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Nucleotide Degradation 

Purine nucleotide degradation refers to a regulated series of reactions by which human purine ribonucleotides and 
deoxyribonucleotides are degraded to uric acid in humans. Two major types of disorders occur in this pathway. A block of 
degradation occurs with syndromes involving immune deficiency. myopathy or renal calculi. Increased degradation of 
nucleotides occurs with syndromes characterized by hyperuricemia and gout, renal calculi, anemia or acute hypoxia. 
Management of disorders of purine nucleotide degradation is dependent upon modifying the specific molecular pathology 
underlying each disease state. 

A N EXPLOSION of information about disorders 

of purine nucleotide degradation in humans has 

occurred during the past 8 yr. The discovery of seven 

new enzyme abnormalities associated with specific 
clinical syndromes and the intensive research to 

elucidate the underlying molecular pathology have 
provided the basis for the major advances. New 

concepts have related tissue ATP levels and their 
depletion by hypoxic or metabolic mechanisms to 

common clinical abnormalities. 
Disorders of purine nucleotide degradation now 

encompass a range of previously unsuspected disease 

associations. Immunodeficiency, myopathy, renal cal- 
culi, hyperuricemia and gout, anemia, central nervous 

system dysfunction and tissue hypoxia occur with 

abnormalities of this biochemical pathway. In this 
review, diseases of purine nucleotide degradation will 

be described. Two major types of disorders occur; 
blocks of purine nucleotide degradation and increased 

activity of this pathway. The metabolic basis underly- 
ing altered regulation of purine nucleotide degradation 

to uric acid in these diseases will be described as it is 
understood at the present time focusing on the more 

recent advances. 

REGULATION OF PURINE NUCLEOTIDE 
DEGRADATION 

Purine nucleoside monophosphate derivatives are 
degraded to uric acid in humans by a final common 

pathway (Fig. 1). Complex regulation of this pathway 
is evident from experiments which increase the degra- 
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dation of purine nucleotides. Activation of nucleotide 

degradation to inosine and hypoxanthine occurs in 
ascites tumor cells following incubation with 2-deoxy- 
glucose or glucose.‘4 There is rapid utilization of ATP 
during the phosphorylation of these compounds. The 

sudden diminution of intracellular ATP concentra- 
tions and the restthing elevation of AMP and IMP 

levels appear to be triggering factors for the activation 
of nucleotide degradation. 

Experimental evidence in humans indicates that 
altered regulation of the pathway may accelerate the 

degradation of purine nucleotides. A model for activa- 
tion of purine nucleotide degradation in humans is 

provided by the rapid infusion of fructose. In less than 
60 min after intravenous fructose there is an increase 

of the serum urate concentration and an elevation of 

urinary uric acid, oxypurine (hypoxanthine and 
xanthine) and inosine excretion (Fig. 2).5-9 In human 

liver there is a depletion of total adenine nucleotides, 
predominantly ATP, and inorganic phosphate within 
30 min of a fructose infusion.” These observations 

suggest that the rapid phosphorylation of infused fruc- 
tose by ATP leads to hepatic ATP degradation to the 

putine compounds measured in blood and urine. 

Vigorous muscular exercise in man causes a rise of the 
serum urate level and an elevation of plasma and 

urinary oxypurines.“--I3 This may be related to an 
increase of uric acid synthesis from the degradation of 

muscle ATP during exercise, since there is a diminu- 
tion of vastus lateralis muscle ATP concentrations.‘3 

These observations are compatible with an activation 
of purine nucleotide degradation, initiated by a sudden 
decrease of intracellular ATP and inorganic phosphate 
concentrations during exercise. 

Dephosphorylation 

The dephosphorylation of nucleoside 5’-monophos- 
phates (Fig. 1, reaction 1) is the first committed and 
irreversible reaction of purine nucleotide degradation. 
It has been proposed to be the major site of regulation 
of the pathway.14 Four distinctive subcellular types of 
5’nucleotidase have been recognized to hydrolyze 
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Fig. 1. Pathway of purine nucleotide degradation. Purine nucleoside monophosphate derivatives are degraded to uric acid in humans 
by a final common pathway. Nucleotides are dephosphorylated to form the nucleoside derivatives. Specific 5’-phosphomonoesterase 
(E.C.3.1.3.5) and non-specific phosphatases jE.C.3.1.3.2) hydrolyze AMP, IMP, GMP or their deoxynucleoside monophosphates to the 
nucleoside or deoxynucleoside derivatives (reaction 1 j. AMP is deaminated to IMP by AMP deaminase (E.C.3.5.4.6, reaction 12). Inosine, 
deoxyinosine, deoxygusnosine, and guanosine are converted to purine bases and ribose-l-phosphate or deoxyribose-l-phosphate by 
purine nucleoside phosphorylase (E.C.2.4.2.1, reaction 3). Adenosino and deoxyedenosine are deaminated to inosine and deoxyinosine by 
adenosine deaminase fE.C.3.5.4.0, reaction 21. Guanine is deaminated to xanthine by guanine deaminase lE.C.3.5.4.3, reaction 5). 
Hypoxanthine and xanthine are oxidized to uric acid by xanthine oxidase jE.C.l.2.3.2, reaction 4) located primarily in the liver and jejunem 
of mammals. These pathways are interrupted by reactions which allow the resynthasis of nucleotides. Nucleoside kineses catalyze the 
conversion of adenosine to AMP, deoxyadenosine to dAMP. deoxyinosine to dlMP and deoxyguenosine to dGMP (reaction 6). 
Hypoxanthine-guenine phosphoribosyltransferase (E.C.2.4.2.8, reaction 7) converts hypoxanthine or guanine to IMP or GMP. Adenine 
phosphoribosyltransferase (E.C.2.4.2.7, reaction 11) catalyzes the formation of AMP from adenine. The precursor substrates of the final 
common pathway of purine nucleotide degradation are formed from the digestion of dietary nucleoprotein, the degradation of nucleic 
acids to nucleoside monophosphates and the formation of nucleotides by de novo purine synthesis and the purine salvage pathways. In 
addition, S-adenoeylhomocysteine is degraded to edenosine and homocysteine by S-adenosyfhomocysteine hydrolase jE.C.3.3.1 .l, 
reaction Sj in an essential step of S-adenosylmethionine mediated methylation reactions (reaction 9). S-adenosylmethionine may also be 
decarboxylated to enter polyamine metabolism (reaction 10). Degradation of deoxyribonucleotides follows a similar pattern as indicated. 
However, dAMP may be converted to dlMP at only 6% of the V,, of AMP (2321 (reaction 121. while dlMP may be converted to dGMP or 
dAMP at virtually the same V,, as IMP (233-236). dGMP may be converted back to dlMP at about 1% of the V,, of GMP (237). The 
dephosphorylation of deoxynucleotides. the deamination of deoxyedenosine and the phosphorolysis of deoxyinosine or deoxyguanosine 
are all similar to the reactions of the ribosyl derivatives (Reviewed in Reference 14). GMP, guanosine 5’-monophosphate: dGMP, 
deoxyguanosine 5’-monophosphate; IMP. inosine 5’-monophosphate; dlMP. deoxyinosine I’-monophosphate; AMP, adenosine 5’- 
monophosphate: dAMP, deoxyadenosine 5’-monophosphate. 

purine nucleoside 5’-monophosphates.” These include 
enzymes in plasma membrane, microsomes, lysosomal 
membrane, and cytoplasm. The plasma membrane 
5’-nucleotidase has been the focus of many studies 

although its function is not clear. The enzyme faces 
the outer surface of the plasma membrane.‘6-22 

