
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 28 (1981) l-25 
NORTH-HOLLAND PUBLISHING COMPANY 

SOME GENERAL LAGRANGE INTERPOLATIONS OVER SIMPLEX FINITE 
ELEMENTS WITH REFERENCE TO DERIVATIVE SINGULARITIES 

Masayuki OKABE 
Mitsui Mining & Smelting Co., Ltd., Tokyo, Japan 

Noboru KIKUCHI* 
Department of Mechanical Engineering and Applied Mechanics, The University of Michigan, USA 

Received 6 February 1980 
Revised manuscript received 22 September 1980 

For simplex finite elements, the native Lagrange family with arbitrarily placed nodes is presented in 
hierarchy-ranking expressions. It includes the well-known complete Lagrange family as well as the 
mid-edge Lagrange family to he proposed in this paper. This new family enables us to utilize 
harmonious combinations of interpolations of different orders in finite element analysis. As an 
application of developed simplex interpolations to fracture mechanics where some derivative sin- 
gularities are needed, we then describe the semi-radial singularity mapping with examinations of 
peculiar trial function spaces. 

1. Introduction 

In Lagrange interpolation, a variety of finite element families has been proposed for 2- and 
3-cubes, i.e. for squares and cuboids. For example, there is the regular Lagrange family due to 
Argyris et al. [l, 21, with nodes regularly spaced everywhere on the grid, and the mid-edge 
Lagrange family of Taylor [3] and others [4,5] composed of only vertex-type and side (or 
mid-edge) nodes. We note that the trial function spaces of their all members are fully known. 
Recently a general family for the cube called the native Lagrange family has been presented 
by the authors [5] with arbitrarily-placed nodes and including the regular and mid-edge 
families as subfamilies. The serendipity family by Zienkiewicz [4] is also well known, but only 
some lower serendipity elements are revealed as also being members of the native Lagrange 
family. 

For simplex finite elements, on the other hand, only the complete Lagrange family with 
regularly placed nodes is fully recognized by Argyris [6, 71 and others [4,8]. However, it has 
been suggested that there may exist the mid-edge Lagrange family for a simplex, composed of 
only vertices and arbitrarily placed side nodes [9-111. In addition, rather general finite 
elements have also been presented in the adaptive finite element procedures [12-141 utilizing 
not the conventional interpolation bases but the peculiar mixed bases [ll] with both nodal and 
nodeless basis functions. It seems that potential exists to develop at least as many families for 
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simplexes as have already been found for cubes. In order to clarify such general simplex 
families, it is required that the interpolation elementology be reconstructed in a unified 
manner. 

This paper first formulates the hierarchy-ranking bases associated with vertices and arbi- 
trarily placed side nodes in volume coordinate expressions, which yield naturally the mid-edge 
Lagrange family for a simplex. Then the famous complete Lagrange family is recharacterized 
by its intrinsic hierarchy-ranking bases. Relaxing the constraints on the regularity of nodal 
placement, we shall further propose the native Lagrange family for simplex as a unifier of the 
complete and mid-edge families. This new, general family with arbitrarily-placed side and face 
nodes enable us to utilize compatible combinations of interpolations of different order. We 
also compare our native trial functions with other known interpolations such as the adaptive 
interpolations and collapsed rectangular polynomials. 

The semi-radial singularity mapping is then described definitively so that the necessary 
derivative singularities are attained. The native simplex interpolations are thus easily and 
systematically applicable also to fracture mechanics, with only minor modification of the 
Jacobian transformation routine. 

2. Complete Lagrange family for simplex 

The well-known complete Lagrange family is composed of simplex finite elements with 
regularly placed nodes. For its triangular member of Mth order, Silvester [8] has presented an 
auxiliary expression for the shape function Ni associated with node i in the form 

Ni = fi(khl-j + 1)/j fi(Mwz- j+ l)/j,fi (Me-j+ 1)/j, 
j=l j=l 

where 

I = MuI( J = Moz(i), K = Mw3(i). (2) 

Here ok denotes the 2-D volume (i.e. area) coordinate associated with vertex k, and w‘(i) is its 
value at node i. Notice that 

fi(khk-j+l)/j= 1. 
j=l 

According to Argyris et al. [7], it is easy to rewrite eq. (1) in the Lagrangian interpolation 
polynomial form as 

Ni = fi ai( 

k=l 

(4) 

where 

oi(mk) = I]I {ok - @ko’))/bk(i) - wk o’)>. (5) 

oko’Wwk(i) 
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Fig. 1. Cubic element geometry of IO-node triangle 

It is noted that this element contains the complete polynomial set of degree M, and hence the 
complete Lagrange family for simplex corresponds naturally to the serendipity family for a 
cube. From the standpoint of the nodal placement regularity, it further corresponds to the 
regular Lagrange family for cube. 

Consider, for instance, the cubic triangle in fig. 1. Then immediately eq. (4) yields the shape 
functions in table 1. Zero lines of some typical shape functions are illustrated in fig. 2. We note 
that eq. (1) implies regular nodal placement, while eq. (4) is, in essence, free from such 
regularity, Apparently, eq. (4) is applicable to any arbitrary nodal placement. 

