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ABSTRACT 

It is proved that two undirected binary cladistic characters are compatible iff their 

smaller states are disJoint or one is a subset of the other. The concept of a clad&tic 

character as an ordered tree of subsets is defined. Cladistic characters that have the same 

number of elements in their corresponding states are defined to be “nesting equivalent.” 

The equivalence classes of this relation are called “nestings.” A certain class of n-tuples is 

shown to have a biunique correspondence with the ,I !-membered set of all nestings of n 

binary characters. The model of randomness proposed is that all characters that are nesting 

equivalent are equally likely. The probability that a pair of undirected binary characters is 

compatible is derived under this model. This result is extended to collections of undirected 

binary characters, to collections of directed binary characters, and finally to collections that 

may include multistate characters. Some proofs are presented which allow a more efficient 

use of the n-tuple representation of ordered trees of subsets. 

INTRODUCTION 

Probably the major unifying theme of the biological sciences is the theory 
of evolution. One aspect of evolution that is important to many biological 
fields is the concept of evolutionary history. If study shows that some 
organisms possess a particular feature of anatomy, physiology, or behavior, 
organisms that are thought to be related to those studied are often, in the 
absence of conflicting information, inferred to be similar. Conversely, 
organisms that are thought to be closely related and yet differ in some feature 
are often studied to obtain critical information about the significance of that 
feature. In most biological fields, evolutionary histories are obtained intui- 
tively and are usually implicitly derived from taxonomy. One of the chal- 
lenges of modem systematics is the development of an objective basis for the 
estimation of evolutionary history. 
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Common to all methods currently recommended as objective bases for 
inferring evolutionary history is the belief that the features of descendant 
organisms are derived from the features of their ancestors and that the 

features of extant organisms thus preserve, in some sense, a record of the 
evolutionary history of the organisms to which they belong. Each method 
seeks a pattern in the data with which it is presented and, by a prescribed 
series of calculations, extracts from the data an estimate of evolutionary 
history based on the pattern found. Methods of inferring evolutionary history 
as currently formulated will “succeed” in discovering a pattern even when 
presented with totally random data. In order to inspire confidence, a method 
should provide an indication that the pattern discovered differs significantly 
from a random pattern. 

One method that has been proposed for the estimation of evolutionary 
history is the technique of character compatibility analysis. It is based on 
facts first noticed by Wilson (1965) [ 121 and Le Quesne (1969) [8]. Character 
compatibility analysis has been further developed and given a mathematical 
foundation by the work of Estabrook and others [l-7, IO]. The results 
presented here are aimed toward providing a way of calculating the extent to 
which the observed patterns of compatibility among a set of characters differ 
from the patterns that would be obtained if the characters bore no relation at 
all to the evolutionary history of the organisms that possess them. 

A study collection is a set S of kinds of organisms under investigation. The 
elements of S are considered evolutionary units (EUs) and are assumed to 
have some historically true evolutionary relationships that can adequately be 
represented by a tree diagram. A qualitative character on S is a basis for 
assigning the elements of S (the EUs) to mutually exclusive classes called the 
states of the character. For example, the qualitative character “chromosome 
number” might have the states “n=7,““n= 8,” and “n=9.” The character 
state “n= 7” consists of those EUs in S that have a chromosome number 
n = 7. A qualitative character is thus a partition of S. A cladistic character is a 
qualitative character together with a hypothesized ordering for the states. In 
the example above, one would probably hypothesize “n = 8” to be between 
“n= 7” and “n=9.” The ordered states of a cladistic character constitute a 
tree of classes of S called a character-state tree. If one character state is 
designated as ancestral, the character-state tree is said to be directed; other- 
wise it is said to be undirected. Throughout the discussion that follows, the 
word character should in all cases be understood to mean cladistic character. 

Le Quesne (1969) [8] introduced the concept of a “uniquely derived” 
character, so called because the states of such a character have a single 
evolutionary origin on the historically true evolutionary tree. Estabrook et al. 
(1975) [2] provide a mathematical formulation of this concept as a “true” 
character whose evolutionary transformations from state to state occur as 
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single transitions on the true tree in the same order as on the hypothesized 
character-state tree. Such a character is true because the character-state tree 
is an incompletely resolved version of the historically true evolutionary tree. 

