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Analytical expressions are given for the defo!mation parameters 02, p4 and p6 and compared to the data for 140 < A 
< 208. 

Semi-empirical expressions are often used to dis- 

cuss global aspects of certain nuclear properties. Ex- 
amples are masses [ 11, Coulomb energies [2] and 
nuclear radii [3]. The latter have been parameterized 
on the assumption of constant density in the nuclear 
interior (“volume conservation”). However, it appears 
that no simple analytical expressions exist to describe 
nuclear shapes. 

Bertsch [4] has shown that a very simple model 
can be used to explain qualitatively the dependence 
on nucleon number of the nuclear quadrupole and 
hexadecapole deformations. Pairs of protons and neu- 
trons are assumed to fill simultaneously the same 
major shell, and the residual interaction is introduced 
to construct aligned wave functions with strong spatial 
correlations. Orbitals are filled according to their 
closeness to the body-fixed symmetry axis, with equa- 
torial orbits filled last. The result [4] is 

(1) 

where z varies from 0 to 1 when the shell is filled with 
a-particles. Integrating eq. (1) yields 

p2 a $z(l - z)(2 -z) , (2) 

pa a kz(l - z)(2 - z)(7z2 - 142 t 4) . (3) 

&j a $(I - z)(2 - z) [33(z - 1)4 - 3O(z - 1)2 + 51. 

(4) 

* This work was supported in part by the US National Science 
Foundation, Grant No. PHY78-07754. 

These equations cannot be expected to describe quan- 
titatively the more realistic situation where protons 
and neutrons independently fill shell regions composed 
of different subshells. However, it will be shown below 
that only minor extensions and modifications of eqs. 
(2)-(4) will lead to expressions which give a very satis- 
factory description of the various deformation param- 

eters for the deformed nuclei in the rare-earth region. 
Experimental quadrupole deformation parameters 

f12 were taken from several published tables [S-7]. 
One table [S] contains deformation parameters de- 
rived from several nuclear and atomic experimental 
techniques. The parameters from the other tables 
[6,7] are deduced entirely from experimental B(E2) 
transition probabilities. (Ref. [6] is a recent update of 
ref. [7] .) The deformation parameters f12 used in the 
present work are quadrupoloid deformations obtained 
under the assumption of “volume conservation”. The 
values of refs. [6,7] therefore have been corrected ac- 
cording to 

f12 = P2(table)[l - $(5/n)1/2p2(table) 

+ (73/98n)/32(table)2] . (5) 

(See the first relation for the intrinsic electric quadru- 

pole moment Q. in table 1 of ref. [5] .) Excellent agree- 
ment between the tables [5-71 is thus obtained. The 
data are displayed in fig. 1. A few data points for 2 
= odd are left out for clarity. Experiments generally 
determine the quantity p2R2. A value R = 1.2 A 1/3 
fm was assumed in the derivation [5-71 of the param- 
eters f12. The parameterization of r. on the basis of 
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the “constant volume” condition [3] could in prin- 
ciple be used instead. 

Much fewer data exist for the deformation param- 
eters p4 and pg. These were taken from refs. [8-l l] 
and refs. [9 ,l 11, respectively. The accuracy is general- 
ly much less than for the & data, and additional un- 
certainties arise for those data which require the trans- 

formation from nuclear to charge deformations. A 
scaling law has been established [9] to relate ON to 
PC, and they follow roughly the same trend [lo] with 
the latter about 10% larger. Most of the p4 data re- 
present charge deformation parameters obtained di- 
rectly from Coulomb excitation, electron scattering 
and Coulomb/nuclear interference. Many of the fig 
data are corrected nuclear deformation parameters 
[9]. The averaged data are displayed in figs. 2 and 3. 
An uncertainty of kO.003, approximately 30%, has 
been arbitrarily assigned to the & data. 