Let us apply eq. (4) to,the 9-node triangular element in fig. 3, extinguishing the centroidal 
node of preceding cubic triangle. Then all the cubic shape functions related to vertices and 
side nodes are again produced. It is, however, noted that such a trial function does not exhibit 
polynomial completeness, and hence it cannot be accepted in the finite element analysis. The 
application of eq. (4) should, therefore, be restricted to the complete Lagrange elements. 

Table 1 
Shape functions N, for lo- and 9-node triangular elements in figs. 1 and 
3, respectively. 

Node Ten-node triangle Nine-node triangle 

i N<‘o’ N !9) 

1 w*(3w, - 1)(30, - 2)/2 
2 430t - 1)(3w* - 2)/2 
3 043ws - 1)(30X - 2)/2 
4 9wz04302 - 1)/2 
5 90203(303 - 1)/2 
6 9w3w,(3w3 - 1)/2 
7 9w30,(3w, - 1)/2 
8 9w,w2(3w, - 1)/2 
9 9w,w4302 - 1)/2 

10 27w ,W~WJ 

w,{(3w, - 1)(3w, - 2) - 9wzw3)/2 
w2{(3w2 - 1)(3w2 - 2) - 9bh0d/2 

~~((30~ - 1)(30s - 2) - 9wlw&2 

9wzws(3wz - 3~3 + 1)/4 

90203(303 - 302 + 1)/4 
9WSW,(3Wj - 30, + 1)/4 
9w3w,(3w, - 3w, + 1)/4 
9w,w2(3w, - 302 + 1)/4 
901w2(3wz - 3w1 + 1)/4 
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Fig. 2. Zero lines of typical shape functions in cubic triangle; (a) NI = 0, (b) NS = 0, (c) NS = 0, (d) NM = 0. 

2 

Fig. 3. 9-node triangular element without a centroidal node. 
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3. Trial function space and in-family relevancy 

We shall describe here how suitable shape functions are derived for the 9-node triangle so 
that quadratics can be exactly interpolated. 

Consider two finite elements of n and n - 1 nodes with the same geometry, where node j of 
the n-node element disappears in the other. Then corresponding trial functions can be 
expressed 

(6) 

and 

Here +i 

btf 
the trial 

+@-l) = 2 &“-l)NI”-1). 
0) 

i#j 

is the &-value at node i. 
and fi denote an arbitrary function and its nodal value at node i, respectively. Then 
function space S@“’ for n-node element can be defined as 

p’ = @j(f) = f - ,’ fiN?' = 0 . (8) 

Similarly the other trial function space PC”-‘) can be written 

@n-l) = If: E$-“(f) = f - 2 fiNI”-l) = 0). (9) 
i#j 

Suppose that the $F(“) space includes (9) as a subspace. Then the C$‘~’ trial function should be 
capable of identity with c#I(“-‘) trial function, but this is only realized under pair of the 
reducible conditions of the form 

and 

&I”) = &In-l), (i# j) (10) 

&“I = c &I”-l)NI”-i)o’)~ (11) 
iZj 

From eqs. (6), (7) (10) and (11) we have 

NY’ = NY-‘) - Ny-“(j)Nj”’ (i# j)_ (12) 

Thus naturally we can regard these two elements as members of the same family, provided 
that eq. (12) is realized. Hence, eq. (12) is termed the in-family relevancy [S]. 



6 M. Okabe, N. Kikuchi, Lagrange interpolations over simplex finite elements 

The simplest family member has, in its most general form, the so-called linear interpolation 
basis, enabling the unknown 4 to vary linearly on all the boundary edges. So, the 9’“) space is 
required to include a linear trial function space also. We refer to this as linear inclusiveness. 
The reader can easily develop the appropriate in-family relevancy expression by applying eq. 
(12) recurrently. 

Consider then previous lo- and 9-node triangular elements in figs. 1 and 3, respectively. 
Following up the suggestion by Ciarlet and Raviart [9], Mitchell and Wait [lo] have shown 
now the tenth parameter due to the centroid of triangle can be eliminated, using the linear 
relation by 

(13) 

where a and b denote appropriate coefficients to be determined. Then immediately we have 

The in-family relevancy by eq. (12) further prescribes that the coefficients should satisfy 

a = N?‘(lO), (15 i 5 3) 7 b = N?‘(lO) (4 I i s 9). (15) 

Thus evidently eq. (13) is identified with the reducible condition (11). 
However, eq. (14) is insufficient to determine the NY’ shape functions uniquely, since the 

NY’-value at node 10 is included. Thus, finite element families cannot be defined by the 
in-family relevancy alone. 

We suppose here that the 419) trial function interpolates quadratics exactly. Then we have 

I%‘(l) = (1 - 3a - 6b)NS’o0’ = 0, E$?(wi) = (1 - 3a - 6b)N$,“/3 = 0, 

and 

E$‘(o+i) = (1 - 4b - 3(3~ + 2b)S,}Ny$“/9 = 0. (16) 

Fig. 4. Zero lines of typical shape functions in 9-node triangle; (a) NI = 0, (b) NS = 0. 
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Here 6ij denotes the Kronecker delta. The coefficients are thus uniquely determined as 

a = -116, b = l/4. (17) 

The shape functions for 9-node triangle obtained are given in table 1, and typical zero lines are 
illustrated in fig. 4. 