For any character there is a set of trees (evolutionary histories) that would 
make that character true. For a pair of characters, if the corresponding sets 
of trees have a nonempty intersection, then it is at least possible that both 
characters are historically true; the two characters are said to be computible. 

However, if these sets do not intersect, then at least one of the characters is 
historically incorrect, because there is no possible estimate of evolutionary 
history that allows both to be true at the same time; the two characters are 
said to be incompatible. Analysis of character compatibility reveals patterns 
of agreement and disagreement among the hypotheses proposed by the 
characters in a data set. A clique is a set of mutually compatible characters 
that can, therefore, support the same estimate of evolutionary history. The 
major result presented here is a method to calculate the probability that an 
arbitrary collection of random characters is mutually compatible (i.e., con- 
sists of members of the same clique) under a reasonable model of random- 
ness. 

PAIRS OF UNDIRECTED BINARY CHARACTERS 

Consider two undirected binary (two-state) characters on S. Label these 

two characters K with states k,, k,, and label L with states I,, I, so that 

Define four events: 

a={k,nl,=D}, 

/3={k,nt,=Izr}, 

y={k2n/,=@}, 

6={k, nl, = 0 }. 

In addition, define the event C- {K and L are compatible}. Wilson (1965) 
[ 121 and Le Quesne (1969) [8] have shown that 

C iff crorporyor6. (1) 

In the trivial case of one-state characters where 1 I, I =O, we immediately have 
C. One-state characters are excluded in the discussion that follows because 
they are always compatible. With this restriction, the relations among the 
states of K and L are 
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FIG. I. The Venn diagram for events a, /3. y, and 6. 

THEOREM I 

Ciffciorp. 

Proof. It follows from (1) that (IL or p implies C. To show C implies (Y or 
j3, it is sufficient to show that 6 implies (Y and that y implies p. 

Recall 6 implies k, nl, = 0; l,,l, partition S, so that (k, nl,)U(k, nr,) 

=k,. Thus, 6 implies k,nl,=k, implies k,cl,, but I/,l”lk,l from (2). 
Thus, I,=k, and so k,=I,. Substituting in 6, we have I, nk,= 0, which 
is ff. 

A similar argument establishes that y implies p. n 

Note that II,12 1 implies that (Y and fi are exclusive events, because 
(k, nl,)U(k, nt,)=l,. Figure 1 is the Venn diagram for the four events. 
Although Le Quesne (1972) [9] does not provide a proof, this result is implicit 

in his treatment. 
The compatibility of K and L depends only on the occurrence of the 

exclusive events cy and /3. This allows the derivation of a simple expression 
for the probability that two binary characters are compatible. Because (in the 
nontrivial case) 

(Y iff k,nt,=0 iff I,&k, 

and 

/I iff k,nt,=0 iff I, Ck,, 

one can think of events (Y and /3 as occurring when 1, is a subset of k, or k, 

respectively. 
The basis for modeling the probability of character compatibility assumed 

here is similar to those proposed by Le Quesne (1972) [9] and Sneath et al. 



PROBABILITY OF COMPATIBILITY 5 

(1975) [l 11. Frequencies of occurrence of EUs within the character states of 
each character are specified in advance, and then all distributions (with these 
fixed frequencies) of individual EUs among the character states are consid- 
ered equally likely. This situation can be described in several algebraically 
equivalent ways. For example, an urn is filled with ) S 1 balls, 1 k, 1 of which are 
whiteand]kz]a]k,l ofwhichareblack; ll,I~lk,I ballsaredrawn.Eventais 
equivalent to drawing all white balls (I, is a subset of k,), and event p is 
equivalent to drawing all black balls (I, is a subset of k,). The probability of 
event (Y is simply the probability of drawing a white ball on the first draw, 
I k, l/l S /, times the probability of drawing a white ball on the second draw, 
(I k, I - I)/(/ S I- l), etc. The probability of event (Y can be written as 

p = “E’ lk,l-i _ Ik#(l~l-IV)! -_ =p a r=o lSl-i IS/!(lk,l-Ill)! 

Likewise. 

p =“K’ lk,l-i _ Ik~l!(l~I-l4l)! - 
P -_ 

i=o IS/-i ISl!(lk21-ll,l)! 

One may observe that because I k, I d I k, 1, P, d Pa for any pair of undirected 
binary characters. 

