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Abstract: A theoretical interpretation of the reduction in E2 strengths in rZ6Ba prior to backbending is 
presented. A shell model basis is built from normal parity orbitals organized into multiplets of a 
pseudo SU(3) symmetry coupled to h, 1 ,Z configurations restricted to states of seniority zero and two. 
Within the framework of the model the scattering of a pair of protons from normal parity to the h, r,* 
orbital produces band crossing and a corresponding reduction in E2 transition strengths prior to 
pair alignment which is the principal mechanism of the backbending. 

1. Introduction 

A recent report on transition strengths in 12’jBa seems to indicate that E2 rates 
and backbending can be uncorrelated phenomena l). Experimental values for the 
lO+ --P 8+ and 8+ + 6+ yrast transitions are less than one half those of an ideal 
rotor even though the onset of backbending is first seen at spin lo+. Band crossing 
and pair alignment models are predicated on backbending and a reduction in E2 
rates being complementary phenomena. In the former case the yrast cascade is 
slowed by the shape change associated with backbending. In the latter case E2 
rates are inhibited in the backbending region because the angular momentum of 
the core can undergo dramatic changes, by many units of h, as the spins of a pair of 
particles in a large-j orbital is aligned. Indeed earlier calculations for 126Ba [ref. 2, “)I 
and other studies 43 5, for nuclei that display the backbending phenomenon predict 
a reduction in E2 strengths which is limited to levels lying in the backward sloping 
portion of the backbending yrast curve. It is thus not clear what mechanism can 
account for the observed pre-backbending reduction of E2 strengths in ‘26Ba. 

In attempting to provide a microscopic shell-model interpretation of high-spin 
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phenomena we proposed a model based on the weak coupling of normal (N) parity 
orbitals comprised of all but the largest j-member of an oscillator shell and the 
unique or abnormal (A) parity level of largest j from the next higher shell 6). For 
‘%a this means ~n~gurations of the type (g5, d,, d,, s&y x (h+yA, where n = 
n,+n, = 26 is the number of spectroscopically active nucleons. A saving occurs 
when a restriction on the occupancies of the normal (nN) and abnormal (nA) parity 
orbitals can be justified. For deformed nuclei this is immediate. The deformation 
splits the 2j-i- 1 levels of each j-orbital into j+3 doublets. For any defo~ation 
the expected dominant configuration can then be determined by the pair-wise 
filling of the energetically favored or lowest Nilsson levels. As shown in fig, 1, for 
126Ba with a deformation of 0.2 one expects the dominant configuration to have 

zZ; 
= 18 and YES = 8. Even so, matrix dimensionalities are enormous; for example, 
d,, d,, sJN = 18sT~ = ‘3 JN = 2 alone has a dimension of 5.372.930. Other restric- 

tions are nedessary, if shell-model calculations are to be feasible. 
Without the largest~-mem~r of a shell the underlying oscillator structure is lost. 

But this seemingly unfavorable situation converts to a potentially favorable one 
upon recognizing that the remaining orbitals can be mapped onto a shell of one 
less pseudo-oscillator quantum 7>. For the Ba region this correspondence is (g4, 
d,, d,, s+) -+ (& $, fia, Ij,) where a tilde is used to denote pseudo-shell labels and 
2-f-s = j = T+?. An advantage is gained by such a mapping if the physical hamil- 
tonian is dominated by an invariant of a symmetry group that is inherent to the 
structure of the basis. The basis can then be truncated to the energetically favored 
representations of that group. 

