Variational Principles for Eigenvalues of Compact Nonselfadjoint Operators*

A. G. Ramm
Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109
Submitted by C. L. Dolph

Abstract

Variational principles for eigenvalues of compact nonselfadjoint operators are given.

I

Let T be a linear compact operator on a Hilbert space H, λ_{j} be its eigenvalues, $\left|\lambda_{1}\right| \geqslant\left|\lambda_{2}\right| \geqslant, \ldots, r_{j}$ be the moduli of the real parts of the eigenvalues ordered so that $r_{1} \geqslant r_{2} \cdots$. Note that r_{j} is not necessarily equal to $\left|\operatorname{Re} \lambda_{j}\right|$. Let L_{j} be the eigensubspace of T corresponding to λ_{j}, M_{j} be the eigensubspace of T corresponding to $r_{j}, L_{j}=\sum_{k=1}^{j}+L_{k}, \tilde{M}_{j}=\sum_{k=1}^{j}+M_{k}$. Let t_{j} be the moduli of the imaginary parts of the eigenvalues, $t_{1} \geqslant t_{2} \geqslant, \ldots, \tilde{N}_{j}=$ $\sum_{k=1}^{j}+N_{k}, N_{j}$ be the eigensubspace of T corresponding to $t_{j}, \tilde{L}_{j}^{\mathrm{U}}+\tilde{L}_{j}=H$, the sign $\dot{+}$ denotes the direct sum, \amalg denotes the direct complement in H.

Theorem 1. Under the above assumptions the following formulas hold:

$$
\begin{align*}
\left|\lambda_{j}\right| & =\max _{x \in \tilde{L}_{j-1}^{\|}} \min _{\substack{y \in H \\
(x, y)=1}}|(T x, y)|, \tag{1}\\
r_{j} & =\max _{x \in \tilde{\bar{M}}_{j-1}^{\mathrm{U}}} \min _{\substack{y \in H \\
(x, y)=1}}|\operatorname{Re}(T x, y)|, \tag{2}\\
t_{j} & =\max _{x \in \tilde{N}_{j-1}^{\mathrm{U}}} \min _{\substack{y \in H \\
(x, y)=1}}|\operatorname{Im}(T x, y)| .
\end{align*}
$$

Proof of Theorem 1. The proof of (2') is similar to the proof of (2). So let us prove (1) and (2). First let us prove formulas (1) and (2) for $j=1$, i.e.,

$$
\begin{equation*}
\left|\lambda_{1}\right|=\max _{x} \min _{\substack{y \\(x, y)=1}}|(T x, y)|, \tag{3}
\end{equation*}
$$

* Supported by AFOSR F4962079C0128.

$$
\begin{equation*}
r_{1}=\max _{x} \min _{\substack{y \\(x, y)=1}}|\operatorname{Re}(T x, y)| . \tag{4}
\end{equation*}
$$

For a fixed x it is possible to write $T x=\lambda x+z$, where $z \in x^{-}, x^{\perp}$ is the subspace of all vectors orthogonal to x and λ is a number. Thus $(T x, y)=$ $\lambda+(z, y)$. Let us represent y in the form $y=x|x|^{-2}+u, u \in x^{\perp}$. Here the condition $(x, y)=1$ was taken into account. Finally one gets $(T x, y)=$ $\lambda+(z, u)$. From here is follows that

$$
\left.\begin{array}{rl}
\min _{y}|(T x, y)|=\min _{u}|\lambda+(z, u)| & =|\lambda| \quad \text { if } \quad z=0 \\
& =0 \quad \text { if } \quad z \neq 0, \\
\max _{x} \min _{y}|(T x, y)| & =\left|\lambda_{1}\right|, \\
(x, y)=1
\end{array}\right] \begin{aligned}
\min _{\substack{y \\
(x, y)=1}}|\operatorname{Re}(T x, y)| & =\min _{u}|\{\operatorname{Re} \lambda+\operatorname{Re}(z, u)\}| \tag{7}\\
& =|\operatorname{Re} \lambda| \quad \text { if } z=0 \\
=0 \quad & \text { if } z \neq 0 .
\end{aligned}
$$