Le Quesne (1972) [9] calculates P, the probability that two undirected 
binary characters are incompatible, based on the same model of randomness 
used here. Le Quesne’s P is simply related to P, and Pp: P = I- P, -Pp. 
Sneath et al. (1975) [ 1 l] present a similar model which obtains the probability 
EXk that there are at least k “exceptions” to compatibility. Thus the probabil- 
ity that two undirected binary characters are incompatible is EX,. Again, 
EX, = 1 -P, -Pp. The results to be presented here are generalizations of the 
theory developed by these workers. 

Another powerful consequence of Theorem 1 is that the compatibility of 
undirected binary characters is determined solely by the relationship between 
their smaller states, k, and I,: 

OL iff k, f-11, = 0 iff I, Ck,, 

j3 iff k,nl,=0. 
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FIG. 2. Diagrams of (a) a binary character F,; (b) a binary character F2 (IF11 <IFI); (c) 

F, and F, as a-compatible characters; (d) F, and F2 as P-compatible characters. 

Because it is sufficient to consider only the smaller state of a binary character 
in determining compatibility relationships, it is possible to analyze the 
conditions necessary for compatibility among sets of characters in terms of 
these smaller states only. To take fullest advantage of this simplicity in the 
discussion that follows, I will speak of a character as though it consists only 
of its smaller state. For example, I will say that character a “contains” 
character b if the smaller state of character a contains the smaller state of 
character 6. Likewise, I will say the number of EUs in character a “is less 

than” the number of EUs in character b if the number of EUs in the smaller 
state of character a is less than the number of elements in the smaller state of 
character b. In the treatment that follows, the use of set terminology with 
characters indicates that the smaller state of the character is being discussed. 
Theorem 1 can now be restated in this fashion: 

Two undirected binary characters are compatible iff one is a subset of the 

other (a-compatible) or they are disjoint (/3-compatible). 

The use of some simple diagrams can aid in the visualization of relation- 
ships among compatible characters. Figure 2(a) is a diagram of a single 
binary character, F,. The circle represents the entire study set, S. The 
character, F,, is the curved line that divides S into two states. The smaller 
state of F, is the biconvex subset of S on the right. The larger state of F, is 
the concave-convex subset on the left. F,, diagrammed in Figure 2(b), is a 
smaller character than F, ; 1 F, [a 1 F2 I. Figure 2(c) shows F, and F, as 
cu-compatible characters; F2 is a subset of F,. Figure 2(d) shows F, and F2 as 
P-compatible characters; F, and F2 are disjoint. 

COLLECTIONS OF UNDIRECTED BINARY CHARACTERS 

This model for the probability of compatibility of pairs of undirected 
binary characters can be extended to collections of such characters. I wish to 
derive the probability that, given the frequencies of EUs in the states of a 
collection of undirected binary characters, this collection is compatible 
assuming all distributions (with these fixed frequencies) of EUs among the 
character states to be equally likely. McMorris (1977) [lo] has shown that a 
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(0,1,2) 

(0,1,1) 

(O,l,O) 

(0,0,2) 

(O,O,l ) 

~o,o,o) 

i 
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F2 

5 

F2 F3 
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FIG. 3. All possible nestings of three binary characters. In the column on the left are 

the 3-tuple representations; in the central column are the diagrams of the nestings; in the 

column on the right are the corresponding trees. The trees are drawn as they would appear 
if all characters were directed CEP. 

collection of undirected binary characters is compatible iff all pairs are 
compatible. Theorem 1 together with McMorris’s result indicates that such a 
collection will be compatible iff each pair of characters is disjoint or one is a 
subset of the other. As Figure 2 shows, a pair of such characters can be 
compatible in two different ways that preserve the frequencies of EUs in the 
states of the binary characters. Figure 3 shows the diagrams for the six ways 
that three undirected binary characters can nest to form a tree. Also shown is 
the tree that corresponds to each of the six diagrams. The diagrams are 
equivalent to the trees in the sense that they are representations of trees of 
subsets. 
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DENNITION I (Estabrook and McMorris. 1980 [6]) 

A tree of subsets of S is a collection 3 of nonempty subsets of S such that 

(1) SES, 
(2) ifA,BE5andAnB#O, thenACBor BcA. 

For reasons that will become clear, I adopt the convention that F, = S. 

THEOREM2 

A collection F, , F,, . . , F,, of undirected binary characters on S is compatible 

iff {F,, F,, F2,. . . , F,} is a tree of subsets of S. 