Substrate specificity is localized to 5’-monophosphate 
compounds. The enzyme is inhibited by nucleoside 
diphosphate and triphosphate derivatives and concan- 
avalin A.“.2’.“.?’ Extracellular nucleoside 5’-mono- 
phosphates are degraded to their nucleoside deriva- 
tives in preparation for uptake, since the negatively 
charged nucleotides are not transported across the cell 

membrane under usual circumstances. A vectorial 

transport system for the adenosine component of AMP 
into rat myocardial cells has been suggested during 
perfusion with AMP.24 

Plasma membrane 5’-nucleotidase may be an 

important site for the regulation of purine nucleotide 
degradation, since activation of this pathway occurs 
with a depletion of ATP, an inhibitor of this enzyme, 
and an accumulation of IMP and AMP, substrates for 
this enzyme. However, recent observations indicate 
that plasma membrane 5’-nucleotidase may not 
influence intracellular nucleotide degradation.2s A 5’- 
nucleotidase that occurs in the supernatant fraction of 
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Fig. 2. Mechanism of fructose-induced purine nucleotide degradation. Fructose triggers the rapid breakdown of purine nucleotides 
to uric acid in the liver. The phosphorylation of fructose to fructose-l-phosphate causes ATP to be degraded to ADP. Fructose-l-P tends 
to accumulate and thus traps inorganic phosphate. ADP is converted back to ATP by the mitochondrial electron transport system or 
glycolysis, which use inorganic phosphate, or by adenylate kinase. The latter reaction also forms AMP. The net result is a diminution of 
intracellular ATP and inorganic phosphate and buildup of AMP. The elevated AMP concentrations also lead to increased IMP 
concentration. Dephosphorylation of 5’-nucleotidase is triggered. If AMP and IMP concentrations are high enough, then non-specific 
phosphatase can be activated. Once dephosphorylation is activated, there is a cascade of nucleotide degradation through the catabolic 
pathways leading to increased synthesis of uric acid and accounting for hyperuricemia and the elevated urinary excretion of inosine. 
hypoxanthine, xanthine and uric acid. Inhibition is indicated by dotted lines. Vertical arrows beside ATP, Pi end AMP show changes caused 
by-the fructose infusion (From Fox, Reference 14). 

chicken liver26*27 and rat liver28-30 may catalyze cyto- concentrations is the major factor increasing the activ- 

plasmic nucleoside 5’-monophosphate dephosphoryla- ity of AMP deaminase,33 while altered ATP, GTP and 

tion. This enzyme preferentially hydrolyzes IMP and GDP levels do not change the activity.3”36 Therefore, 

GMP, is activated by ATP and ADP and is inhibited it remains unclear whether AMP deamination is limit- 

by inorganic phosphate. Although it is highly likely ing for purine nucleotide degradation. The compli- 

that important regulation of purine nucleotide degra- cated regulation of this enzyme, its important location 

dation occurs at the level of dephosphorylation, the in the pathway, and the fact that adenine nucleotides 

nature of the regulation at this reaction remains to be constitute the majority of free cellular nucleotides 

clearly delineated. make this a serious consideration. 

AMP Deamination 

The deamination of AMP (Fig. 1, reaction 12) has 
been proposed as the rate-limiting reaction in adenine 
nucleotide degradation instead of 5’-nucleotidase.3’ 
Inorganic phosphate and GTP at physiological 
concentrations inhibit AMP deaminase by 95%3” and 
are decreased in concentration during fructose infu- 
sion. This is proposed to activate the enzyme and lead 
to adenine nucleotide degradation3* However, in 
contrast to this proposal, under physiological condi- 
tions or in intact cells a rise in AMP, ADP and H+ 

AMP deaminase has an additional important role as 
a component of the purine nucleotide cycle in skeletal 
muscle.37 This reaction sequence causes the release of 
ammonia during muscle contraction and the resynthe- 
sis of AMP from IMP. The sequence may be impor- 
tant to energy metabolism and ATP synthesis during 
muscle contraction. 

Reutilization 

The major regulatory mechanism of purine nucleo- 
tide degradation after dephosphorylation may be 
reutilization pathways. Guanine and hypoxanthine are 
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resynthesized to their respective nucleotides by hypo- 

xanthine-guanine phosphoribosyltransferase (Fig. 1, 
reaction 7). This enzyme is regulated by the availabil- 
ity of intracellular phosphoribosylpyrophosphate and 

product inhibition. The importance of this reaction is 
illustrated by its deficiency, which leads to excessive 

synthesis of uric acid in part, from an inability to 
reutilize the substrate purine bases.38 

Adenosine, deoxyadenosine, deoxyinosine and 
deoxyguanosine can be phosphorylated to their respec- 

tive nucleoside 5’-monophosphates by kinase enzymes 

(Fig. 1, reactions 6). Adenosine phosphorylation may 
be important in maintaining normal intracellular ATP 

concentrations. In erythrocytes with increased adeno- 

sine deaminase activity there is a decrease in ATP 

concentrations and hemolytic anemia.39 The removal 
of adenosine by its deamination in this disease suggests 

that erythrocytes require adenosine phosphorylation to 
synthesize normal quantities of ATP. Adenosine 
kinase is regulated by adenosine, ATP and Mg 

concentrations, and is inhibited by ADP, AMP, deoxy- 

adenosine and S-adenosylhomocysteine.40 Therefore, 
alterations in kinase activity may occur when adeno- 

sine or deoxyadenosine accumulates. Attention has 

been focused upon these reactions in adenosine deami- 

nase deficiency, where both adenosine and deoxyaden- 
osine accumulate in affected patients. Although there 

is evidence to suggest that adenosine and deoxy- 

adenosine are phosphorylated by the same enzyme, 
some experiments demonstrate the existence of a 

distinct enzyme for deoxyadenosine phosphoryla- 
tion4’ 4s possibly associated with deoxycytidine kinase 
activity.45 Observations with highly purified adenosine 

kinase suggest that adenosine kinase and deoxyadeno- 
sine kinase are distinct enzymes, with the former also 

having only a small amount of deoxyadenosine phos- 

phorylating activity.44 

MEASUREMENT OF PURINE 

NUCLEOTIDE DEGRADATION 

The development of methods for the quantitation of 
purine nucleotide degradation in whole cells has lead 
to refined techniques to measure this pathway in 
humans. 

In Vitro Measurements 

The basis for the measurement of purine nucleotide 
degradation in cells is to alter the normal regulation of 
the pathway by causing a breakdown of ATP.14 This 
initiates a cascade of purine nucleotide degradation 
with a flow of metabolites through the pathway to 
adenosine, inosine, and hypoxanthine. Deoxyglucose 
or inhibitors of the mitochondrial electron transport 
system and oxidative phosphorylation have been used 

to initiate degradation. The measurement of intracel- 

lular nucleotides and the quantitation of hypoxan- 

thine, inosine, and adenosine allow an assessment of 
the activity of this pathway. A refinement of this 
technique is to prelabel the adenine nucleotide pool by 
incubation with radioactively labeled adenine.‘,* The 

stimulation of the breakdown of ATP under these 
conditions allows a clear documentation of the path- 
ways of ATP degradation through the purine catabolic 

pathways. 

In Vivo Measurements 

Plasma and urinary purines. Measurements of 

plasma and urinary purines in man by standard spec- 

trophotometric methods and more recently by high 
pressure liquid chromatography allow an assessment 

of disorders of the nucleotide degradation pathway. 
An increase in the serum urate concentration and in 
the urine uric acid excretion indicates increased activ- 

ity of the purine nucleotide degradation pathway, 
since it demonstrates the increased synthesis of uric 

acid. On the other hand, a diminution of the serum 

urate concentration with very low urine uric acid 

excretion may indicate a block in uric acid synthesis. 

