxy-6-methyl-5-nitropyrimidine (1), and the subsequent conversion of compound 1 into compound 4.

A number of recent reports¹⁻⁴ have appeared on the synthesis of the pyrrolo- $[3,2-\underline{d}]$ pyrimidine ring system. This interest has been renewed by the finding that 9-deazaadenosine {4-amino-7-(β - \underline{D} -ribofuranosyl)pyrrolo[3,2- \underline{d}]pyrimidine} has demonstrated significant <u>in vitro</u> and <u>in vivo</u> antitumor activity^{5,6}.


Traditionally, the synthesis^{7,8} of pyrrolo[3,2-<u>d</u>]pyrimidines which are unsubstituted at the six and seven positions has only been accomplished by the pyrolytic (300 °C, copper powder) decarboxylation of the corresponding 6-carboxypyrrolo[3,2-<u>d</u>]pyrimidine. Several additional methods starting from substituted pyrimidines⁷ have produced pyrrolo[3,2-<u>d</u>]pyrimidines, however, the products of these reactions always contained either an alkyl, aryl or ethoxycarbonyl substituent at the seven position. We now wish to report a facile, 3-step procedure for the synthesis of a novel 6,7-unsubstituted pyrrolo[3,2-d]pyrimidine (4).

The procedure we have developed is simple and avoids the above mentioned decarboxylation which is too harsh for compounds which might contain sensitive groups such as a carbohydrate moiety. The synthesis of 2,4-dimethoxypyrrolo-[3,2-d]pyrimidine (5) was accomplished starting from 2,4-dimethoxy-5-nitro-pyrimidine⁹ (1). Bromination of 1 with bromine (1.0 eq.) in refluxing glacial acetic acid which contained sodium acetate (10 eq.) afforded a mixture of 4-bro-momethyl-2,6-dimethoxy-5-nitropyrimidine (2, 43%, yellow oil) and the dibromomethyl derivative 3 (31%, m.p. 90-91 °C). After isolation by chromatography on

4759

silica gel $(CH_2Cl_2$ used as the elution solvent), pure 2 was reacted with excess sodium cyanide (10 eq.) in aqueous ethanol at 0 °C to give the crystalline

REACTION SCHEME

4-cyanomethyl-2,6-dimethoxy-5-nitropyrimidine $\begin{bmatrix} 10 \\ (4, 55\%, m.p. 75-77 \ ^{\circ}C) \end{bmatrix}$. Compound <u>4</u> was then reductively ring closed by hydrogenation at 80 psig and 70 $^{\circ}C$

over 10% palladium on carbon. This reductive annulation appeared to follow the same course as has been reported¹¹ previously for the synthesis of substituted indoles from <u>o</u>-nitro- α -cyanotoluenes. Thus, not only was the nitro group readily reduced to an amino group, but the cyano group was evidently also reduced to the corresponding imine which reacted with the <u>ortho</u> amino functionality to produce, after loss of ammonia, 2,4-dimethoxypyrrolo[3,2-<u>d</u>]pyrimidine¹² (<u>5</u>, 47%, 174-176 °C). The application of this facile synthesis of specific pyrrolo[3,2-<u>d</u>]-pyrimidines in the area of general heterocyclic chemistry as well as the synthesis of C-nucleoside is under further investigation in our laboratory.

Acknowledgement: This study was funded in part by funds from the National Institute of Health (Training Grant #5-T32-GM 07767) and the American Cancer Society (Grant CH-133).

References and Notes

- 1) R. S. Klein, M.-I. Lim, S. Y-K Tam, J. J. Fox, J. Org. Chem. 43, 2536 (1978).
- 2) M.-I. Lim, R. S. Klein, J. J. Fox, J. Org. Chem. 44, 5826 (1979).
- V. N. Sokolova, G. A. Modnikova, K. V. Novitsky, A. I. Kravchenko, V. A. Chernov, L. I. Shcherbakova, G. N. Pershin, <u>Khim.-Farm. Zh.</u> <u>13</u>, 17 (1979).
- O. S. Sizova, N. E. Britikova, Y. Novitskiik, L. I. Shcherbakova, G. N. Pershin, Khim-Farm. Zh. 14, 63 (1980).
- 5) M.-I. Lim, R. S. Klein, Tetrahedron Lett. 22, 25 (1981).
- 6) M. Y. Chu, L. B. Landry, R. S. Klein, M.-I. Lim, A. E. Bogden, G. W. Crabtree, Proc. Am. Assoc. Cancer Res. 23, 220 (1982).
- 7) For a review see: V. Amarnath, R. Madhav, Synthesis, 837 (1974).
- 8) K.-I. Imai, Chem. Pharm. Bull. 12, 1030 (1964).
- 9) H. J. Barker, A. B. Grevenstuk, <u>Rec. Trav. Chem.</u> <u>64</u>, 115 (1945).

4761

- 10) Mass spectral and ¹H-nmr data for compound <u>4</u>: <u>m/z</u> 224 (M*); ¹H-nmr (60MHz, CDCl₃): δ 4.07 (2, singlet, CH₂CH), 4.12 (6, 2 singlets, 2-OCH₃, 6-OCH₃).
- 11) J. Bourdais, C. Germain, Tetrahedron Lett. 195 (1970).
- 12) Mass spectral and ¹H-nmr data for compound <u>5</u>: $\underline{m}/\underline{z}$ 179 (M*); ¹H-nmr (60 MHz, CDCl₃): δ 3.87, 4.03 (6, 2 singlets, 2-OCH₃ and 4-OCH₃), 6.37 (1, triplet, <u>H</u>-7, J_{7,6} = J_{7,5} = 3 Hz), 7.52 (1, triplet, <u>H</u>-6, J_{6,7} = J_{6,5} = 3 Hz), 11.73 (1, broad, D₂O exchangeable, 5-<u>H</u>).

(Received in USA 19 July 1982)