In the mapping from real to pseudo orbitals one must fix the relative phases of 
all orbitals “). It is essential to make that choice which maximizes the goodness of 

1 1 
4.7 = 0.0 0.1 0.2 

E 

Fig. 1, Nilsson level scheme for nuclei with neutron and proton numbers between 50 and 82. The symbols 
v and II indicate tilled neutron and proton orbitals of the ‘:zBa,, ground-state configuration. 
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the underlying symmetry. Statistical spectroscopy provides an easy-to-apply method 
for doing this 9). The correlation coefficient, C( - 1 5 C 5 l), between operators 
provides a measurement of the sameness of the two; i.e. how the expectation values 
of one vary as a function of the eigenvalues of the other. The optimum choice for 
relative phases is the one which maximizes the correlation between the physical 
hamiltonian and the second-order invariant of the symmetry group. For example, 
in mapping the upper fp shell onto a pseudo ds shell there are four distinct phase 
choices, (f,, ps, p+) + (d”,, &a+, ‘53. With a choice for H given by the effective 
interaction of Koops and Glaudemans lo), the scalar correlation with Q * 0 for a 
twelve-particle system ranges from a high of 0.59 for the optimum choice (+ , - , +) 

to a low of 0.15 (+, +, -). In the ds shell where SU(3) is known to be good the 
twelve particle correlation coefficient between the interaction of Kuo 11) and 
Q . Q is 0.56. For the upper fp shell one therefore expects the pseudo symmetry to 
be a useful scheme for basis truncation. The optimum choice for relative phases 
was fixed in this way for the mapping of the upper gds shell onto the ‘$ shell. A 
modified surface-delta interaction was chosen for H since this is known to be a 
reasonable effective interaction for calculations in highly truncated model spaces ’ “). 

In our earlier publication we reported on a calculation for 126Ba in which the 
normal parity part of the space was truncated to the dominant U( 10) symmetry 
and leading SU(3) symmetry of (?I?$“, m = [444222] and ($) = (24, 0). For the 
abnormal parity space a basis was formed from the seniority zero and two states of 
(h$ T = 4. Strengths of the SD1 interaction in the N and A spaces were taken 

to be free parameters as was the strength of the multipole-multipole interaction, 
also taken to be of SD1 form, coupling the two. Single-particle energies were fixed 
to produce a 2.5 MeV separation of the ?’ = 1 and ‘i = 3 centroids. As the basis was 
restricted to 3 = 0 states, matrix elements of ? * 5, which are normally used to effect 
a splitting of the j = T& 4 orbitals, vanished and were not included. Backbending 
was found to be a pair alignment phenomenon. For E 5 A, where A is the energy 
separation between the O+ state and the centroid of the v = 2 states of the h, con- 
figuration, the yrast states are formed by coupling the D = 0 state to the first few 
excitations of the N-space. For E > A, it is the coupling of u = 2 states to the 
lowest spin states of the N-space that dominates the structure of the yrast band. 

2.1. BASIS STATES 

A complete labelling of the weak coupled basis states, with the relevant group 

2. The model 

structure noted below, is 

1 [P] p] ii( 1 jYi)i)R 1 p(cs: TN )J,; (h+Y*( u t)j37JA: T J >. (1) 

I I 
$0) U( 10) SU(3) 

I I I I 
R(3) W4 R(5) SU(2), 

SU(2),- X SU(2)r SU(2)J 
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The U(40) + U(10) x U(4) reduction partitions the normal parity part of the space 
into its space and pseudospin-isospin parts. A running index E is used to distinguish 
multiple occurrences of a given pseudo SU(3) symmetry (Ifi) in a particular U(10) 
symmetry, @j, of the (@) shell. Similarly p” is a running index used whenever neces- 
sary to distinguish multiple occurrences of (ST) pairs in a U(4) symmetry. This 
supermultiplet symmetry need not be specified for it must be conjugate to the 
U(10) symmetry for the basis states to be properly antisymmetrized. The 
U(12) + R(5) reduction organizes the abnormal parity part of the basis into 
quasispin multiplets carrying seniority and reduced isospin labels (a, t), respectively. 
The index /I is used to resolve isospin multiplicities. A more detailed explanation of 
the normal parity state labels can be found in ref. 7, while a discussion of the quasi- 
spin geometry can be found in ref. 13). 