An accumulation of purine catabolic intermediates 

may localize such a block. For example, the excessive 
excretion of hypoxanthine and xanthine and hypouri- 

cemia may indicate a block at xanthine oxidase. 
Excretion of inosine, deoxyinosine, guanosine, and 

deoxyguanosine and hypouricemia may indicate a 
block at purine nucleoside phosphorylase (Fig. 1). 
Thus, simple measurements of plasma and urinary 
purines may provide a clue to an underlying disorder 

of purine nucleotide degradation. Other research 

methods are summarized below. 

Fructose induced purine catabolism. A probe of 
the intactness and activity of the purine catabolic 

pathway may be carried out by the use of a fructose 

infusion.‘.” Fructose administered rapidly intrave- 

nously activates purine nucleotide degradation (Fig. 
2). A block in the pathway will be reflected by a 

change of the normal pattern of urinary purine excre- 
tion following the fructose infusion. Alterations in the 
purine excretion following fructose infusion have been 
observed in deficiencies of purine nucleoside phosphor- 

ylase, xanthine oxidase and hypoxanthine-guanine 

phosphoribosyltransferase.4N8 

Radioactive labeling of the adenine nucleotide 
pool. A radioactive isotope of adenine is adminis- 
tered intravenously to patients. This small quantity of 
adenine does not alter purine pool sizes and is incorpo- 
rated into the adenine nucleotide pool. As the adenine 
nucleotide pool is turned over every day, there is a flow 
of radioactively labeled compounds through the purine 
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nucleotide degradation pathway. The intermediates of 
purine nucleotide degradation are labeled separately 

from purines formed by the pathway of purine synthe- 
sis de novo. Some of these radioactively labeled 
purines will be excreted in the urine and can be easily 

measured. Block of the pathway or alteration of reutil- 

ization steps may change the quantity and pattern of 
urine radioactive purine excretion. This method has 

been used to demonstrate decreased hypoxanthine 

reutilization in Lesch-Nyhan Syndrome.48 

Adenine labeling combined with fructose infu- 
sion. The two techniques described above may be 
combined for a sensitive probe to assess for alterations 
of the purine nucleotide degradation pathway in 

humans. The adenine nucleotide pool may be prela- 
beled three to four days prior to fructose infusion. 
Under these conditions the normal response to a fruc- 

tose infusion is a lo-fold elevation of the urinary 

radioactivity over the baseline excretion (Edwards NL 

and Fox IH, unpublished results); the greatest 
increase of radioactivity is found in inosine and hypo- 

xanthine in subjects with normal enzyme activity.48 

Alteration in the amount or pattern of radioactivity 

excretion following the fructose infusion may indicate 

disorders of the purine nucleotide degradation path- 

way. Such an alteration has been discerned in hypo- 

xanthine-guanine phosphoribosyltransferase deficien- 

cy,48 but not in patients with lymphocyte plasma 
membrane 5’-nucleotidase deficiency.49 

DISORDERS OF PURINE NUCLEOTIDE DEGRADATION 

Two major types of abnormalities of human purine 
nucleotide degradation occur; a block in the pathway 

and an increased activity of the pathway. Table 1 

outlines a classification of disorders associated with 

alteration of purine nucleotide degradation. Blocks of 
purine nucleotide degradation may lead to an accumu- 

lation of the intermediates or their metabolites in 
human body fluids or cells. The accumulation of such 
intermediates may be toxic to certain cells and lead to 
clinical disorders such as immunodeficiency. An 

elevated rate of purine nucleotide degradation may 
lead to an increase in the end-products of the pathway. 

On the basis of the observations with fructose-induced 
purine nucleotide degradation which is triggered by 
massive ATP utilization (Fig. 2), an elevated rate of 
purine nucleotide degradation may be expressed by 
the following metabolic variables: an increase in the 
serum urate concentration and an elevation of urinary 
uric acid, inosine, and oxypurine excretion.50 

Blocks of Purine Nucleotide Degradation 

S-Nucleotidase deficiency of lymphocytes. The 
surface 5’-phosphomonoesterase activity of peripheral 

Table 1. Disorders of Purine Nucleotide Degradation 

Block of degradation 

5’-Nucleotidase deficiency of lymphocytes 

Adenosine deaminase deficiency 

Purine nucleoside phosphorylase deficiency 

Myoadenylate deaminasa deficiency 

Guanine deaminase deficiency 

Xanthine oxidase deficiency 

Increased degradation 

Increased enzyme activity 

adenosine deaminase overactivity 

xanthine oxidase overactivity 

Decreased reutilization 

hypoxanthine-guanine phosphoribosyltransferase 

deficiency 

wine nucleoside phosphorylase deficiency 

adenine phosphoribosyltransferase deficiency 

Increased substrate 

Increased de novo purine synthesis 

Increased phosphoribosylpyrophosphate 

synthetase 

Hypoxanthine-guanine phosphoribosyltransferase 

deficiency 

Purine nucleoside phosphorylase deficiency 

Increased turnover of nucleic acrd 

Hematological abnormalities 

Psoriasis 

Decreased ATP 

Increased degradation of ATP 

Glucose-6-phosphatase deficiency 

Hereditary fructose intolerance 

(Possibly) fructose-l, 6diphosphatasa 

deficiency 

Muscular exercise 

Fructose infusion 

Decreased synthesis of ATP 

Tissue hypoxia-shock, respiratory failure. 

impairment of blood flow 

Hypophosphatemia 

lymphocytes is decreased in certain patients with 
congenital agammaglobulinemia, common variable 

hypogammaglobulinemia, and selective IgA deficien- 

cy. 49s~53 The enzyme deficiency is related to a 
decrease in the number of 5’-nucleotidase positive 

lymphocytes.54,55 The enzyme deficiency is measured 
in peripheral sheep erythrocyte rosette-forming lym- 

phocytes49,5”58 and in peripheral mononuclear cells 
depleted of monocytes56-59 and represents a block in 
the ability of these cells to degrade extracellular 
nucleoside 5’-monophosphates. The diminished activ- 
ity of lymphocyte 5’-nucleotidase in these diseases 

appears to be related to decreased T-lymphocyte 
enzyme activity and decreased numbers of B-lympho- 
cytes. 

The question arises whether 5’-nucleotidase defi- 
ciency causes immune dysfunction or results from 
abnormal lymphocytes. The data suggest that abnor- 
mal lymphocytes are the basis for the enzyme deficien- 
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cy. No structural alteration of the deficient enzyme 

has yet been demonstrated.‘* The enzyme deficient 
patients have no evidence for a systemic disorder of 

purine nucleotide degradation and appear to have the 

deficiency only on lymphocytescg Erythrocyte and 
lymphocyte deoxynucleoside triphosphates are normal 

in S-nucleotidase deficiency.60 Finally, earlier stages 

of lymphocyte maturation may be characterized by 
lower values of S-nucleotidase, supporting the possi- 
bility that abnormal lymphocyte populations cause 
5’-nucleotidase deficiency.58.6’ 