This example strongly suggests the presence of some general simplex family composed of 
only vertices and side nodes, which is analogous to the mid-edge Lagrange family for a cube. It 
should be, however, noted that the corresponding cubic error is 

(i=j=k) 

(i = j# k) 
(i# j# k) (18) 

and consequently no cubic monomials are reproducible. Thus we cannot define the mid-edge 
Lagrange family for a simplex by prescribing monomial bases. 

4. Hierarchy-ranking basis 

In familizing the rectangular finite elements, we have demonstrated elsewhere [5] the 
significance of the hierarchy-ranking bases. Before simplex familization we shall describe the 
hierarchy-ranking concept briefly. 

The relevant trial function space 9 can be uniquely characterized by the so-called 
interpolation basis N = {Ni}, which is composed of the shape functions Ni satisfying 

Ni(j) = Sij. (19) 

Naturally the same trial function space is definable by another arbitrary basis S = {Si}. 
Evidently the Si function is a component of the 9 space, and hence we have 

&F(S) = Si - C Si(j)Nj = 0, 
i (20) 

or in matrix form 

ISi) = [Si~)]{Nl* (21) 

It is thus obvious that if we prescribe the trial function space 9 by the arbitrary basis S, the 
interpolation basis N can then easily be obtained through the basis transformation (21) 
provided that the constant transformation matrix in eq. (21) is non-singular. 

We decompose the N and S bases according to nodal rank, which is defined as 0, 1 and 2 

for vertex-type, side and face nodes, respectively. Then eq. (21) can be rewritten 

So(O) So(l) S,(2) 
S@) S,(l) S,(2) 
S2(0) S(1) S2(2) 

(22) 
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where suffix indicates the nodal rank. We impose further the ranking conditions of the form 

S(j)= 0 (i >j) (23) 

S,(i) = Ii* (24) 

Here 4 stands for the appropriate unit matrix. The ranking basis satisfying eqs. (23) and (24) 
yields immediately 

The interpolation basis can then be methodically obtained in descending order of rank without 
matrix inversion as 

N = &, N, = SI - W)N2, No = S, - &(l)N, - &(2)N2. (26) 

If we have no face nodes, then eq. (26) can simply be rewritten 

N = SI, No = So - S,,( l)N, . (27) 

Note that the well-known linear interpolation basis should be adopted as the vertex ranking 
subbasis SO. Then the linear trial function is trivially contained in our trial function space. 

We further impose the spatial hierarchy [5]. Namely, after substitution of a surface equation 
of our 2-simplex element, the basis functions related to nodes on the surface should be 
equivalent to the famous Lagrangian interpolation polynomials, while the others should be 
zero. Such ranking basis as realizes the spatial hierarchy is, in general, termed the hierarchy- 
ranking basis. Any Lagrange families for simplex can then be expected to be uniquely 
characterized by 
the cube. 

their intrinsic hierarchy-ranking bases, as realized in Lagrange families for 

5. 1-D Lagrange family in volume coordinate expressions 

It has been shown how that the conventional Lagrangian interpolation polynomials con- 
stitute the 1-D Lagrange family [5, 111. We shall recharacterize that simple family using 
volume coordinate expressions. 

Consider first the n-node bar element in fig. 5 along the usual t-axis. The ranking basis 
functions of nodal rank 1 are naturally identical to the appropriate Lagrangian interpolation 
polynomials so that 

Si = [lj Lj](l - S”)/(l - 6:) (i = 3, . . . , tl). (28) 

j#i 
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1 3 . . n 2 

l * l - 5 

Fig. 5. 1-D Lagrange element of n-node bar. 

Here Li denotes the Lagrangian interpolation unit of rank 1 at node i and j and is given by 

Lj = (5 - Sj)/($fi - 5j)- (29) 

The ranking basis functions for vertices, on the other hand, can be written 

s1= (1 - 5)/2, s, = (1+ o/2. 00) 

Let us introduce the 1-D volume coordinates w1 and o2 associated with vertices I and 2, 
respectively. Then naturally eq. (30) can be rewritten 

sj = oi, (i = 1,2). (31) 

Thus in order to recharacterize the 1-D Lagrange family, the Lagrangian interpolation unit by 
eq. (29) must be formulated in volume coordinate expressions. 

Evidently there exist several candidates for the Lagrangian interpolation unit in volume 
coordinates. For example, we have 

Li = b2 - ozo’)}/b2(i) - wo’)), (33) 

Although these Lagrangian interpolation units are all equivalent in one dimension, eqs. (32) to 
(35) yield quite different basis functions in higher dimensions. Therefore, we must select the 
best Lagrangian interpolation unit so that the definitive law for nodal rank 1 is adequate in any 
dimension. In conchrsion, the Lagrangian interpolation unit in eq. (35) is most preferable as 
shah be shown in the following section. 