Our previous calculation did not include the possibility of scattering particles 
between normal and abnormal parity orbitals. For ‘26Ba the most important of 
these are 12 N = 18 ) 2, MA = 8 r 2. Single-particle excitations are excluded for they 
connect to states of opposite parity. Of the pair scattering configurations that can 
couple to the dominant configuration, 

[(?~)‘8[444222](x$ = (24,O)Tn = 3; (h%)*T, = 4]T = 7, (2a) 

the following two should be the most important: 

[(@)‘6[44422](x,L) = (22,4)T, = 2; (h,)lOT, = 5]T = 7, 

[(T~)‘6[442222](~jIi) = (20,2)T, = 4; (h&,)‘OT, = 3]T = 7. (2b) 

The first of these perturbing configurations corresponds to a pair of neutrons (v) 
and the second to a pair of protons (rc) being lifted to the h, orbital. Including all 
three but restricting the h, space to u = 0 and o = 2 states with t = 1, yields for 
J = 0, 2, 4, . . ., 16 a basis of size 53, 193, 3 12, 402, 462, 494, 503, 492, 466, respec- 
tively. (In the rc-scattering case D = 2, t = 0 states exist but only for TA = 4. Such 
states are expected on the average to lie at an energy of about 5 MeV above the 
TA = 3, t = 1 states, and they have therefore been excluded. The u = 2, t = 1 
rc-scattering states occur with multiplicity two). Though these dimensionalities are 
manageable, we have chosen to separate the problem into two parts, one of which 
includes only the possibility of neutron pair scattering and excludes the K = 4 
band of the (22, 4) representation, labelled model II(v) in what follows. A second 
labelled model II( includes only the leading proton scattering configuration. 
Model I will be used to reference results which do not include pair scattering basis 
states. Models I, II(v) and II(n) have dimensionalities: (6, 27, 27), (16, 91, 94), (24, 
146, 150), (30, 188, 192), (34, 216, 220), (36, 232, 234), (36, 238, 236), (36, 239, 228), 
(35, 238, 213) for J = 0, 2, 4,. . ., 16, respectively. 
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2.2. TENSOR INTERACTION 

The hamiltonian has the general form 
?lN ZP 

f GNHN -I- GAHA + GMHM + GpHp (31 

The first three terms are one-body potentials which generate, respectively, the 
separation of the 7 = 1, 3 centroids, the j = 723 splitting, and the placement of 
the abnormal parity level relative to the normal parity ones. In the restricted basis 
of our models sN = 0 so contributions from the T. i term vanish. We choose C;z = 
0.225 MeV. Apart from an additive constant this corresponds to single-particle 

energies E+ = 8% = -2.02 MeV and .Q = E$ = -4.27 MeV. The single-particle 
energy of the abnormal parity level is only important when the model space includes 
pair scattering con~gurations. For “26Ba model II studies we set E% = -2.10 MeV. 
These values are compatible with single-particle systematics in the region 14). 

The last four terms in eq. (3) are two-body interactions. The form for these was 
chosen to be a surface-delta interaction. The labels N and A refer to the normal 
and abnormal parity spaces while HM and HP are multipole-multipole and pair 
scattering terms which couple the two. The strength factors were taken to be in- 
dependent parameters. The values used in the present study are given in table 1. 
The pair scattering interaction is only effective for model II studies. 

TABLE 1 

Strength parameters of the surface-delta interaction 

Strength parameters 
Model 

% G.4 G, GP 

I 0.26 0.61 0.12 
II(v) 0.24 0.62 0.12 0.20 
II(n) 0.30 0.58 0.12 0.10 

Numbers quoted are all relative to unity which produces 6 MeV binding for the (h, 1,2)2 (u, J) = (0,O) 
configuration. 

2.3. MATRIX ELEMENTS 

The procedure for evaluating matrix elements is straightforward. First both 
interaction and excitation operators are written in second quantized form. It is 
important to emphasize that real matrix elements are input at this stage of the 
calculation. For example, the input SDI matrix elements of the present study are 
for the real gt, d,, d+ sg orbitals. This second quantized form for the operator is 
then transformed into its pseudo space analog. Group coupling and recoupling 
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techniques are then used to express the latter in terms of standard tensor 
operators 15). Examples for the rz and r* s” terms of H are given in ref. ‘). See also 
ref. 16), and for the tensor decomposition of the E2 operator, ref. ’ 7). Matrix elements 
of the tensors can be evaluated using the coefficient of fractional parentage and 
reduced matrix element programs of Braunschweig ‘*) together with SU(3) and 
SU(2) coupling and recoupling routines 19). Hemenger and Hecht give analytic 
results for A-space matrix elements 13). We leave to a future paper a more detailed 
discussion of these matters. 