A deficiency of lymphocyte 5’-nucleotidase has also 

been observed in chronic lymphocytic leukemia, acute 

lymphoblastic leukemia and transiently in acute infec- 

tious mononucleosis.62-65 

Adenosine deaminase de$ciency. In 1972, the 

deficiency of adenosine deaminase was found in two 

unrelated patients with severe combined immunodefi- 

ciency disease.66 The enzyme deficiency accounts for 
about half of the patients with this syndrome and 

autosomal recessive inheritance. In 85%--90% of 
adenosine deaminase deficient patients there is severe 
lymphopenia, failure to thrive, and infections, diar- 

rhea, malabsorption, and candidiasis with atrophic 

tonsils, adenoids, and thymus in the first few months 

of life. In 10%15% of patients the disease may 
become evident later than 3-6 mo and immunoglobu- 

lin retention may occur.67.68 X-rays demonstrate 

evidence of osteoporosis, small or absent thymus 

gland, and chondro-osseous dysplasia at costochondral 

junctions, apophysis of iliac bones and vertebral 
bodies. There is a disorder of decreased platelet aggre- 

gation.69.70 Neurological abnormalities including nys- 
tagmus, head lag, spasticity, athetosis, and develop- 

mental delay occur in 10%-l 5% of patients.” 
Biochemical abnormalities appear to account for 

the clinical syndrome. Elevated adenosine and deoxy- 
adenosine concentrations in the urine, plasma and 

erythrocytes result from the adenosine deaminase defi- 

ciency. Increased concentrations of dATP and dADP 

in erythrocytes, lymphocytes and bone marrow cells 
and, in some instances, decreased concentration of 

ATP in erythrocytes from these patients result from 
the deoxyadenosine accumulation and may have toxic 

properties toward the immune system.60*72-76 Increased 
lymphocyte and platelet cyclic-AMP concentrations 
may also contribute to the dysfunction of these cells.” 
A secondary severe deficiency of erythrocyte S-adeno- 
syl-homocysteine hydrolase has been observed.78,79 
This may be related to the deoxyadenosine accumula- 
tion, since deoxyadenosine has been shown to inacti- 
vate S-adenosylhomocysteine hydrolase.78 A possible 
interruption of methylation reactions by this inactiva- 
tion may potentially contribute to the immunodefi- 

ciency and central nervous system disease. How these 

biochemical abnormalities lead to immune dysfunc- 
tion is discussed below. 

Adenosine deaminase is structurally altered in 

tissues from patients with severe combined immunode- 

ficiency disease. *o-85 The properties of the mutant 

enzymes provide support for genetic heterogeneity of 
the mutations involving the structural gene coding for 
adenosine deaminase. Structural alterations of adeno- 

sine deaminase also occur in patients with the enzyme 
deficiency and normal immune function.86*87 In these 
patients white cell adenosine deaminase is less severely 

deficient; this amount is adequate for normal function 

of the immune system. 
Experimental therapies attempt to restore immune 

function in patients with severe combined immunode- 

ficiency and adenosine deaminase deficiency. The 

results of these trials support an etiological relation- 

ship between the enzyme deficiency and the immune 

disorder. About 50% of the patients with severe 
combined immunodeficiency disease and adenosine 

deaminase deficiency respond to enzyme replacement 
therapy with packed irradiated erythrocytes.88m9’ The 
response includes an increase in the absolute lympho- 

cyte count and improved responsiveness to the mixed 

lymphocyte culture and to phytohemagglutinin stimu- 
lation. As well, there is a diminution in the tissue 

deoxyadenosine triphosphate concentrations, a de- 

crease in the excretion of adenosine and deoxyadeno- 

sine and an elevation of erythrocyte S-adenosylhomo- 
cysteine hydrolase.78.89-9’ Bone marrow transplantation 
corrects most of the immunological and biochemical 

abnormalities9’m93 and appears to be the treatment of 
choice. A low purine diet, which reduces the urinary 

excretion and the plasma concentrations of adenosine 

and deoxyadenosine,” and thymosin administration 
may be useful adjuncts to the management of these 

patients.94 
The molecular basis for the immune dysfunction 

has been assessed in cell culture models simulating 

adenosine deaminase deficiency. Cytoxicity or immu- 
nosuppression follow the addition of adenosine or 

deoxyadenosine to cultured diploid fibroblasts, human 
lymphoblasts, lymphosarcoma T-cells, Chinese ham- 

ster ovary cells, and mouse fibroblasts (Reviewed in 
Reference 95). These compounds also inhibit mitogen- 
mediated lymphoblastogenesis and monocyte to 

macrophage transformation. Toxicity from adenosine 
or deoxyadenosine is potentiated with inhibition of 
adenosine deaminase by specific inhibitors, coformy- 
tin, deoxycoformycin or erythro-9(2-hydroxyl-3- 
nonyl) adenine. A block of adenosine deaminase alone, 
or addition of deoxyguanosine may also have similar 
cytotoxicity or immunosuppressive effects.43*74*96-‘” 
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The biochemical features of cells susceptible to 
deoxynucleoside toxicity have been defined using 
cultured human lymphoblast cell lines. Deoxyadeno- 

sine is selectively toxic to cultured T-lymphoblasts 
during adenosine deaminase inhibition.963993’00 Deoxy- 
adenosine mediated cytotoxicity in T-lymphoblasts is 

accompanied by increased concentrations of dATP. 
T-lymphoblasts have a 20-45fold greater capacity to 

accumulate deoxyadenosine nucleotides than B- 

lymphoblasts at deoxyadenosine concentrations of 50 

/JM. “‘J’~ The accumulation of deoxyadenosine nucleo- 

tides in T-lymphoblasts may result from the small 

quantity of S-nucleotidase activity either on the 
plasma membrane58*‘0’3’02 or in the cytoplasm.2s Simi- 

larly, the lack of deoxyadenosine nucleotide accumula- 

tion in B-lymphoblasts may result from the high 

activity of S-nucleotidase in the cytoplasmz5 or plasma 
membrane.‘8*‘0’*‘02 The high 5’-nucleotidase activity 
may degrade dAMP back to deoxyadenosine, prevent- 

ing its conversion to dATP in B-lymphoblasts. A close 
correlation exists between plasma membrane 5’- 
nucleotidase and the ability to accumulate dATP, 

supporting a relationship between these two variables 

in murine lymphocytes.“’ Since human thymocytes 
have 5’-nucleotidase activity as low as cultured T- 

lymphoblasts,58~‘~‘06 human thymocytes may share 

common properties with T-lymphoblasts and may be a 
cell at risk for toxicity when deoxynucleosides accu- 

mulate. 

How does deoxynucleoside triphosphate accumula- 
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Fig. 3. Ribonucleotide reductase hypothesis. Ribonucleotide reductase (FlRI is the enzyme that converts ADP. GDP, UDP, and CDP to 
dADP, dGDP, dUDP, and dCDP. respectively. IA) In edenosine deaminese (ADA) deficiency, deoxyadenosine cannot be deamineted to 
deoxyinosine. and is thus phosphoryleted to dAMP, dADP. and dATP. The accumulation of dATP potently inhibits all the reactions of 
ribonucleotide reductsse. This potent inhibitory effect may decrease the synthesis of dGDP. (IUDP, and dCDP. reduce the substrates 
available for DNA synthesis and inhibit DNA synthesis. IB) In purine nucleoside phosphorylese (PNP) deficiency. deoxyguanosine, which 
ordinarily undergoes phosphorolysis to guanine is phosphorylated to dGMP. dGDP, and (IGTP. Deoxyguanosine triphosphate accumulates 
in purine nucleoside phosphorylase deficiency end is e potent inhibitor of three of the four components of the ribonucleotide reductese 
reaction. Inhibition of these reactions can lead to a reduction of DNA synthesis. 
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tion cause cell toxicity? A block at ribonucleotide 

reductase is currently the most popular hypothe- 
sis43.72.73.97,98 (Fig. 3). This reaction leads to the synthe- 

sis of the deoxyribonucleoside triphosphate substrates 
necessary for DNA formation. It is potently inhibited 

by dATP. A block at ribonucleotide reductase from 
the accumulated dATP could explain immune 

dysfunction in the deficiencies of adenosine deaminase 

(Fig. 3). Resistance to deoxynucleoside toxicity with 

mutations of ribonucleotide reductase support the role 
of this enzyme in S-49 mouse T-lymphoma ce11s.‘07 