6. Mid-edge Lagrange family for simplex 

We shall consider here 2-simplex finite elements composed of only vertices and side nodes, 
in order to select the best Lagrangian interpolation unit. 
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Let nodes i and j be of nodal rank 1 on an edge due to vertices p and 4. Then noting eq. 
(28), the ranking basis function Si can be written 

Si = fl Lj 
[ I 

w,o,lo,(i)w,(i), 
i#i 

(36) 

where o,_, and o, denote 2-D volume coordinates associated with vertices p and 4, respectively. 
Let us apply eq. (36) to Ss for the preceding 9-node triangle in fig. 3. Then the Lagrangian 
interpolation units in eqs. (32) to (35) yield quite different basis functions, and we find that 
only the Lagrangian interpolation unit of eq. (35) yields N’s9’ in table 1. Zero lines of Ss due to 
eqs. (32) to (34) are illustrated in fig. 6, for comparison. 

The hierarchy-ranking subbasis of nodal rank 1 can thus be defined by eq. (36) with the 
Lagrangian interpolation unit of the form 

Li = {w, - w, - w,(j) + oq(i)}l{op(i) - u,(i) - w,(j) + o,(j)}. (37) 

Naturally the linear field must be reproducible in the relevant trial functions, and therefore we 
have for vertices’ basis functions 

Si = wi (i = 1,2,3). (38) 

Fig. 6. Zero lines of the ranking basis function Ss in the 9-node triangle, due to different Lagrangian interpolation 
units; (a) Ss = 0 due to Li by eq. (32), (b) Ss = 0 due to Lj by eq. (33), (c) SS = 0 due to Li by eq. (34). 
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Fig. 7. Quadratic mid-edge triangle with arbitrarily placed side nodes. 

The reader can then easily verify that eqs. (36) to (38) readily yield the interpolation basis in 
table 1 for the above 9-node element. 

We emphasize here that eq. (36) with eq. (37) is essentially free from the regularity of 
side-node placement. The mid-edge Lagrange family for simplex composed of only vertices 
and arbitrarily placed side nodes can thus be defined by eqs. (36) to (38) in hierarchy-ranking 
expressions. 

Consider, for example, a quadratic mid-edge element in fig. 7. Then we have immediately 

s4 = @*0,/%(4)W,(4), ss = O&%(5)%(5), s, = 0102/W1(6)%(6). (39) 

For vertices, eq. (38) is adequate. It is then easy to verify that this trial function interpolates 
quadratics exactly [ll]. 

Introduce here the existence parameter Ki related to side node i by 

1, if node i 
Ki = 

0, if node i 

Then we can easily develop 
such that 

exists, 
disappears. (40) 

the variable-node trial function [5, 151 for our quadratic member 

N, = 01 - 0,(5)Ns - w(@‘&, N2 = w2 - 02(6)& - 02(a)& 

N3 = ~3 - 03(4)N4 - 03(5)N, NJ = WW3/%(4)~3(4), 

Ns = &@3%/~3(5)@1(5), Ne = ~~~~2/~(6)~2(6)- (41) 

We remark that the definitive laws in eqs. (36) to (38) take the same form in any dimension. 
For example, in one dimension, the famous 1-D Lagrange family is reproduced but in volume 
coordinate expressions. Then the spatial hierarchy inherent to the volume coordinates [5] 
guarantees the satisfaction of the spatial hierarchy for all the mid-edge simplex members. Thus 
if we substitute an edge equation for all the hierarchy-ranking basis functions, then the basis 
functions related to nodes on the edge are equivalent to the Lagrangian interpolation 
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polynomials, while the others not in the surface are zero. The mid-edge Lagrange family for 
simplex is thus Co conformable. 

However, as predicted by Ciarlet and Raviart [9], our mid-edge trial function space observe 
polynomial completeness of degree two at most. In finite element applications, we must keep 
this feature in mind. 

It is further emphasized that we fully relax the constraint on the regularity of side-node 
placement in our mid-edge simplex family. Although such relaxation is meaningless in finite 
element analysis [ll], it is essentially needed in other surface generation fields. 

7. Recharacterization of the complete Lagrange family for simplex 

We treat again here the famous complete Lagrange family for simplex in hierarchy-ranking 
expressions. 

It is first noted in rectangular familizations that the hierarchy-ranking subbases of nodal 
rank 0 and 1 are common to the regular and mid-edge Lagrange families for cube [5]. 
Naturally this feature should be preserved in simplex familizations also, and hence eqs. (36) to 
(38) are always applicable to the hierarchy-ranking basis functions associated with vertices and 
side nodes. 