A generalization of eqs. (2) to (4) requires the in- 

troduction of two independent variables to describe 
the dependence on proton number Z and neutron 

number N. These were taken as 

x = (Z - 50)/(82 - 50)) (6a) 

y = (N - 82)/(126 - 82) , 

with 

z=:(xty)_ 

(6b) 

(6~) 

The following semi-empirical expressions were in- 
troduced to describe the nuclear deformation parame- 

ters P2,P4 and 06, 

02 = /320x(1 -x)(2 -X)YU -VW -.Y> + 021 2 (7) 

P4 = P4@(1 -x)(2 -X)Y(l -Y)(2 -v) 

x (722 - 142 + 4.9) ) (8) 

06 = /361)4 -x)(2 -xb(l -Y)@ -u) 

x [33(z - 1)4 - 3O(z - 1)2 -I- l] . (9) 

Here, pzo = 1.721, f140 = 0.504, &jO = 0.0215 and p21 
= 0.082. These equations require further justification 

and discussion. Eq. (7) has been used earlier [2] to 
describe Coulomb displacement energies of deformed 

nuclei. 
Collectivity results from the cooperative effect of 

protons and neutrons in their respective shells. Indeed, 
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Fig. 1. Experimental deformation parameters pz from refs. [S-7]. The curves are calculated from eq. (7). 
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Fig. 2. Experimental deformation parameters 04 from refs. (8-l 11. The curves are calculated from eq. (8). See fig. 1 for an exPla- 
nation of the symbols used for the various isotopes. 

the deformation parameters f12 are quite small for 
semi-magic nuclei. Furthermore, since protons and 
neutrons occupy different major shells, it is not un- 
reasonable to apply eq. (2) to both protons and neu- 
trons. These arguments justify the factor x(1 -x) 
X (2 - x)y(l - y)(2 - y). The observed approximate 

linear increase of p2 with N for constant Z is thus de- 
scribed. The additive constant flzl accounts for the 
fact that the 02 values for semi-magic nuclei are not 
zero but about 3 times the respective single-particle 
value [6]. It should be noted that p2 represents not 
only the deformation of statically deformed axially 

-0.02 

140 
/ 

170 180 
Mass Number A 

Fig. 3. Experimental deformation parameters p6 from refs. [9,11]. The curves are calculated from eq. (9). See fig. 1 for an expla- 
nation of the symbols used for the various isotopes. 
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symmetric nuclei but also the “dynamic” deformation 
of vibrational nuclei expressed in terms of destruction 
and creation operators as f12 = (X,(1 CQ 1 j2)li2. The 
parameters flzo and f121 of eq. (7) were obtained from 
a least-squares adjustment to the data displayed in fig. 
1. Slightly different analytical forms of eq. (7) were 
also considered but found to lead to increased syste- 
matic deviations. 

Small additional modifications were introduced in 

the expressions for p4 and f16 by adjusting the additive 
constants in the quadratic terms. This has the effect of 
slightly shifting the region where fi4 and & change sign 
It was done to achieve better agreement with the data. 
Eq. (1) based on the original simple assumption of 
filling in a particular sequence one major L-shell is of 
course partly invalidated by the presence of subshells 
which explains the observed presence of shifts. 

The simple eqs. (7) to (9) describe the experimen- 
tal deformation parameters f12, f14 and fig remarkably 
well. The standard deviation for the quadrupole defor- 
mation is up* = 0.019. Certain systematic differences 
are also discernible. For example, the initial increase 
of /I2 at the lower neutron numbers seems to contain 
a quadratic component, and the maximum values ap- 
pear to be reached earlier than predicted. Additional, 
though purely empirical, parameters could easily be 
introduced to obtain even better agreement with the 
data. 

The parameterizations of the nuclear deformation 
parameters f12, /$, and f16 should be useful in the dis- 
cussion of global nuclear properties. It does not re- 
place theoretical approaches [12] based on models 
such as the Nilsson or modified harmonic oscillator 
models or the Strutinsky renormalization method. 
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