The ribonucleotide reductase hypothesis is further 
strengthened by the reduction of DNA synthesis, but 

not RNA synthesis, during incubation with 50 PM 

deoxyadenosine and an adenosine deaminase inhibitor 
in cultured human cells.‘08,‘W However, the pattern of 

inhibition of DNA synthesis in these experiments was 

not similar to that expected for ribonucleotide reduc- 
tase inhibition.‘08,‘09 Therefore, an additional or alter- 

native mechanism of block of DNA synthesis needs to 

be considered. 
Inhibition of intracellular methylation reactions 

provides an additional hypothesis to explain immune 
dysfunction. This possibility originates from the secon- 

dary decrease of erythrocyte S-adenosylhomocysteine 
hydrolase in adenosine deaminase deficiency.7x,79 An 

accumulation of S-adenosylhomocysteine, which may 

result from the hydrolase deficiency, inhibits methyla- 

tion reactions and has cytotoxic and immunosuppres- 
sive activities.78.“0-“4 Although the exact mechanism 
for toxicity remains unclear, recent studies indicate 

that enzymatic methylation of phospholipids may be 

critical for the transduction of receptor mediated 
signals through cell membranes.“5 A block of this 
reaction may also be toxic to cells of the human 
immune system. Deoxyadenosine, which accumulates 

in adenosine deaminase deficiency, irreversibly inacti- 
vates S-adenosylhomocysteine hydro1ase78,“4 and 

probably accounts for the secondary hydrolase defi- 
ciency (Fig. 4). However, this proposal remains 

unproven since elevated concentrations of S-adenosyl- 

homocysteine have not been observed in cells from 
patients with adenosine deaminase deficiency. The 

selectivity of this mechanism may be directed toward 
B-lymphocytes.“6 

The hypothesis that increased levels of CAMP 
concentrations account for the immune dysfunction 

has been proposed based upon elevated CAMP concen- 
trations in leukocytes and platelets from patients with 
adenosine deaminase deficiency.70,77 Adenosine in- 
creases CAMP concentrations in cells derived from the 
immune system by activating an adenosine receptor 
and stimulating plasma membrane adenylate cy- 
clase.“7 ‘*O Increased concentrations of CAMP inhibit 

/ t S-Adenyylmethwkw 

4 
S-Adenosylhomocysteine 

t 

,“ilCtl”~tlO” 
f--_-____-----~ 

\ 

t Deoxyadenosme 

Fig. 4. Possible altered methyl&ion in adenosine deaminase 
deficiency. This diagram shows the pathway involved in methyl- 
transfer reactions catalyzed by S-adenosylmethionine. The prod- 
uct of these methyltransfer reactions is S-adenosylhomocysteine 
(SAHL a potent inhibitor of the S-adenosylmethionine mediated 
methykransfer reactions. S-adenosylhomocysteine is removed by 
its degradation to homocysteine and adenosine. The adenosine is 
normally deaminated to inosine, thus ensuring the irreversibility of 
S-adenosylhomocysteine hydrolase. In adenosine deaminase 
(ADAI deficiency, there is an accumulation of adenosine end this 
may reverse the S-adenosylhomocysteine hydrolase reaction and 
cause an accumulation of S-adenosylhomocysteine. As well, in 
adenosine deaminase deficiency, deoxyadenosine accumulates 
and this is known to cause suicide inactivation of S-adenysylho- 
mocysteine hydrolase. which may lead to an accumulation of 
S-adenosylhomocysteine. The increased concentration of S- 
adenosylhomocysteine could inhibit methyltransfer reactions and 
lead to toxic effects. 

immune responsiveness and immune cytolysis.“9~‘2’ 

Elevated concentrations of CAMP may be responsible 

for decreased platelet aggregation in adenosine deami- 
nase deficiency providing evidence for the operation of 
this mechanism. Increased levels of CAMP in cells 

remain a possible mechanism of immunodeficiency in 
adenosine deaminase deficiency. 

Biochemical mechanisms other than the ones 
discussed above may account for the association 

between purine enzyme defects and immune disorders 

or more than one mechanism may be involved. Direct 
proof for a particular mechanism by its demonstration 

in the tissues of the enzyme deficient patient is not yet 
available. 

Purine nucleoside phosphorylase dejiciency. Pu- 

rine nucleoside phosphorylase deficiency was first 
described in 1975 in association with a disturbance of 
cellular immunity.‘22 This autosomal recessive distur- 
bance of T-cell function is characterized by a marked 
reduction in T-lymphocyte numbers and by a lack of a 
proliferative response of lymphocytes to mitogens and 
allogeneic cells. The normal induction of T-cell matu- 
ration in bone marrow precursors by human thymic 
epithelium conditioned medium or thymosin in two 
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brothers with purine nucleoside phosphorylase defi- 
ciency suggest normal T-cell generation and intact 

thymic epithelial function.‘23 

Humoral immune function appears intact or 

enhanced as shown by normal or elevated immuno- 
globulin concentrations, normal numbers of peripheral 

B-lymphocytes, and normal antibody response to anti- 
gens. The occurrence of monoclonal gammopathy, 

rheumatoid factor, antinuclear antibody, and Coombs- 
positive hemolytic anemia indicate excessive antibody 

production.‘23m’2s Features resembling systemic lupus 

erythematosus are evident in some of these patients, 

suggesting that the enzyme deficiency may provide a 

model for this autoimmune disorder. 
Patients with this disorder have evidence of a block 

of purine nucleotide degradation. There is decreased 

synthesis of uric acid with hypouricemia, hypouricos- 

uria and an excessive urinary excretion of inosine, 
guanosine, deoxyinosine, and deoxyguanosine.46*‘229 

‘*u*’ Fructose infusion indicates a block of purine 
nucleotide degradation by no change in serum urate 

concentration or urinary uric acid and oxypurine 
excretion and a massive increase in urinary inosine 

excretion.46 These patients are overproducers of 

purines despite the hypouricemia. The overproduction 

of purines is accompanied by an elevation in the 

concentration of phosphoribosylpyrophosphate in ery- 

throcytes to a level similar to that observed in patients 
with a deficiency of hypoxanthine-guanine phosphori- 

bosyltransferase.‘** This is related to a loss of active 

reutilization of purine bases in purine nucleoside phos- 

phorylase deficiency from the lack of formation of 
hypoxanthine or guanine, substrates for hypoxanthine- 

guanine phosphoribosyltransferase. Deoxyguanosine 
triphosphate concentrations are elevated in erythro- 

cytes. 60~‘29~‘30 This is believed to muft from the accu- 

mulation of deoxyguanosine and its subsequent phos- 

phorylation. Increased concentrations of dGTP may 
be the toxic factor to the immune system. The degree 

of abnormality in uric acid levels, nucleoside excre- 

tion, and dGTP concentrations reflect the severity of 
the enzyme deficiency.13’ These patients also have an 

80% decrease in erythrocyte S-adenosylhomocysteine 
hydrolase activityy9 but the significance of this obser- 
vation remains unclear. 

Structural alterations of the decreased purine 
nucleoside phosphorylase provides evidence for struc- 
tural gene mutations and genetic heterogeneity in this 
disorder.‘3*‘34 

Enzyme replacement therapy with blood transfu- 
sions have only partial success in patients with purine 
nucleoside phosphorylase deficiency.‘35-‘37 Two of four 
patients have modest improvement. There is an 
increase in the percentage of peripheral E-rosette 

forming cells without an increase in the lymphocyte 
count. The lymphocytes stimulate with phytohemag- 

glutinin. A slight reaction to skin tests became evident 
in one patient. Transfusion therapy in these patients 

increases the serum urate concentration and the urine 

uric acid excretion and decreases urine nucleoside 
eXcretion.‘*3.‘35”36 Partial and transient responses to 

thymosin administration or thymus epithelial trans- 
plants are reported.‘l’ Administration of uridine and 

hypoxanthine with or without allopurinol has no 

apparent beneficial effect on the immune function. 
Since in vitro studies suggest that deoxycytidine may 

reverse deoxyadenosine or deoxyguanosine induced 
toxicity,43*96-‘00 it is possible that this therapy in 

patients may be helpful. 