Proof. This is a direct consequence of Estabrook and McMorris’s (1980) 
[6] Theorem 1 and Definition 6. n 

The following theorem will be helpful: 

THEOREM3 

If F, , F2,. . , F,_ , is a compatible collection of undirected binary characters 
and)F,IGmin{(F,I,(F,/ ,..., IFn_,\}, then F,,F, ,..., F,isacompatiblecollec- 

tion iff F, flF, # 0 * F, cF,, OGiGn- 1. 

Proof. F,, F2,. . . , F, a compatible collection implies {F,, F,, F2,. . , F,,} a 
treeofsubsetsofSimplies(F,nF,#RI =) F,cF,orF,cF,);but(F,I~IF,I; 
thus F, cF,, OGiGn-I. 

{F,, F,, F2 ,..., F,_,} a tree subsets of S and (6, nF,# 0 a F, cF,) 
implies {F,, F,, F2,. ., F,} a tree of subsets of S implies F,, F2,. . . , F, a 
compatible collection. n 

From Theorem 3, it is clear that a set of n characters labeled so that 
\F,IaIF21a ... a 1 F, ( forms a compatible collection iff the i th character is a 
subset of one of the classes of the partition of S formed by the first i- 1 
characters. There are two possible three-class partitions of S produced by two 
compatible undirected binary characters (Figure 2). By Theorem 3, there are 
three ways a third character can be added to each of these two partitions to 
form a compatible collection. There are thus six possible four-class partitions 
of S formed by three binary characters (Figure 3). In short, n undirected 
binary characters can potentially be compatible in n! ways. Each way in 
which a collection of undirected binary characters can be compatible corre- 
sponds to a way of nesting these characters. In order to calculate the 
probability that a collection of characters is compatible, it is necessary to 
sum over all possible nestings the probability of each nesting. 

The same tree of subsets can be obtained in more than one way. If for 
example, S={a,b,c,d,e}, F,={a,b}, and F*={d,e}, then we have the set 
{{a,b,c,d,e},{a,b},{d,e}} of subsets of S, which by Definition 1 is a tree of 
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subsetsofS.IfF,={d,e}andF,={a,b},wehave{{a,b,c,d,e},{d,e},{a,b}} 
which is the same tree of subsets of S. In the treatment that follows, it is 
necessary to distinguish among different ways of obtaining the same tree. I 
introduce the concept of an ordered set of subsets of S. 

DEFINITION 2 

An ordered set of subsets of S is an ordered collection %= { F,, F, , F2,. . , F, ) 
ofntl nonemptysubsetsofSsuchthatIF,I~~F,I~~~~~1FJ. 

DEFINITION 3 

Two ordered sets of subsets ‘3,8 are identical, written %g, iff /?2j = 191 =n 
+ 1 and F,=G, for all O<i<n. 

An ordered set of subsets of S that satisfies Definition 1 is called an 
ordered tree of subsets of S. 

DEFINITION 4 

Two ordered trees of subsets 5,4 are nesting equivalent if I ‘3 I = 19 / and for 
all i,j such that O<i<n, O<jGn, IF,I=IG,I, and FJ &F, e G, &G,. 

The classes of the relation “nesting equivalent” are called nestings. A 
nesting is thus a set of ordered trees of subsets of S. 

Consider n-tuples of the form ( f,, f2,. . , f,) where each f, is an integer 
O<f, <i- 1. I wish to prove that there is a biunique correspondence between 
the n ! n-tuples of this form and the n ! nestings of n binary characters. 

DEFINITION 5 

An ordered n-tuple (f,, f2,. . . , f,), OGf, Gi- 1, is a representation of the 
orderedtreeYofsubsetsofSifF;CF,,, lGiGn,andF,nF,=O,f,<j<i. 

Because every subset is contained in F0 =S, it is clear that every ordered 
tree of subsets has some representation. 

THEOREM 4 

There is a one-to-one correspondence between nestings and representutions. 

The following lemma is useful: 

LEMMA 

If an ordered tree of subsets of S has the representation (f, , f2,. . . , f,), then 
Fq c F,, q>p, iff there is some i such that F, cF] and f, =p. 