We then note that the hierarchy-ranking subbasis of maximum nodal rank is to be identical 
to the corresponding interpolation subbasis as shown in eq. (26). We can thus utilize eqs. (4) 
and (5) such that 

Si = fi Qi(ok)* (42) 
k=l 

Here node i is of nodal rank 2, and Qi is given by eq. (5). 
Consider, for instance, a cubic complete triangle in fig. 1. Then eq. (42) yields immediately 

S,o = 270,o~o~. (43) 

Applying eq. (36) for side nodes, we have further 

sq = 90&3w* - 3ws + 1)/4, s, = 9w*o3(3w3 - 3w2 + 1)/4, 

sg = 903Lo1(303 - 30, + 1)/4, s, = 90301(301- 3w3 + 1)/4, 

ss = 90102(3w1- 3w2 + 1)/4, sg = 9010*(302 - 301+ 1)/4. (44) 

For vertices, eq. (38) is valid also in this example. The reader can then easily verify that this 
element is identical to the well-known cubic triangle. 

We have thus succeeded in recharacterising the complete Lagrange family for a simplex by 
its intrinsic hierarchy-ranking bases. Evidently in eq. (42) the ranking basis functions of nodal 
rank 2 give identically zero functions on the boundaries, and hence the spatial hierarchy of the 
complete Lagrange members is guaranteed. 
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8. Native Lagrange family for simplex with arbitrarily placed nodes 

Attention is drawn to the fact that the definitive laws of the hierarchy-ranking subbases due 
to vertices and side nodes are common to the complete and mid-edge simplex families, which 
suggests strongly the existence of a more general simplex family with arbitrarily placed nodes. 
In such a general family, the hierarchy-ranking basis functions for vertices and side nodes are 
naturally defined by eqs. (36) to (38) as occurs in the rectangular case. Therefore, our objective 
here is to find the definitive law for arbitrarily placed face nodes. 

Let node i be of nodal rank 2. Then using nodes i and 1 (I <i) of rank 2, the Qi function of 
eq. (5) can be redesignated 

pitok)= [ 0 {Ok -O,O.)}/(~k(i)-O,O.)J]Wk/o*(i). 
okO.LkW 

-kti)‘Wk(l)vl</ 

Then eq. (42) can be restated as 

Notice that eq. (46) with eq. (45) is now free from the face-node regularity, 
multiple roots. 

Thus utilizing eqs. (36) to (38) for vertices and side nodes, we have a new, 
element family in hierarchy-ranking expressions, which allows arbitrarily placed 
nodes. This family is termed here the native Lagrange family for simplex, since 
the unsophisticated, native transformation of eq. (45). 

(45) 

(46) 

avoiding any 

general finite 
side and face 
it is based on 

Consider, for example, the 5-node native element shown in fig. 8. Then for node 5 of rank 2, 
eqs. (45) and (46) yield 

Ss = 27w,w203. (47) 

(l,O,O) 

1 A 5 

0 

/ 
(l/3,1/3,1/3) 

\ (O,O,l) 

2u3 

(O,l,O) 
4 

(0,1/4,3/4) 

Fig. 8. 5-node native element in the volume coordinates (01, 02, w). 



14 M. Okabe, N. Kikuchi, Lagrange interpolations over simplex finite elements 

For node 4 of rank 1, we have 

s, = Ifiw2w3/3. (48) 

Thus with eq. (38), the basis transformation (25) yields immediately the upper triangular 
scheme 

(49) 

Solving eq. (49), the interpolation basis is given by 

N, = 01(1- 9wzw3), Nz = w2(3 - 4~3 - 1503~1)/3, 

N3= Wj(1 - 4w2 + 3w10*), N4 = 16~zo3(1- 3u1)/3, Ns = 2701~2~3. (50) 

On the other hand, if we use the Qi function of eq. (5) in place of the pi function in eq. (46), 
we have instead 

Ss = 81o,uzwj(4wz - 1). (51) 

It is thus obvious that the hierarchy-ranking subbases of rank 2 should be defined by using 
only the face nodes. Otherwise, we have rather higher order polynomials than are warranted, 
needlessly complicating the interpolation. 

We note that the Pi function in eq. (45) is identical to the Qi function of eq. (5) in case of 
the regularly placed nodes. The native Lagrange family for a simplex thus naturally includes 
the complete and mid-edge families as subfamilies. Furthermore, since the definition, (46) of 
the hierarchy-ranking basis function gives identically zero on the boundaries, all the native 
simplex members are Co conformable. 

In the practical finite element applications, it has been expected that the use of rather 
higher order approximations with compatible combinations of lower order elements may 
improve the efficiency a great deal. In fact, this harmony occurs in the adaptive finite element 
procedures [12-141 as schematically shown in fig. 9, but utilizing the mixed bases with the 
so-called nodeless variables. It should be, however, noted that such mixed bases are proved to 
be theoretically equivalent to the conventional interpolation bases in finite element analysis 
ill]. We shall demonstrate here the identities of adaptive finite elements and native simplex 
members. 

Consider a typical transitive element shown in fig. 10. Then the adaptive basis function 
associated with the side degree of freedom is nodelessly expressed as 

s‘$ = 0$03. 

For vertices, eq. (38) is adopted also in the adaptive eIementology. 

(52) 
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Fig. 9. Compatible combination of different order finite 
elements. In adaptive finite element procedure, nodeless 
basis functions are attached to side and internal degrees 
of freedom without placement of side and face nodes. 

Fig. 10. Typical transitive finite element combining the 
linear and quadratic complete triangles conformably. 