The molecular pathology by which the enzyme 

deficiency causes the immune dysfunction may be 
related to deoxyguanosine accumulation. Deoxygua- 

nosine is toxic to T-lymphoblasts and not to B-lympho- 
blasts. 9~98~‘38 T-lymphoblasts accumulate dGTP and 
B-lymphoblasts do not. Inhibition of ribonucleotide 
reductase by dGTP and subsequent inhibition of DNA 

synthesis is the major mechanism by which toxicity to 

the immune system may occur’o9 (Fig. 3B). The role of 

a decrease in S-adenosylhomocysteine hydrolase in 
this disease has not been detined.79 

Myoadenylate deaminase deficiency. A new en- 
zyme deficiency associated with myopathy has been 

recognized in a series of 5 cases of 250 biopsies.‘39 All 
patients were young males with muscle weakness or 
cramping after exercise, in many instances since child- 

hood. Decreased muscle mass, hypotonia and weak- 
ness are evident on physical exam. There is a mildly 
elevated creatine phosphokinase and nonspecifically 

abnormal electromyograms. Although the patients 
release lactate into the venous blood during exercise, 

there is a failure to release ammonia. While the 

muscle biopsy is normal, the stain for adenyIate deam- 
inase is negative. Homogenized muscle is deficient in 

adenylate deaminase, while the enzyme is normal in 
erythrocytes and neutrophils. 

The original observations about this disorder have 

been expanded’40’4’ and now are confirmed by other 

workers.‘42 Males and females may have this disorder. 
Three of 6 female patients have a poorly understood 
associated collagen disease such as systemic lupus 
erythematosus, polymyositis or mixed connective 
tissue disease.‘43 Rabbit antiserum to human purified 

myoadenylate deaminase reacts with human enzyme 
from muscle, but not from erythrocytes, neutrophils or 
platelets.14’ The data suggest a separate genetic origin 
for the muscle enzyme and explains the basis for a 
deficiency of the muscle enzyme alone. 

The frequency (5-6 per 250 muscle biopsies)‘39*‘42 of 
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the enzyme deficiency and the diversity of patients 
involved have suggested that this enzyme deficiency 
may represent a normal variant or a subclinical state 

rather than an actual disease.‘42 However, recent 
experiments indicate an important possible role of 

adenylate deaminase in the maintenance of a normal 
adenine nucleotide ~001.‘~~ ATP depletion is acceler- 

ated in the contracting muscle from a patient with this 
enzyme deficiency. This may be related to the inter- 

ruption of the purine nucleotide cycle of muscle.37 
Xanthine oxidase deficiency. Xanthinuria is a 

rare disorder characterized by low serum urate 

concentrations and urinary uric acid excretion and 

elevated urinary excretion of hypoxanthine and 
xanthine (Reviewed in Reference 145). This autoso- 

ma1 recessively inherited disease is associated with a 

gross deficiency of xanthine oxidase in the jejunal 
mucosa or liver. Xanthine stones, hypoxanthine and 
xanthine in muscle, and osteoarthritis have been 

observed in this disorder. Fructose infusion in a patient 
with xanthine oxidase deficiency shows an increase of 

urinary hypoxanthine and no change in the serum 
urate level or urinary uric acid excretion. These 

changes illustrate the block in purine nucleotide 
degradation at xanthine oxidase.47 

Guanine deaminase deficiency. The complete 
absence of guanine deaminase activity and of the 

inhibitory protein has been reported in a single 
newborn, full-term boy, who died two days after 
birth.‘46 No specific clinical features were described. It 
remains unclear what is the significance of this asso- 

ciation of guanine deaminase with newborn death. 

Increased Degradation 

Increased nucleotide degradation may occur by a 

number of different mechanisms which alter the regu- 

lation of the pathway. If the subsequent purine cata- 
bolic pathway is not blocked, this may result in an 

increased synthesis of uric acid and may be clinically 
expressed as hyperuricemia, hyperuricosuria and gout. 
Not all disorders of nucleotide degradation ultimately 

alter uric acid synthesis. 
Increased enzyme activity. A 4570-fold increase 

of erythrocyte adenosine deaminase activity has been 
observed in the kindred with hereditary hemolytic 
anemia.39 Patients with this dominantly inherited 
entity have a mild anemia and a decrease of erythro- 
cyte adenine nucleotide levels to less than 50% of that 
comparable with reticulocyte-rich blood. The de- 
creased erythrocyte adenine nucleotide concentration 
appears to be responsible for the hemolytic anemia. 
This may result from diminished reutilization of 
adenosine to AMP as a result of excessive destruction 

of adenosine by elevated adenosine deaminase activi- 

ty. 
Hepatic xanthine oxidase is increased in gouty 

patients who exhibit an overproduction of uric acid 

and in one patient with a partial deficiency of hypo- 
xanthine-guanine phosphoribosyltransferase.‘473’48 

This may be a secondary change related to the induc- 

tion of xanthine oxidase.‘45 Administration of RNA, 
hypoxanthine, ethylaminothiadiazole or fructose to 

human subjects causes liver xanthine oxidase to 
increase from 2 to 4 times higher than the control 

group.‘47 
Decreased reutilization and increased sub- 

strate. Seventy-five percent of adenine nucleotide 
degraded to hypoxanthine in normal individuals is 

reutilized to IMP.48 This may represent an important 

homeostatic mechanism for the maintenance of the 

nucleotide pool, since a loss of this pathway leads to 
increased purine excretion and elevated IMP forma- 

tion by de novo purine synthesis.‘49 The formation of 
increased quantities of nucleotides by this mechanism 
or by increased nucleic acid degradation will provide 

increased substrate for the purine catabolic pathway 

and will result in an accelerated rate of degradation. 
The ability to reutilize hypoxanthine is lost in 

hypoxanthine-guanine phosphoribosyltranferase defi- 
ciency.48 Patients with this X-linked enzyme defi- 

ciency overproduce uric acid and develop hyperuri- 
cemia and hyperuricosuria.‘49 The inability to reutilize 

hypoxanthine is an important contributor to purine 

overproduction in these patients, since oxidation to 
uric acid then remains the only pathway for hypoxan- 
thine metabolism. Inability to reutilize hypoxanthine 
and increased activity of purine biosynthesis de novo 

from increased intracellular phosphoribosylpyrophos- 

phate together account for the overproduction of uric 

acid (Fig. 5). In the complete enzyme deficiency, 

patients have Lesch-Nyhan syndrome, a disorder 
characterized by self-mutilation, choreoathetosis. 

mental retardation, spasticity and uric acid calculi 

(Reviewed in Reference 149). In the partial enzyme 
deficiency, patients have Kelley-Seegmiller syndrome, 

a disorder characterized by gout, recurrent uric acid 
calculi and occasional mild central nervous system 
disorders (Reviewed in Reference 149). In purine 

nucleoside phosphorylase deficiency (described 
above), there is a secondary loss of hypoxanthine 

reutilization and increased de novo purine synthesis. 
This results from the inability to form hypoxanthine, a 
product of purine nucleoside phosphorylase, and 
increased intracellular phosphoribosylpyrophosphate 
levels, respectively. 