3. Results for lz6Ba 

Two basic phenomena appear to play a role in the backbending region of the 
126Ba yrast curve; (a) band crossing involving different pseudo SU(3) representa- 
tions of the normal parity part of the basis, and (b) pair alignment in which a pair 
of nucleons from the high-j abnormal parity orbital align their spins to maximum 
possible J. It is advantageous to examine these phenomena separately. 

3.1. N-SPACE BAND CROSSING 

Energy spectra from diagonalizations of our effective interaction, eq. (3) with 
two-body parts of SD1 form and strengths given in table 1, are shown in fig. 2. 
This figure shows the spectra of pure normal parity configurations. @TN coupled 
to u = 0, JA = 0 states of (h,Z,)“” both for the separate pseudo SU(3) representations 
used in the present study, (with the pair-scattering term, HP “turned off’), and 
for the mixed pseudo SU(3) representations, (with HP “turned on”). The effective 
moment of inertia of the (24,O) representation is almost identical to that of the 
K = 0 band of the (22,4) v-scattering representation but less than the moment of 
inertia of the K = 0 band of the (20, 2) n-scattering representation. In the (24, 
0)+(20,2) calculation the (24,O) representation thus dominates for low-spin yrast 
states ; but for higher spins, because of its larger moment of inertia and corre- 
spondingly compressed rotational spectrum, members of the (20,2) K-scattering 
band are energetically favored. For E+ = - 2.1 MeV the transition occurs between 
spins 8-12 and accounts for the non-rotational character of the (24,0) +(20,2) 
results in that region. The (24,0)+(22,4) spectrum shows no such irregularity, 
all states of the yrast band are dominated by the (24, 0) representation. The effect 
of the (22,4) representation is manifest in increased binding of the lower yrast 
states, hence an expanded spectrum for (24,0)+(22,4) compared to (24, 0), but 
no crossing of bands is found. The (24, 0) +(20,2)+ (22,4) results are nearly in- 
distinguishable, even in detail, from the (24,0)+(20,2) case. 

The band-crossing phenomenon found in the (24,0)+(20,2) results is shown 
more clearly in fig. 3 where the excitation energies of the lowest two eigenstates for 
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Fig. 2. Calculated spectra for H diagonalized in leading pseudo W(3) symmetries: ($) = (24, 0) of 
(@jla coupled with the r = 0, JA = 0 state of (hilj2)a, and ($i) = (22,4), (20,2) of ($5)*6 coupled with 
the u = 0, JA = 0 state of (hl,,.Jio, and combinations of these configurations included in the present 
study. The moment of inertia of the (20, 2) representation is greater than that of the (24,O) and (22, 4) 
representation. This leads to band crossing in the (24, 0) + (20, 2) mixing results, the signature of which 

is spectrum compression between spins 8 and 14. 

each spin are plotted versus I(I+ 1). The [(24,0)/(20,2)] mixing percentages for the 
yrast states change from (F) -+ (y) -+ ($$) -+ (&) + (&) for J = 6 --, 14, re- 
spectively. The effect of the band mixing can also be seen on a AE versus I plot, 
fig. 4. For an ideal rotor one expects a straight line with slope propo~ional to the 
inverse of the moment of inertia. The (24, 0) result is of that type but for (24, 0) + (20, 
2) there is a smooth transition from the (24,O) to the (20, 2) rotor values. Also shown 
are model I, II(n) and experimental results. We will return to these later. Though 
band crossing introduces a phase transition, it alone does not reproduce experi- 
mental findings. 