Let us assume node 4 at the centre of the concerning edge 23. Then the basis transformation 

(21) can again be used, and we have 

Thus the relevant interpolation is given by 

N, = 01, Nz = oz(l - 203), Ns = 041 - 24, N4 = 4~~03. (54) 

The reader can then easily verify that this transformed interpolation basis due to the assumed 
nodal placement is identical to that of the corresponding native simplex element. 

Similarly the native transitive element, combining quartic and quintic complete inter- 
polations conformably and having the polynomial completeness of degree four in fig. 11, is 
identified with the corresponding adaptive finite element currently used. Thus, in general, we 
can conclude that the adaptive finite elements have equivalent native simplex members. 

It is remarked that the native Lagrange family now produces a variety of higher order 
simplex elements as well as any transitive elements combining different order interpolations 
conformably in the conventional shape function form. Furthermore, the variable-node expres- 
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Fig. 11. Typical transitive finite element. which combines the quartic and quintic complete triangles conformably with 

the polynomial completeness of degree four. 

sions as shown in eq. (41) enable us to utilize such harmonious combinations quite easily and 
systematically. 

9. Generalization of the mapping function space 

We have thus developed our general simplex interpolations in the volume coordinates. 
Namely, our trial function space for an n-node element can be written 

$=(f: E,(f)=f-kf,N.=o}y 
i=l 

for the interpolation of the form 

In the preceding sections, for simplicity, we have tacitly utilized the parametric representation 

3 

X = C XiWi, (57) 

where 

i=l 

2 = [x, Yl, X: = [Xi, yi]. (58) 

Here Xi denotes the coordinate vector due to vertex i of 3-node triangle in the global 
Cartesian system (x, y). Thus eq. (57) redefines in terms of (x, y) the trial function space 8 
originally characterized by (ol, w2, 03) in eq. (55). 

In order to apply our native simplex interpolations more widely, let us generalize the 
parametric representation to 
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The mapping shape functions M;:, by definition, satisfy 

hfi(j) = Sij. (@a 

Hence the mapping interpolation basis M = {Mi} uniquely defines a mapping function space 

(61) 

In this generalization, the volume coordinate system (CO,, 02, wg) should be regarded as only 
the local parametric system, satisfying 

However, in this paper, we continue to call the set of oi the volume coordinates. 
Evidently our native simplex interpolations are applicable to the mapping interpolation 

basis M also. If we keep the identity of the mapping function space A and the trial 
function space 9, then any curved iso-parametric elements are derivable just as with the 
rectangular finite elements. Selecting the appropriate mapping function space, we can thus 
apply our native simplex family to a variety of problems, an example of which is given in a 
later section. 

10. Comparison with the rectangular polynomial interpolations with collapse into triangle 

We consider here the cube of fig. 12b normalized to (-1,1) in another local parametric 
system (5,~) with collapse of nodes 1 and lo, to give the triangle of fig. 12a in the global 

3 

t- X 

Fig. 12. Simple triangular element geometry; (a) triangle in the global Cartesian system (x, y), (b) normalized cube in 
the local parametric system (5, q) with collapse of nodes 1 and lD. 



18 M. Okabe, N. Kikuchi, Lagrange interpolations over simplex finite elements 

Cartesian system (x, y). Then the collapsed bilinear trial function can be expressed 

(63) 

where 

N, = (1- &)(l - 77)/4 + (1 - 5)(1+ 77)/4 = (I- Q/2, 

Nz = (1 + 5)(1- ?1)/4, N3 = (l+ [)(I + 77)/4. (64) 

We further prescribe the mapping function space to be iso-parametrically identical to the trial 
function space; this can be written 

where 

Mi = Ni, (i = 1,2,3). (66) 

Then evidently our trial function space can be uniquely characterized by a monomial basis 
[l, x, y], and hence this element is the classical, constant derivative triangle [4, 161. 

We can thus treat our native simplex interpolations also in the local parametric system (5, 7) 
through the relation 

t= l-2w,, q = (03 - W2)/(% + w2). (67) 

For example, the trial function of the famous quadratic triangle with linearly varying 
derivatives [6] of fig. 13 can be written 

where 

Substitution of eq. (67) into eq. (69) gives 

Nl = --[(I - 5)/T N2 = -(l + [)(l - ~)(l - 5 + rl + t~)/g, 

NJ = -(l + S)(l + rl)(l - 5 - q - ST)/% N4 = (1 - 5*)(1- 77)/2, 

N5 = (I+ 5)‘(1- 71*)/4, N6 = (1- [“)(l+ 7))/2. 

(69) 

(70) 



M. Okabe, N. Kikuchi, Lagrange interpolations over simplex finite elements 19 

Fig. 13. Quadratic 6-node element geometry; (a) straight-sided triangle in the global Cartesian system (x, y). In our 
semi-radial singularity mapping, side nodes 4 and 6 are not placed on the centers of corresponding edges. (b) 
Normalized square with collapse of nodes 1, 10 and lb in the local parametric system (5,~). 