Proof of lemma 

If F4 c F,, q>p, then there is some F, such that i= min{j 1 F4 c F, and 
q>j>p}. By Definition 5, f, =p. 
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That f, =p implies that E; G Fp and i>p. Fq cF; and F; c F, implies 
Fq c Fp. Fq c F, and F, c Fp and f, =p implies, by Definition 5, that i<q 

implies 4 >p . n 

Proof of theorem 

Assume (fl,f2,..., f,) is a representation of % and (g,,g2,...,gn) a 
representation of 4. It is sufficient to show that Sis not nesting equivalent to 

9iff(fi,f2,...,fn)f(g,,g2,...,g,). 
Proving the forward implication, assume 5 is not nesting equivalent to 9. 

Without loss of generality we assume that there is some Fqc Fp, q>p, but 
that G, g G,. If f,=p, then by Definition 5, G,g G, implies g,#p and we are 
done. If f,=g,#p, then by the lemma there is some i>p such that Fqc F, 

and f, ==p. But g, =p and G, g Gp implies G, g G,. If f,= i, then G, g G, implies 
g,# i. If f,= g,# i, reapplication of the lemma will eventually give us some 
new i such that fq= i but G, g G, implies g,f i, which implies ( f, , f2,. . . , f,,) # 

(g,~&~...,iL). 
Conversely, assume there is some i such that f,#g,. Without loss of 

generality assume f, >gi. This implies by Definition 5 that 6 c F/, but G, g G/, , 
which implies 5is not nesting equivalent to 6’. N 

I use the notation P[( f I, fi,. . . , f,)] to denote the probability of the nesting 
whose representation is (f,, f2,. . . , f,). Given that F,, F,, . , F,-, are compat- 
ible and form the nesting represented by ( f,, fi, . . . , & ,), the probability that 
F, is compatible with F,, F2,. . ,E _ , in such a way as to form the nesting 
represented by ( f,, fi, . . . , f,) is, by Theorem 3, the probability that 4 c Fr, 

and F, nF/= 0 for f,<j<i, that is, the probability that F, is contained in the 
“residuum,” r, , of EUs in character F, that are not also contained in some F,, 
f,<j<i: 

and 

(3) 

Thus, 

P[(f,,f* ,..., f,)]=P[(f,,f2,...,fr~I)].P[~Cr,l(fl,fi,...,f,~I)l, 
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where 

11 

“‘-’ Ir 1-j _ Ir,l!(/Sl-l&l)! i i ITI 
P[F,cr,l(fbf2, . ..Y LJ]= ,lJ fi- ,S,!(,r,_,F,), =- 

I I. ISI ’ 

i I 141 

Note that we have no assurance 1 F, I > 1 r, 1, in which case P[ F, c 
r,l(f,,fi ,..., f,-,)]=O. By iteration, 

(4) 

Because r, =F, =S, P(F, &r,)= 1. 
Equations (3) and (4) can be used to develop a straightforward algorithm 

to calculate the probability that a set of undirected binary characters form a 
compatible collection by calculating the probability of the nestings repre- 
sented by each n-tuple and summing these probabilities over all n-tuples. 

Many n-tuples may be representations of impossible nestings for a given 
set of characters because of “packing” considerations. It is often the case that 
for some F,, 1 F, I > ) r, I. Because many n-tuples correspond to impossible 
nestings, an algorithm to calculate the probability of compatible collections 
can be made more efficient by eliminating such n-tuples from consideration. 
I begin by noting that because I F, ) 3 1 F2 I 2 . . .a I F, 1, the n- tuple 
(0,1,2,. . , n - 1) represents a possible nesting for any arbitrary collection of 
undirected binary characters. 

THEOREM 5 

If the ordered n-tuple (f,,fi ,..., f,-,,f,,i,i+l,..., n-2,n-1), OGhGj 
- 1, is a representation of an impossible nesting, then all n-tuples ( f, , f2,. . , f,- , , 

f,,a ,+,,...,anp,,an) where the elements a,, i+lGjGn, range over all legiti- 
mate values, O<a, GJ'- 1, are representations of impossible nestings. 