The complete deficiency of adenine phosphoribosyl- 
transferase is characterized by a loss of the ability to 
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GLUTAMINE nucleotide substrate for degradation. This may result 

in increased synthesis of uric acid. Hematological 

+ [ DE NOVO SYNTHESIS 1 malignancies or other hematological disorders leading 

to bone marrow hyperplasia classically cause hyperu- 
ricemia on this basis. In psoriasis, the increased turn- 

over of epithelial tissue may lead to hyperuricemia by 
means of increased synthesis of uric acid. 

t REUTILIZATION 
Decreased ATP. A sudden diminution of ATP 

concentration and the resultant elevation of AMP and 

t HYPOXANTHINE 

I 
t 

t XANTHINE 

1 

IMP levels appear to activate a cascade of nucleotide 
breakdown to purine catabolic intermediates and uric 

acid. A substantial decrease in the intracellular 

concentration of ATP may result in profound morpho- 
logical and functional changes with persistent ATP 

4 URIC ACID levels of 20%25% of control values.“’ In the myocar- 

dium there is a correlation between a diminution of 
Fig. 5. Mechanism for hyperuricemia in hypoxanthine-guan- 

ine phosphoribosyltransfeferase (HGPRTI deficiency. The absence 
ATP content of muscle and impairment of left ventric- 

of HGPRT leads to a loss in the ability to reutilize hypoxanthine. ular function.‘56 Hypophosphatemia leads to decreased 
Thus all hypoxanthine formed is oxidized to uric acid. The ATP concentrations and heart failure’57m’59 or even 
decreased hypoxanthine reutilization leads to a sparing of PP- 
ribose-P, the other substrate for HGPRT. PP-ribose-P is a rate- 

rhabdomyolysis.‘60 In myocardial ischemia the degree 

limiting substrate for purine biosynthesis de nova. The resultant of ATP loss is correlated with a lethal injury.‘6”‘62 
elevated intracellular concentration of PP-ribose-P causes an 
increase in purine biosynthesis de nova. Thus both decreased 
reutilization of hypoxanthine and increased purine biosynthesis de 
nova lead to overproduction of uric acid in HGPRT deficiency. 

reutilize adenine. There results an excessive excretion 
of adenine and its oxidation product, 2,8-dihydrox- 
adenine.‘50~15’ The increased degradation of these 

compounds is small in relation to total purine excre- 
tion. However, 2,8-dihydroxyadenine is insoluble and 

stones composed of this compound are formed. The 
major feature of almost all patients with this autoso- 

ma1 recessively inherited disorder is recurrent renal 

calculi formed from adenine and its oxidation prod- 

ucts. Since these stones are similar to uric acid, they 

may be erroneously identified as such. These patients 
have a normal serum urate concentration and no 
evidence for gout. In contrast to the complete deficien- 

cy, the partial deficiency of adenine phosphoribosyl- 
transferase has no definite associated clinical 
features.15* 

Increased substrate alone may cause elevated 
purine nucleotide degradation. An error of purine 
metabolism, increased activity of phosphoribosylpyro- 
phosphate synthetase, leads to increased intracellular 
concentrations of phosphoribosylpyrophosphate and 
increased de novo purine synthesis (Reviewed in 
Reference 153). In this rare X-linked disorder’54 there 
is a massive overproduction of uric acid with gout and 
uric acid calculi, but no evidence of central nervous 
system dysfunction. A large tumor or hyperplastic 
tissue may have increased turnover of nucleic acid 
(Reviewed in Reference 153) and generate increased 

(A) increased degradation of ATP. Increased 
degradation of ATP has been described above for the 
fructose infusion model, where ATP is consumed in 

the formation of fructose-l-P, and in muscular exer- 

cise, where ATP is consumed during contraction of 
actin and myosin. 

Hyperuricemia, gouty arthritis and uric acid calculi 

may complicate the clinical course of Glycogen Stor- 
age Disease Type I.‘63.‘64 The glucose-6-phosphatase 

deficiency may activate a mechanism similar to fruc- 
tose-induced hyperuricemia.‘h5m’67 In this disorder the 

triggering mechanism for increased production of uric 

acid may be the insulin counter-regulatory hormonal 

response to hypoglycemia and the inability to synthe- 
size glucose (Fig. 6). Recent studies indicate that 

parenteral glucagon causes a rise in the serum urate 
level and urinary uric acid excretion in enzyme defi- 
cient patients.‘66 This activity of glucagon is accom- 

panied by a reduction in hepatic ATP concentrations 

and a marked elevation of glucose-6-phosphate, fruc- 
tose-6-phosphate and fructose- 1 ,6-diphosphate.16’ The 
depletion of ATP and the trapping of inorganic phos- 

phate in the form of phosphorylated sugar compounds 
set the stage for activation of purine nucleotide degra- 
dation and may explain the increased synthesis of uric 
acid (Fig. 6). The elevated rate of purine biosynthesis 
de novo observed in this disease’63.‘64 may result secon- 
darily from the depletion of the adenine nucleotide 
pool. Increased lactate formation inhibits the renal 
excretion of urate and accentuates the hyperuricemia. 
Further support for the operation of these mechanisms 
is derived from the therapeutic approach of providing 
continuous nutrition and preventing hypoglycemia and 
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Fig. 6. Mechanisms for hyparuricamia in glucose-6-phos- 
phataaa (GL-6-P’ASE) deficiency. Hypoglycemia may be the 
trigger for the abnormalities in this enzyme deficiency. Hypo- 
glycemia cauaa5 glucagon release and this activates glycogan 
phoaphorylaaa to dagrada glycogan to glucose-6-phosphate. 
There results an increased intracellular concentration of 
glucose-(i-phosphate, fructose-bphoaphate and fructose-l .6- 
dipho5phate. These events lead to a depletion of ATP concan- 
trationa, an activation of Purina nucleotide degradation and 
increased synthesis of uric acid. The increased accumulation 
of phoaphorylatad sugars leads to hyparlacticacidamia and this 
decreases the renal axcratin of urata. 
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the associated hormonal response. This treatment 
corrects the hyperuricemia, and hyperuricosuria and 

other metabolic abnormalities which accompany this 

enzyme deficiency.‘65.‘67 

The hyperuricemia accompanying disorders of fruc- 
tose metabolism may result from similar mechanisms. 
Hypoglycemia complicates fructose- 1 ,&diphospha- 

tase deficiency. This could contribute to the observed 
hyperuricemia by increased production of uric acid 

and decreased urate excretion from the hyperlacticaci- 
demia in a manner similar to glucose-6-phosphatase 

deficiency. In hereditary fructose intolerance there is a 

block in the further metabolism of fructose-l-phos- 

phate and this compound may accumulate.‘68 Fruc- 
tose-induced hyperuricemia is more pronounced in 

these patients, whose disease state is worsened by 
administration of this sugar in any amount. Thus 

fructose intake may trigger increased uric acid synthe- 
sis from the phosphorylation of fructose, an accumula- 

tion of fructose- 1 -phosphate, subsequent depletion of 
hepatic ATP concentrations, and activation of purine 
nucleotide degradation. Hereditary fructose intoler- 

ance is treated by limiting fructose ingestion.‘@ This 
avoids the activation of purine nucleotide degradation. 