We note that our native simplex interpolations are polynomials in (5, 7) as well as in 
(wl, w2, wj). Furthermore, under the parametric representation by eqs. (65) and (66), this 
element fulfils polynomial completeness of degree two in (x, y) and (o,, 02, wg) but not in (5, q). 

On the other hand, the famous serendipity interpolation with collapse can be expressed 

N, = -6(l- 5)/Z N* = -(1+ S)(l - n)(l - 5 + 7?)/4, 

I% = -(l+ 5)(1+ n)(I - 5 - rl)/4, N4 = (l- 5’)(1- 77)/Z 

N5 = (l+ 5)(1- 7)*)/2, N6 = (1 - 5“)(1+ r))/2. (71) 

Substituting eq. (67) eq. (71) can be rewritten 

N1 = 0,(201- l), Nz = 02{202 - 1 - 2w,w,/(o, + 03)}, 

N3 = ~~(2~3 - 1 - 2o,w2/(02 + wg)}, N4 = 4w,w2, 

N5 = 4w203/(~2 + ~3) N6 = 40301. (72) 

It is thus clear that this collapsed rectangular interpolation is not the polynomial in 
(o,, 02, w3) and lacks the aesthetic appeal of symmetry in the volume coordinates. Moreover, it 
fails to have polynomial completeness of degree two not just in ($7) and (wl, w2, 03) but also 
in (x, y). In order to keep the polynomial completeness in (x, y), we must add an internal 
degree of freedom. Recall that the famous regular Lagrange interpolations for the cube 
developed by Argyris [l, 21 retain the necessary polynomial completeness even after the 
collapse. The collapsed rectangular interpolations are thus somewhat redundant in comparison 
to our native simplex interpolations. 
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11. Incorporation of the derivative singularity 

In fracture mechanics, some singularities are needed in the first derivatives of the trial 
function, say in the stress and strain. Then naturally the mapping function space is to be 
different from the trial function space, and our native simplex interpolations can be applied 
only to the field interpolation basis N or only to the mapping interpolation basis M. Here we 
elect to compose our trial function space by the native simplex interpolations. Namely, our 
objective is to derive the peculiar simplex mapping called the semi-radial singularity mapping, 
which has been developed only for the rectangular interpolations with and without collapse 
[17, 181. 

Consider, for simplicity, the simple 3-node triangle in the global Cartesian system (x, y) with 
the parametric representation by 

(73) 

We define the radius r from node 1 by 

r = {(x - xJ2 + (y - yJ2}“*. (74) 

Then with the arbitrary singularity constant A (0 < A < l), O(r”-‘) singularities are required in 
the first derivatives of our trial function within the vicinity of node 1. 

Let us consider the simplest trial function of the form 

(75) 

where 

Ni = Oi (i = 1,2,3), (76) 

where the constant field reproducibility is expressed as 

1 = i Ni. 
i=l 

(77) 

We introduce here the non-dimensional radius p which should take the value zero at node 1 
and unity on the edge opposite to the singular node. Expecting O(pA-‘) singularities in our 
derivatives, we impose the $-reproducibility by the condition 

ph = N2i-N3. (78) 

Then we have immediately 

pA = I- 01. (79) 
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In order to assure in our trial function that the pA term is of lowest order, except for the 
constant term, it is further necessary that the pFAN, and p-“N, terms should be bounded 
everywhere within the element. Then if p is proportional to r at least within the vicinity of 
node 1, O(rAml) singularities may sufficiently be attainable. 

We further impose the iso-parametrical identity of our mapping and trial function spaces in 
the limit of A = 1. Then co~esponding to eqs. (77) and (79, the mapping shape functions 
should satisfy 

1 = i Mi, (80) 
i-l 

and 

p=M,+Ms. (81) 

Substituting eqs. (73) and (SO) into eq. (74) the Euclidean radius r can be rewritten 

Thus, the proportionality of p and r within the vicinity of node 1 is assured, provided that the 
p-‘M2 and p-“M, terms are bounded everywhere. 

Our mapping space should thus be connected to the trial space by 

(1 - M$ = 1 - N,, p-‘M, = P-~N,, p-‘M, = P-~N,. (83) 

We have explicitly 

Ml = 1 - (1 - w,)*‘~, Mz = (1 - c+)-‘+~‘~w~, Mj = (I- w)- 
l+ 1/A 

03. (84) 

This is the semi-radial singularity mapping in the volume coordinates. The orbits of our 
non-dimensional radius are illustrated in figs. 14 and 15. 

In the derivation of the Jacobian transformation, however, it is convenient for us to 
introduce the local parametric system (6, q) with eq. (67). Then we have 

f.Fi = ((1 + [)/2)-‘+2’AT14h, (85) 

where 

&Y/ax = 2A (yrc - y&(1 + 5)/2yA/T, 

aslay = -2A(x3 - &)((l + 5)/2)1-“A/T, 

aqiax = -Icy2 - ~d(l- 7) + (Y, - ~d(i f TI)I{(I + s)/z)-~/A/T, 

a&9 = ((G - x1)(1 - 7) + (x3 - x,)(1 + rt)}((i + r)12}-9~. (86) 
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h 

Fig. 14. Constant p lines of p* = 1 - 01 in the global Cartesian system (x, y). 