Proof. If (f,, fi ,..., f,-,,fi, i,i+ l,..., n-2, n- 1) is a representation of 
an impossible nesting, then because for all j (i+ 1 GjGn) we have ‘J =F,_, 
and I F,/=G[ F,_, (, it follows that there must be some 6 (1 GjGi) such that 

IF/,l>l’r,l, which implies that all (fi,fZ,...,fr-,,fi,aI+,,...,an-,,an) are 
representations of impossible nestings. n 

For example, knowing that (O,O, 1 , 1,2,5,6,7,8,9) represents an impossible 
nesting tells us that the 6 X 7 X 8 X 9 X 10 = 30240 lo- tuples 
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(0,0,1,1,2,.,-,‘,~, .) represent impossible nestings. In the worst case, n! 
calculations are necessary, but Theorem 5 can permit the number of calcula- 
tions to be reduced to a lower limit of 2”-‘. 

COLLECTIONS OF DIRECTED BINARY CHARACTERS 

A further extension of this model can be made to directed binary 
characters. Two kinds of directed binary characters are distinguished. 

DEFINITION 6 

A directed binary character is said to be common-equals-primitive (CEP) if 
the number of EUs in the primitive state is greater than or equal to the 
number of EUs in the advanced state, else it is said to be rare-equals-primitive 

(REP). 

I introduce the notation F, = t , read “the direction of F, is CEP,” and 
F, = L, “the direction of F, is REP.” 

THEOREM 6 

A set of directed binary characters F,, F,, . , F, is compatible iff the set is 

compatible as undirected characters and there exist no Fp, Fy such that ( Fp = t 
andFq:,=l andF,$F,)or(Fp=Fb=L andF,nF,=O). 

Proof. Estabrook et al. (1976) [3] have shown that a set of directed 
binary characters is compatible iff each pair is compatible. Thus, I need only 
demonstrate here that Theorem 6 is true for n=2 (a pair of directed binary 
characters). 

That a pair of directed binary characters is compatible implies that the 
undirected characters are compatible implies by Theorem 1 that they are 
disjoint or one is contained in the other. There are four combinations for 
directing two characters which, in combination with these two nestings, 
produce eight exhaustive possibilities for two directed characters F, , F2 such 
that IF,IaIF,I: 

(a) F,=Fz= t, F,CF,, 

(b) F,= t, G= 1, FzCF,, 
(c) F,= 1, F,= t, F&‘,, 

(d) fl=“= i, F,cF,, 

(e) F,=F*=T, F,nF,=0, 

(f) F,=r, +1, F,nF,=O, 

(g) <,=b F,=t,F,nF,=0, 
(h) F,=F,=L, F,nF,=O. 

These eight possibilities are shown in Figure 4. Note that only in diagrams 
(b) and (h) are the directions of the characters inconsistent. Thus, two 
directed binary characters are compatible iff they are compatible as undi- 
rected characters and not [(F, = t , F2 = 1 and F, 5 F,) or (F, = Fz = J and 
F, f’ F2 = ia)]. n 
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FIG. 4. All possible relationships between two directed binary characters, F, and F, 

(lF,ll”lF21). The arrow points from the primitive state to the advanced state for each 

character. In (a), (b), (e), and (f). F, is CEP; in (c), (d), (g), and (h), P, is REP. In (a). (c). 

(e). and (g). Fz is CEP; in (b), (d). (f). and (h), F2 is REP. The dot in each diagram indicates 

the root. In diagrams (b) and (h), the directions of the two characters are inconsistent. 

Hence in these two cases. the characters are incompatible as directed characters even 

though they would be compatible if undirected. 

Theorem 6 immediately indicates that no REP character can be contained 
in a CEP character and that of any two REP characters, one must contain 
the other. These conditions place rigid restrictions on n-tuples that can 
represent compatible nestings of directed binary characters. The largest REP 
character in a collection must be contained in F, only, the second largest 
REP character must be contained in the largest, the third in the second, etc. 
The element of an n-tuple that corresponds to an- REP character is always the 
index of the next larger REP character or 0 if no such character exists. For 
example, if in a collection of ten characters the 3rd, 5th, 6th, 8th, and 10th 
characters are REP, only IO-tuples of the form (-, -,O, .,3,5, .,6, . ,8) can 
represent possible nestings. 

Because an n-tuple representation can only indicate that a character with a 
larger index is contained in a character with a smaller index and because 
CEP characters can only be contained in REP characters and not vice versa, 
for any two characters of the same size but different directions, the REP 
character must be given a lower index than the CEP character. For directed 
characters, an added condition must be made to the definition of an ordered 
set of-subsets (Definition 2) i.e., (1 F,\=\ F,I and i$ #gq andpcq) j (F,, = i 

and F, = r). 