(B) Decreased synthesis of ATP. ATP is formed 
by mitochondrial respiratory-chain phosphorylation, 
using ADP, O,, and inorganic phosphate as substrates 
according to the following overall equation: 

3ADP + 3Pi + l/2 O2 
+ NADH + H’ - 3ATP + 4Hz0 + NAD’ 

A lack of any of these components will impair ATP 

synthesis. The resultant decrease of ATP concentra- 

tion may trigger a cascade of purine nucleotide degra- 

dation as described above. Tissue hypoxia and hypo- 

phosphatemia are recognized causes of decreased ATP 
synthesis. The effects of hypophosphatemia were 

described above.‘s7~i60 

Tissue hypoxia has been a well recognized cause of 
cellular adenine nucleotide depletion. The adenine 

nucleotide depletion is accompanied by the appear- 
ance of purine catabolic intermediates, which are 

metabolic markers for tissue ATP degration. In 

ischemic mammalian myocardium there is a marked 

decrease in ATP and creatine phosphate levels, with 
an increase in organic phosphate, inosine, adenosine, 

IMP, and a small increase in ADP and AMP concen- 
trations.‘62.‘69.‘70 Inorganic phosphate, inosine, and 
hypoxanthine have been measured in myocardial 

venous drainage and found to correlate with adenine 
nucleotide and phosphocreatine depletion over hypoxia 
in dog heart muscle.“’ In sequential biopsies during 
experimental myocardial infarction in dogs a substan- 

tial diminution of ATP content occurs in both 

infarcted and noninfarcted areas of the heart as 
compared to uninjured cardiac muscle.‘72.‘73 Similar 
mechanisms appear to exist in humans since elevated 
concentrations of adenosine or hypoxanthine have 
been detected in coronary sinus blood of patients with 
angina pectoris induced by atria1 pacing.‘74 “’ 

Evidence for depletion of tissue adenine nucleotides 
and release of purine nucleotide degradation interme- 
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diates have been observed in other situations including 

hemorrhagic shock, hypoxia, hypothermia, renal 
&hernia, hyperthermic stress, muscle ischemia, and 

brain ischemia in animals.“‘-‘93 Elevated blood levels 
of uric acid, allantoin or hypoxanthine provide a useful 

plasma correlation with these changes. Allantoin, an 
oxidation product of uric acid, is the end-product of 

purine metabolism in certain animals. In humans, 

hyperuricemia may result from diseases leading to 
tissue hypoxia. In acute myocardial infarction in man 

there is hyperuricemia with an expansion of the uric 

acid pool and an increased uric acid turnover 

rate. I96197 Hyperuricemia also occurs during human 
circulatory collapse,“’ smoke inhalation,‘99 respiratory 

acidosis,*“” and decompensation in chronic bronchi- 
tis.*” Increased serum urate concentrations and 
urinary uric acid excretion are observed to accompany 

perinatal hypoxia.“* Respiratory distress syndrome or 

other hypoxic problems are accompanied by more 

pronounced increases of these variables*‘* and by 

elevated plasma,*03 cerebrospinal fluid,*04 urinary205 or 

renal tissue206 hypoxanthine concentration. 

The prevention of further purine nucleotide degra- 

dation and stimulation of ATP synthesis together with 
the reversal of the precipitating factor may provide an 

optimal approach for the management of patients with 
decreased synthesis of ATP. The consequences of 

hypophosphatemia may be managed by inorganic 
phosphate replacement therapy. In tissue hypoxia, 

increased synthesis of ATP may be promoted by 

reversal of hypoxia and by different combinations of 
allopurinol, hypoxanthine, adenine, inosine, Kreb’s 

cycle intermediates, and glucose, potassium and 

insulin. Therapy of myocardial infarction is aimed at 

increasing ATP synthesis and decreasing its utilization 

by improving myocardial perfusion, augmenting ATP 

production by anerobic glucolysis with glucose- 

insulin-potassium and hypertonic glucose, and reduc- 
ing myocardial ATP consumption by beta blocking 
agents and balloon counter-pulsation.*” Glucose, 

insulin and potassium or inhalation of an oxygen rich 
gas mixture have been found to minimize cardiac 

necrosis and to maintain ATP levels in the infarcting 

myocardium2” or to have an inotropic response in 
congestive heart failure.*@’ Inosine, a purine nucleo- 
side, improves the performance of ischemic myocar- 

dium2” and enhances the preservation of ischemic 

kidney.*” Inosine increases ATP levels by its degrada- 
tion to hypoxanthine and ribose-l-phosphate, com- 
pounds which promote ATP synthesis. ATP-Mg 
increases ATP concentrations during hepatic isch- 
emia.2’2 

Allopurinol may be useful in the management of 
disorders of purine nucleotide degradation by blocking 

the pathway at xanthine oxidase and preventing the 
conversion of hypoxanthine to useless metabolic end 

products. The accumulated hypoxanthine could be 
reutilized to form nucleotides and ultimately ATP.‘” 

In tissues known not to contain xanthine oxidase, 
aliopurinol may be active at another site either directly 

or as one of its metabolites2’ In humans, allopurinol is 
rapidly oxidized to oxipurinol by xanthine oxidase. 

Allopurinol or oxipurinol may be phosphorylated to 
ribonucleotide derivatives.2’62’6 A modification of 

purine nucleotide degradation by allopurinol is 

supported by its stimulation of hypoxanthine or 
adenine uptake into myocardial cell nucleotides.2’7 

Pretreatment with allopurinol usually improves 
function and nucleotide levels, but treatment after the 
acute event may not be consistently effective. Sodium 

allopurinol in dosages ranging from 50-100 mg/kg 

has been shown to reverse the effects of experimental 
myocardial hypoxia,2’s*2’9 and irreversible hemor- 

rhagic shock in dogs treated with hypoxanthine.‘*’ In a 
similar experiment, allopurinol, adenine, hypoxan- 

thine and oxaloacetate produced the best survival 

(43%).222 Allopurinol has also been found to preserve 
kidneys223.224 and small intestine”’ and to increase 
hepatic adenine nucleotide resynthesis after olige- 
mia,226 further demonstrating a potential role in main- 
taining normal cell integrity during ischemia. 

However, this drug did not modify infarct size when 
administered 15 minutes after infarction,227 perhaps 

because an irreversible depletion of ATP had already 

occurred. 
The application of these promising experimental 

observations to human disease processes that have 
proven refractory to current management appears to 
be indicated. 

SUMMARY AND CONCLUSIONS 

The pathway of purine nucleotide degradation is a 
regulated series of reactions by which purine ribonu- 
cleotides are degraded to uric acid in man. Two major 
categories of disorders occur. A block of degradation is 

associated with syndromes involving immune dysfunc- 
tion, myopathy or renal calculi. Increased degradation 

of nucleotides occurs with syndromes characterized by 
hyperuricemia, gout, renal calculi, anemia or acute 
hypoxia. Some disorders associated with increased 
purine nucleotide degradation are characterized by 
marked decreases in intracellular ATP concentration 
and increases in the serum urate concentration and 
elevated uric acid, oxypurine, and inosine excretion. 

Management of disorders of purine nucleotide 
degradation is dependent upon an understanding of 
the metabolic mechanisms of the disease state. In 
blocks of the pathway, symptomatic therapy may 
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reverse the consequence of the block. In other 
instances, specific biochemical therapy to correct an 
enzymatic defect has been attempted, including 
enzyme replacement therapy. Patients with increased 
purine nucleotide degradation with overproduction of 
uric acid need protection from the adverse effects of 
excess uric acid production. This is achieved by inhib- 
iting uric acid synthesis with allopurinol. Patients with 
disorders leading to decreased intracellular concentra- 
tions of ATP require therapy to reverse the underlying 

disorder, to inhibit further purine nucleotide degrada- 
tion and to stimulate ATP synthesis. 

Application of the promising experimental observa- 
tions about the molecular pathology underlying disor- 
ders of purine nucleotide degradation will provide 
innovative approaches to diagnosis and management 
of the associated diseases. Already, concepts of 
enzyme blocks and alteration of immune function has 
lead to clinical trials of deoxycoformycin, a potent 
inhibitor of adenosine deaminase.22s-23’ 
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