(0,0,1) 

Fig. 15. Typical constant p lines with A = l/2 in the volume coordinates (WI, ~2, w). 

Here T denotes twice the area of the triangle in the global Cartesian system (x, y). For the 
proof of the realized O(r”-‘) derivative singularities, see Appendix A. 

It is worthy of note that eqs. (67) and (86) enable us to utilize the differentiations of the 
form 

Then with eq. (85) the integrations in the practical finite element procedure can be performed 
in a (-1,l) normalized cube. Since our native simplex interpolations are given in terms of 

(87) 



M. Okabe, N. Kikuchi, Lagrange interpolations over simplex finite elements 23 

volume coordinates, the Gauss-Legendre quadrature can thus advantageously be used just 
like in the rectangular finite elements. 

Once the appropriate mapping shape functions are developed for the original 3-node 
triangle, we can easily place other additional nodes without changing the original element 
geometry, and further without affecting the developed transformation formulae. Therefore, all 
the native simplex Lagrange family members are applicable to the field shape functions with 
the peculiar singularity mapping in eqs. (73) and (84). 

It is further interesting to note that eqs. (85) and (86) are identical to the Jacobian relations 
developed for the rectangular bilinear interpolation with collapse [18]. Namely the iso- 
parametrical identity between the linear simplex and collapsed bilinear interpolations in the 
limit of A = 1 is preserved for arbitrary A. However, higher order elements are quite different. 
For example, the trial function specified by eq. (70) under our semi-radial singularity mapping 
realizes the reproducibility of the p”, p”-*x2, p”-*xy and p”-*y* terms, while only the p*” 

term is reproducible in the trial function by eq. (71). We may have to examine more carefully 
the observed redundancy of the collapsed rectangular interpolations in fracture mechanics 
also. 

12. Concluding remarks 

The native Lagrange family for simplex with arbitrarily placed nodes is thus successfully and 
definitively presented in hierarchy-ranking expressions. This new family produces a variety of 
higher order elements as well as any transitive finite elements combining different order 
interpolations conformably. Such harmonious combinations can easily be incorporated into the 
practical finite element programs with the variable-node expressions. It is further demon- 
strated that the adaptive finite elements from mixed bases can be identified with some 
appropriate native simplex members having conventional interpolation bases. Naturally, 
derivations of the native Lagrange family for n-simplex are straightforward. 

It is emphasized that the constraints on the placement of side and face nodes are fully 
relaxed in the native Lagrange family. However, efforts to utilize such generalization without 
improving the trial function space are meaningless in finite element analysis [ll], and hence we 
must pursue the nodal placement regularity as much as possible in any situation. In ap- 
plications to other surface generation fields, on the other hand, these relaxations are 
frequently essential. 

In practical finite element applications, it is of great importance to introduce the ap- 
propriate mapping function space. As an example in fracture mechanics, we have presented 
the semi-radial singularity mapping which yields a series of new crack elements with the native 
simplex interpolations. In particular we emphasize that the trial function spaces of these new 
singularity elements are quite different from those got from the collapsed rectangular inter- 
polations currently used in fracture mechanics. 
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Appendix A. Proof of the occurrence of O(t*-‘) derivative singularities 

We consider generally the trial function over the triangle of the form 

” 

University of 

(A.0 

Here the field shape functions Ni are given by the native simplex interpolations. There, Ni is 
the polynomial in (5, q) satisfying 

1 = 2 Ni. 
i=l 

64.2) 

Then eq. (A.l) can be rewritten 

Evidently Ni (i# 1) should take the value zero at node 1, and hence C$ - & is such a 
polynomial as has the 1 + 5 term, i.e. p*. The &$/aq term thus also has p*. 

Notice here the partial differential formula by 

d@/lax = (a&/X)(X/ax) + @4&)(arllax). (A.4) 

Under the required semi-radial singularity mapping in eqs. (73) and (84) eq. (86) shows the 
p’-*&J/ax and paq/dx terms to be polynomials in (5,~). Thus the singularities in &$/lax are 
manifestly O(p”-‘), i.e. 0($-l) within the vicinity of the singular node as expected. 

We next prove the boundedness of the strain energy within the element. Obviously the 
strain energy as well as stiffness matrix components can be estimated by 

1 1 

E= 
II 

wbWl4dt dv. (A.3 
-1 -1 

Eq. (85) describes that the Jacobian IJ[ is composed of only the p*-” term. Therefore, the 
integrand of eq. (A.5) is the polynomial in (5,~) having the p* term. Thus we have no 
singularity in our integrand, and consequently the strain energy is bounded. 

It is emphasized that we have O(r”-‘) derivative singularities with bounded strain energy 
also for the collapsed rectangular interpolations, so long as the constant field reproducibility 
(A.2) is satisfied. Evidently the proof presented here is appropriate for any positive A. 
Although the Jacobian vanishes at node 1, the boundedness of stiffness matrix components is 
thus guaranteed even at A = 1. 
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