COLLECTIONS OF MULTISTATE CHARACTERS 

The final generalization of this model is to arbitrary collections that may 
include multistate characters, directed or not. As before, I assume that, given 
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the observed frequencies of EUs in the character states, all distributions of 
EUs among the character states are equally likely. For multistate characters, 
I additionally require that the ordering of character states be fixed. Using the 
terms defined above, I assume all ordered trees of subsets of S that are 
nesting equivalent to the observed character state trees are equally likely. 

Let YC,, X,, . . . , X, be a collection of m multistate characters on S, and 
n,=IX,]-1. Each X, is an ordered tree of subsets of S, {K,o, K ,,,,..., K,,,} 
( K,O=S), whose representation is (k,, , k,, , . . , k,,, ). The subsets K,, , 1 <jd 
n,, of S are the smaller states of the binary cladistic characters called the 
factors of x,. Estabrook et al. (1976) [4] and, in a different context, 
Estabrook and McMorris (1980) [6] have proved that a collection of multi- 
state characters is compatible iff their binary factors are compatible. 

Define an ordered tree of subsets of S, called 5, whose elements corre- 
spond to the factors of the multistate characters. Let n=Xy= ,n,. For every 
element Fp, 1 Gp4 n, of 5, there is a corresponding factor K,,, 1 ~udm, 
1 GvGn,, written Fp= K,,. 

DEFINITION 7 

The elements of an ordered set %of subsets of S are said to correspond to 
the factors of a set of multistate characters on S, X,, X,,. . ., 3c,, if 

(1) 13=(Z~,~X,I-l)+l=n+l, 

(2) F,=S, 

(3) F,=KK,, * IF,I=l&A 
(4) IFolVI~ ... a]&], 

(5) (K,, ‘Fp and K,, =Fq and v<w)-p-cq, 

(6) (lF,l=lF,l and e’pzt andpcq) =) (<= a and <= t). 

Essentially, these conditions mean (1) that ‘% has as many factors as the 
sum of the factors in the characters, X,, (2) that S is contained in %, (3) that 
each factor in ‘8 is the same size as its corresponding factor, (4) that the 
elements of %are ordered properly for an ordered set of subsets, (5) that any 
two factors corresponding to factors of the same character are ordered the 
same way in ‘Tas in the original character, and (6) that for any two factors of 
the same size but different directions, the REP character has the lower index. 

If the factors F, were independent binary characters, it would be possible 
to calculate the probability of compatibility by summing over all n-tuple 
representations the probability of each representation. However, because 
these elements are factors of multistate characters, the model of randomness 
requires that we only consider as possibilities those n-tuples that represent 
nestings where the ordered set of elements corresponding to the factors of 
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each original multistate character is nesting equivalent to the original multi- 

state character. Algorithmically, we need a way of verifying that the represen- 
tations of the original character state trees and the ordered tree of subsets of 
the corresponding elements are the same. 

Defineann-tuple(c,,c,,...,c,)suchthatc,=u * F,-K,,. Thatis, the 
i th element of this n-tuple is the index of the character to whose factor the 
i th element of ‘3 corresponds. Define an n-tuple (s, , s2,. , s,) such that 

s, =P - (F,=K,.,, and kC,W=v and K,,,=F,). The ith element of this 
n-tuple is the index of the next larger factor F,, that contains Fj and 
corresponds to a factor of the same multistate character, ‘X,.,. I also define a 
set e,, lGi<m, of subsets of ‘3, such that c,={F,}U{5Ic,=i} and the 
elements of each C, are ordered by their indices as elements of 9. Thus each 
e, is the set of elements of UT that correspond to the factors of X,. The 
notation for the elements and for the representation of e, is parallel to that of 
x,. The model of randomness requires that only representations of %where 
I?, is nesting equivalent to 3i,, 1 ~i~rn, be allowed. 

THEOREM 7 

Gioen an ordered tree of subsets of S, 4, whose elements F,, 1 Gi<n, 
correspond to the factors of the characters XI, x2,. . , x,,,; then C, is nesting 

equivalent to X, for 1 GuGrn iff for alip, q such that 1 GpGn, sp <q(p, we 
haveF,C[y‘,pandc,=c, * F4~Fp=0. 