3.2. A-SPACE PAIR ALIGNMENT 

The eigenvalue spectrum from a diagonalization of H in the pure abnormal 
parity configuration (h,.)* T = 4, restricted to seniority zero and two, is shown in 
fig. 5. The (hY)roT = 5 and (h&lo T = 3 spectra are similar though for the latter 
each JA(u = 2, t = 1) state occurs twice. The N-space I, II(v), II results shown 
are, respectively, a repeat of the (24,O) and (24,0)+(22,4) and (24,O) i-(20,2) 
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- (24,0)+(20,2)MIXING 

0 50 100 150 200 250 300 350 

IfI+ 

Fig. 3. Band crossing in the normal parity part of the model II (n) space. The (24,0)/(20, 2) mixing ratios 
for spins 8-14 are 96/4, 80/20, 6/94, 2/98, respectively. 
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I 

Fig. 4. dE versus I plots. A departure from linearity signals non-rotational behavior. The mixing 
transition is due to band crossing. The abruptness of the pair alignment transition for model I is smoothed 

by prealignment band mixing in model II(n). Experimental results are from ref. “). 
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Fig. 5. Energy spectra from diagonalizations of a surface delta interaction in the normal and abnormal 
parity parts of model spaces for iZ6Ba. Model I refers to the (x,G) = (24,0) subspace of the (@)‘* T = 3 
configuration. Model II(v) and II(n) include in addition (22,4) and (20,2) neutron and proton scattering 
representations, respectivly. Band crossing accounts for the compression of the II(n) spectrum between 

spins 8-16. 

spectra given in fig. 2. Comparing the N and A space spectra one can see immediately 
that a weak coupling of the two leads to a pair alignment phenomenon. For an 
excitation energy less than about 3 MeV, Z 5 8, the yrast states can be built most 
economically by coupling the fully paired JA = 0 configuration of the A-space to 
the N-space core. For an excitation energy greater than 3 MeV, Z 2 10, it is the 
coupling of unpaired (JA # 0) configurations to states of low N-space excitation 
(with small JN values) that is energetically favored. Thus, while for Z = 8 (JN = 
8) x (JA = 0) dominates, for Z = 12 it is (JN = 2) x (JA = 10) that is the predicted 
dominant structure. Between spins 8 and 12 rotational alignment occurs; that is, 
one moves from a situation where the projection of J, onto a unit vector in the I 
direction is zero to one where the value of that projection is its maximum. The 
probability of finding JA # 0 configurations in the yrast states of spin Z is plotted 
versus Z in fig. 6. Note that the transition is much sharper for Model I and II(v) 
than for II(n). This is due to configuration mixing. Note that the [(20,2)J, = 
81 x [J, = 21 coupling makes a significant contribution to the model II Z = 10 
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III III I I I I I I 
0 2 4 6 8 IO 12 14 16 18 20 22 

Fig. 6. Probability of finding pairs in the abnormal parity space coupled to non-zero angular momentum. 

yrast state, see table 2. The amount of mixing depends of course upon the strenghts 
of the N-A space interaction terms HM and Hp. 

3.3. BACKBENDING AND THE B(E2) ANOMALY 

The “backbending” is most apparent when the inertial constant, 

2$/h2 = (4Z-2)lAE,, (4a) 

of the yrast states is plotted as a function of the square of the rotational frequency, 

@o)~ = AEf/ {[Z(Z+ 1)-J”-[(Z-2) (I- 1)]+}2. (4b) 

Backbending curves for 126Ba are shown in fig. 7. Experimental results are from 
the work of Flaum et al. 20). F or a rigid rotor, one expects a horizontal line. For 
Zs 8 all three models yield such a result. The (Ifi) mixing in model II(v) and especially 
in model II(n) softens the core somewhat bringing the 3 versus o2 curves in closer 
agreement with experiment. The interaction parameters, table 1, were adjusted to 
reproduce the excitation energy of the I” = 8+ level, the onset of backbending at 
I” = lO+ and, as best possible short of a least squares analysis, the backsloping 
and upper branches of the experimental backbending curve. If the (24,0) +(20,2) 
N-space mixing result were superimposed on the 4 versus o2 curves it would follow 
the model I results up to spin 10, rise slightly and then continue horizontally at the 
value of 9(2f/h2 % 45 MeV- I) for the (20,2) representation. The backward 
sloping character of the curve is not part of that picture. One can also see from the 
results for AE versus Z given in fig. 4 that alignment is the primary mechanism 
responsible for the backbending. Note that the prealignment band crossing smooths 
the AE versus Z transition bringing it also in close agreement with experiment. 
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0' 1 I I I I I I I 
0.1 0.2 0.3 0.4 