From (7) formula (4) follows. Suppose that formulas (1), (2) are proved for $j \leqslant n$. Then we can follow the same line of reasoning and take into account that all the eigenvalues of T in the subspace $\tilde{L}_{n}^{\mathrm{L}}$ have moduli $\leqslant\left|\lambda_{n+1}\right|$ and in the subspace $\tilde{M}_{n}^{\mathrm{U}}$, the operator T has $\max \left|\operatorname{Re} \lambda_{j}\right|=r_{n+1}$. For example,

$$
\max _{x \in \tilde{I}_{j-1}^{U}} \min _{\substack{y \in H \\(x, y)=1}}|(T x, y)|=\max _{\substack{x \in \tilde{L}_{j-1}^{U} \\ \tau x=\lambda_{x}}}|\lambda|=\left|\lambda_{j}\right| .
$$

Remark 1. There is a one-to-one correspondence between $\left\{M_{j}\right\}$ and $\left\{L_{j}\right\}$. Namely, take $M_{i}=L_{j(i)}$, where $j(i)$ is so chosen that the eigenvalue $\lambda_{j(i)}$ has $\left|\operatorname{Re} \lambda_{j(i)}\right|=r_{i}$.

Remark 2. If $\left\|T_{n}-T\right\| \rightarrow 0$ and T_{n} are compact, then $\lambda_{j}\left(T_{n}\right) \rightarrow \lambda_{j}(T), \forall j$. Thus $\left|\lambda_{j}\left(T_{n}\right)\right| \rightarrow\left|\lambda_{j}(T)\right|, \operatorname{Re} \lambda_{j}\left(T_{n}\right) \rightarrow \operatorname{Re} \lambda_{j}(T)$. This fact permits an approximate calculation of the spectrum of T using in (1), (2) the operator T_{n} instead of T. One can take, e.g., n-dimensional operator T_{n}, i.e., dim range $T_{n}=n$.

Remark 3. Principles similar to (1), (2) were announced by Popov [1] for the case $\operatorname{Re} \lambda_{j}>0$, but instead of $\tilde{M}_{n-1}^{\mathrm{U}}$ in (2) in [1] appears $\tilde{L}_{n-1}^{\mathrm{U}}$ which seems to be erroneous. The line of arguments in Popov [1] is quite different from the ones given above. In [1] L_{j} denotes the root space corresponding to λ_{j} and minimization over y in (1) is taken over a different set.

The same arguments lead to variational principles for the spectrum of an unbounded linear operator with a discrete spectrum. Let operator A be a closed linear densely define operator on $H, \lambda_{j}=\lambda_{j}(A)$ its eigenvalues, $\sigma(A)=$ $\left\{\lambda_{j}\right\}, \sigma(A)$ denotes the spectrum of A. Each λ_{j} is an isolated eigenvalue of finite algebraic multiplicity. The eigenvalues are ordered so that $\left|\lambda_{1}\right| \leqslant$ $\left|\lambda_{2}\right| \leqslant \cdots$. Let $r_{1} \leqslant r_{2} \leqslant \cdots$ be the moduli of real parts of the eigenvalues of A. Again we emphasize the fact that r_{j} is not necessarily equal to $\left|\operatorname{Re} \lambda_{j}\right|$, but it is possible to establish a one-to-one correspondence between $\left\{\lambda_{j}\right\}$ and $\left\{r_{j}\right\}$ by setting $\left|\operatorname{Re} \lambda_{j(i)}\right|=r_{i}$, as above. The variational principles read

$$
\begin{align*}
\left|\lambda_{j}\right| & =\min _{x \in \tilde{L}_{j-1}^{\mathrm{U}}} \min _{\substack{y \in H \\
(x, y)=1}}|(T x, y)|, \tag{8}\\
r_{j} & =\min _{x \in \tilde{M}_{j-1}^{\mathrm{U}}} \min _{\substack{y \in H \\
(x, y)=1}}|\operatorname{Re}(T x, y)| . \tag{9}
\end{align*}
$$

Here, as in Section $1, \tilde{L}_{j}=\sum_{k=1}^{j}+L_{k}$ and K_{k} is the eigensubspace corresponding to λ_{k}. A similar meaning is ascribed to M_{j}. The proof of principles (8), (9) is similar to that of (1), (2).

Remark 4. For the moduli of the imaginary parts of the eigenvalues $t_{1} \leqslant t_{2} \leqslant \cdots$, the following formula holds:

$$
t_{j}=\min _{x \in \tilde{N}_{j-1}^{\mathrm{U}}} \min _{\substack{y \in H \\(x, y)=1}}|\operatorname{Im}(T x, y)| .
$$

and can be proved similarly.

Reference

1. P. Popov, Variational principles for spectrum of nonselfadjoint operators, Soviet Math. Dokl. 208 (1973), 290-292.