Proof Because of condition (5) of Definition 7 and the definition of f,, 
we have L,, - K,,, and by condition (3), 1 LUDI=IKLIL)I, lGu<m, 0f04nu. 

Proving the forward implication, assume C, is nesting equivalent to ‘X,, 
lGu&rn. Let k,, =v; then by Definition 5, K,, c K,, and K,, II K,, = 0, 
v<i<w. By the definition of sp, k,, =v implies K,, -F,, and K,, = Fr. As 
above, L,, = K,,, but L,, = K,, = &, implies L,, =F,,. Similarly, L,, = Fp. 

That C, is nesting equivalent to X, implies L,, c L,, and L,, n L,, = 0, 
v<i<w, whichimplies F,cF, and cq=cp = F,flF,=0,s,<qcp. 

Conversely, assume ’ 

(1) cp=u, 
(2) for s,<q<p, cq=u = F4tIFp=0 and F CF 

(3) L,,=$ and L,,=<r. 
P - Sp’ 

That F,cF,~ implies L,,cL,,. That for s,<qcp, cq=u =) F4”Fp=0 
implies that for v<i<w, L,, n L,, = 0. By Definition 5, I,, =u, but by the 
definition of sp , k u n, =D. Thus for all u, w such that 1 GuGrn, 1 Cw<n,, we 
have I,,, = k,,. By Theorem 4, c,, is nesting equivalent to xU, 1 <u<m. n 
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The expression for the probability of each representation of %is similar to 
Equation (4), but in the case of multistate characters we are constrained to 
draw each subset F, of S from F,,. So 

(5) 

From the previously defined n-tuples and Equations (3) and (5) it is possible 
to construct an algorithm that calculates the probability that an arbitrary 
collection of characters is mutually compatible under the proposed model of 
randomness. 

EXAMPLES 

I now present some examples of calculated probability of compatibility. 
The notation (n, 1 n *) is used for a binary character that has n, EUs in one 
state and nz EUs in the other. The notation (n, ( n2 / n3) is used for a 
three-state character. For directed characters, the number of EUs in the 
primitive state is in italics. 

Two undirected binary characters F, =(713) and Fz ~(812) can be compati- 
ble in two ways, represented by (0,O) and (0,l): 

3 ( 1 7 

P~=P[(o,I)]=++ 
i 1 

( 1 

Pp =P[(O,O)] = + = & 

2 ( 1 2 

The total probability is P, = +. 
If the same two characters are directed in this way: F, =( 713) and 

F, =(SlZ), only representations of the form (.,O) are possible because F2 is 
REP. The total probability is P, = P[(O,O)] = A. 

For three undirected binary characters F, =(6(4), Fz =(713), and F3 =(812), 
there are six nestings: 
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The 3-tuple (0, 1,l) represents an impossible nesting because 1 r3 ) = 1~ / F3 / = 2. 
ThenP =13. 

If thke th?ree characters are directed, with F, =(614), F2 =(713), F3 =(812), 
then F, and F3 are REP; therefore only representations of the form (0, . 1 1) 
are possible, but (0, 1,l) is eliminated as above because of packing, which 
leaves only P, = P[(O, 0, l)] = A. 

Given an undirected three-state character (61113) and a binary character 
(812) the three-state character has two binary factors: (614) and (713). This 
gives a total of three factors: F, =(6/4), F2 =(713), and F3 =(812), as above, 
but now, because F, and F, correspond to factors of the same multistate 
character, we have the added requirement that F2 c F,. So possible 3-tuples 
must have the form (. ,I, .). This gives three possibilities (0,1,2), (0, 1, I), and 
(0, 1,O). Again (0, 1,l) represents an impossible packing. So 

P,(O,l,2)1=##=‘t and P,(O,l,O),= jrl:e:=+ 
3 2 3 2 

for a total P, = A. If these two characters are directed, with (61113) and 
(g(2), we again have the directed factors F, =(614), F2 =( 713), and & =(812). 
As above, because of the multistate character, only 3-tuples (., 1, .) are 
possible, but because F, and F3 are REP only 3-tuples of the form (0, ., 1) are 
possible. Thus, only the 3-tuple (0, 1,l) is potentially possible, but as above, 
I r3 I= 1 < / F3 I = 2 for (0, 1,l) and this 3-tuple is impossible because of packing. 
Consequently, the characters (6/l 13) and (812) cannot possibly be compati- 
ble; P, =O. 
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