(h~f (Me?) 

Fig. 7. Backbending in lz6Ba. The curves were calculated using 21/h’ = (41-2)/A? and (fro)* = 

AE’/{[I(I+ l)]“‘- [(Z-2)(1- l)]“‘}‘. Experimental results are from ref. “). 

The effect of the band crossing on E2 rates is illustrated in fig. 8. The experi- 
mental results are from ref. ‘). Model I predictions are not shown for they follow 
rigid rotor values up through spin 10. As the E2 operator, approximately trans- 
formed into the pseudo scheme, is nearly a generator of the pseudo SU(3) sym- 
metry, it at most only weakly couples different (&) representations. The prealign- 
ment fall off in E2 strengths found for model II (71) is due to (&) mixing. Amplitudes 
of the leading components in the model I and model II (rc) yrast eigenstates are 
given in table 2. The (20,2) representation makes a small but non-negligible contri- 
bution to the lowest model II(n) eigenstates with 1 5 6 and actually dominates for 
spins 8 and 10. The 8+ -+ 6+ transition strength is no smaller than it is because the 

(24,O) -+ (24,O) and (20,2) -+ (20,2) strengths, though separately less because 
of the reduced amplitude factors, add coherently. 

Earlier calculations ‘) for the yrast transitions in ‘26Ba predict a significant 
(sharp) reduction in E2 strengths only for levels lying on the backward rising slope 
of the backbending curve. Calculations based on the interacting boson model ‘l) 
show some decrease in E2 strengths with increasing angular momenta, but this 
decrease seems to arise from the natural differences between the SU(3) limit and 
rigid rotor models. The interacting boson-pair alignment model calculation of 
Gelberg and Zemel 3, on the other hand predicts a reduction in E2 strength prior 
to the backbending very similar to ours and, although more phenomenological, 
does indeed contain some of the physics of our microscopic model. Although the 
E2 reduction factors predicted by our model II calculation are less or seem to lag 
those observed experimentally, we believe that the phenomenon of band crossing 
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Experimental results are from ref. ‘). 

prior to pair alignment gives the mechanism which can account for the prealignment 
E2 anomaly. A more realistic quantitative prediction would undoubtedly require 
the use of a larger normal parity basis space. The need for representation mixing 
is also evident from the fact that the calculated spectra are too rigid as indicated 
by the nearly horizontal slope of the 4 versus CI? curve in the I” = 2+ -+ lO+ 
region (fig. 7). 

A typical model II spectrum for lz6Ba is shown in fig. 9 alongside the experi- 
mental level scheme. We have found that details concerning E2 branching to and/or 
from yrast states in the backbending region are sensitive to model parameters. 
Experimentally there are two nearly degenerate 12+ states and the model II(Z) 
spectrum agrees with this. However, whereas the experimental 12: + 10: strength 
is large, our model II study yields a weak 12: -+ 10: transition but a strong 
12: + 10: E2 coupling. One refinement is to adjust the h, single-particle energy 
to gain a mixing of the 12: state of mainly (24, 0) JN = 2, JA = 10 character with 
the 12: state of mainly (20, 2)JN = 2, JA = 10 character. This has been tried with 
positive results, but in so doing the 9 versus C? curve, which we find to be very 
sensitive to even small changes in the structure of the eigenstates, is made less good. 
The use of a larger basis could conceivably resolve the discrepancy also. 
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TABLE 2 

Main components of the calculated yrast eigenstates for models I and II(n) 

State Model I Model II(n) 

0+ (0.95) 1(24,0).&q = 0, (b, i,JaJA = 0) (0.91) 1(24, O)J, = 0, (hi,,,)% = 0) 
+(0.24) 1(20,2)J, = 0, (hi i,a)i*f.+ = 0) 

2+ (0.95) 1(24, O)J, = 2, (h,,,,)*J, = 0) (0.91) 04, O)J, = 2, (hii.J% = 0) 
+(0.24) l(20, 2)& = 2, olli,a)‘oJ~ = 0) 

4+ (0.95) /(24,0)& = 4, (blliz)aJA = O> (0.90) 1(24,0)& = 4, (hi ,,J8JA = 0) 
+(0.25) I(20, 2)5, = 4, (h,,,,)‘*J, = 0) 

6+ (0.94) /(24,0).& = 6, (h,,,,YJ,, = 0) (0.86) l(24,0)& = 6, (hi ,,J*JA = O> 
+(0.35) /(20,2)& = 6, (hli,a)rofA = 0) 

8+ (0.94) 1(24,0).&J = 8, h,,)*J, = 0) (0.44) K24, OV, = 8, @,,,,)*J, = 0) 
+(0.76) /(20,2)J, = 8, (hllJoJa = a> 

10+ (6.93) /(24,O)J, = 10, (hi ila)sJA = O> (0.14) 1(24,O)J, = 10, (h,,,J8JA = 0) 
+(0.83) /(20,2)J, = lO,(h,,,,)‘*J,= 0) 
+(0.32) /(20,2).& = 8, (h,,,,)‘“J, = 2> 

12+ 

14+ 

(0.60) /(24,O)J, = 2, (h,,,,)*J, = lo> 
+(0.73) /(24,O)J, = 4, (hi iiJ8JA = 10) 

(0.81) ((24, O)J, = 4, (hlllZ)aJA = 10) 
+(0X) 1(24,O)J, = 6, (h,,,,)‘J, = 10> 

(0.65) 1(24,0)& = 2, (h, ,,J8JA = 10) 
ff0.69) /(24,O)J, = 4, (hli,J*Ja = 10) 

(0.85) /(24,0).& = 4, (hll,J*JA = 10) 

+(0.42) /(24,0)&q = 6, (h,,,,)*J, = IO) 
+(0.19) 1(20,2)J, = 4,(h,,,a)10JA = 10) 

The (24,0) u (20, 2) band crossing between spins 6 and 10 results in reduced B(E2) strengths prior 
to the pair alignment transition which occurs between spins 10 and 12. 

4. Concluding remarks 

The observed prealignment reduction in B(E2) rates in 126Ba poses an interesting 
theoretical challenge, for neither band crossing or pair alignment models offer a 
simple explanation. We have shown that a weak coupling model based on normal 
parity conjurations organized into mult~plets of pseudo SU(3) symmetry and 
abnormal parity con~guratio~s organized in multiplets of R(5) quasispin sym- 
metry offers a satisfactory framework for studying backbending and related 
phenomena. Pair alignment emerges as the primary mechanism of backbending 
but band crossing can be competitive and when it is, anomalous E2 behavior can be 
expected. 

Though fully microscopic, our weak coupling picture is schematic. The truncation 
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Fig. 9. Energy spectra for ‘$Ba,,. Ex~rimental results are from ref. *O). Calculated numbers are for 
model II(z). E2 strengths are for proton and neutron effective charges ez = (1 +OS)e and e, = 0.5~. 
Numbers quoted are relative to the 2+ + O+ transition for which the strength is 0.21 x 10m4* e2 . cm4. 
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employed is severe. For this reason we do not claim high accuracy nor do we expect 
detailed agreement between theory and experiment. Nonetheless, we do believe the 
essential physics has been bared. We look forward to applications in the Ge region 
where forking to non-yrast states in the backbending region has been observed “). 
For this it is the coupling of a pseudo ds shell with g, configurations that enter. 
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von Humboldt Foundation through a US Senior Science fellowship, the hospitality 
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