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A martingale argument is used to derive the generating function of the number of i.i.d. 
experiments it takes to observe a given string of outcomes for the first time. Then, a more general 
problem can be studied: How many trials does it take to observe a member of a finite set of strings 
for the first time? It is shown how the answer can be obtained within the framework of hitting times 
in a Markov chain. For these, a result of independent interest is derived. 

Hitting times runs 
sequence patterns martingale 

1. Introduction 

In recent years there has been an increasing interest in the following type of 
questions: If letters are determined randomly and lined up in a string, how long do we 
have to wait to observe a given word for the first time? Or, how long do we have to 
wait to observe a member of a certain class of words for the first time, and which will it 
be? For a more complete history, the reader might wish to consult [2], [4], and [6], 
and the references quoted therein. 

In this note, answers are given in terms of the expected value and the moment 
generating function of the waiting times, for which explicit formulas are develope:d. 
In the existing literature, mostly combinatorial arguments have been used. In 
contrast, our note first presents some general results for hitting times in a Markov 
chain (Sections 2 and 3) which are useful if the expected values and the moment 
generating functions of the hitting times are known. This is indeed the case for the 
questions at hand. In Section 4 martingale arguments are used to derive an explicit 
formula for the moment generating functions, which then can be substituted in the 
general results of Sections 2 and 3. 
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2. Hit-t@ times in a Markov chain 

LetX0,X1,Xz,. . l 
be a Markov chain with stationary transition probabilities. We 

denote the states by a, b, c, . l . and, for simplicity, assume a finite number of states. 

Let 

xb =min{t:Xt=bIXo=a} (1) 

be the waiting time for state b when the Markov chain starts at state a. Let 

cab = E[Nab] (2) 

and 

g&)=E[+], 0~2 < 1 (3) 

denote its expectation and generating function, respectively. Often we shall omit the 
argument z and Write gab instead of &b(z). We assume that all states communicate 
with each other. Together with the assumption of a finite state space, this implies that 
e& is finite for all a, b. 

Let bl, bz, . . . , b, be p1 different states. We are interested in the questions which of 
these states will be hit first (if we start at X0 = 0, say) and when will this happen. For 
simplicity, we shall write j and Ni instead of bi and Noi, respectively. Let 

N = min{Nt, . . . , N,,} 

and let 

poj = P(N = Ni) 

(4) 

(5) 

denote the probability that state j is the first to be hit. 
By conditioning, we see that 

eoj = E[Nj] = E[N] + E[Nj -N] = E[N] + i pctiejj, 
j=l 

where ejj.= 0. Since 

po1+ l l * +pon = 1, 

(6) 

(7) 

we have a system of n + 1 linear equations for the unknowns E[N], ~01, I 
!  . . 9 POn: 

The entries of the coefficient matrix in row 0 and column 0 are as show; the (i, j)th 
entry is 4ii for i, j = 1,2, . . . , n. 
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In the special case n = 2, this matrix equation can be solved readily; we find that 

E[N] = 
e0lel2 + e02e21- el2e21 

e12 + e21 
(9) 

and a formula that appears as Corollary 2, p. 65, in [l]: 

e02 + e21- e01 e01+ e12 - e02 
PO1 = 

el2+e21 ’ 
PO2 = 

e12t-e21 l 

Eq. (8) has a unique solution in the general case: 

(10) 

Theorem 2.1. The coefficient matrix of (8) is nonsingular. 

Proof. Let A4 denote the coefficient matrix, and let 

A= 

1 

e01 

e02 
. 
. 
. 

e0, 

eji 
(11) 

We apply Cramer’s rule in (8) to isolate the unknown E[N], and find that 

E[N] l det M = det A. (12) 

We shall use this and the fact that E[Nj is positive to show by induction with respect 
to n that 

(-1)” detM>O. (13) 

First, for n = 1, det M = - 1. For the induction step, we assume that (13) holds for 
any set of n different states and denote by M n+l a matrix corresponding to M for 
yx + 1. We shall show that dign(det M,+i) = -sign(det M). 

We expand det M,+i by minors using column 0 to see that 

n+l 

det Mn+l= C (-1)’ det Bk, (14) 
k=l 

where the matrix Bk is obtained by deleting column 0 and row k in &&+I. Let tdk 
denote the matrix that results when the kth column of matrix Bk is moved to the 
front. Hence det Bk = (-l)k-l det Ak, and (14) reduces to 

n+l 

det Mn+l = - c det Ak. 
k=l 

Each of the matrices Ak is of the same type as the matrix A. Thus, because of (12) and 
the induction assumption, sign(det Ak) = sign(det M). But from this and (15) it 
follows that sign(det Mn+i) = -sign(det M). 
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3. Generating functions 

From (8) ‘we can compute the probabilities for each state among bl, . . . , b, to be 
hit first and also the expected waiting time until the first hit. This computational 
method is useful for only those Markov chains for which eij can be easily calculated. 
One such example is the process of repeated experiments with sequence patterns of 
experimental outcomes as the states. For this Markov chain, a martingale method for 
calculating eij is given in [6]. In the next section we shall extend this method to the 
calculation of gii* In this section we derive a system of equations that allow us to 
compute P(N = t) and P(N = Nj = t) for any state !Q and positive integer t in terms of 

gii. 

Let 1j denote the indicator function of the event that N = Nfi By writing Ni = 
N + (Ni -N) and distinguishing according to which of the states is hit first, we see that 

goi = E[rN,] = i giE[ZNPi]. 
j-1 

(16) 

Note that this generalizes (6), which can be retrieved by taking the derivative at z = 1. 
Combining (16) with the obvious identity 

E[z?I]+* l l +E[rNI,]-E[zN] 

we get the following matrix equation: 

0 

m 
/ g = 

ii 

02 ’ 
. 
. 
. 

gon 

(17) 

Then, the coefficient of zr in the power series of E[z NIj] is the probability P(N = Ni = 
I’). 

There is a connection between the coeficient matrix A4 of (8) and the coefficient 
matrix, say G(z), of (18). Using 

and some well-known rules for the calculation of determinants, we find that 

--$detG(&l=O fork=O,...,n-2, (20) 

d”-1 
n_l det G(r)l,=l = (n - l)! det M. 
dz (21) 

In other words, if det G(z) is expanded by powers of (z - l), the first nonzero term is 
detM* (z-l)n-l . In particular, this shows that the function det G(z) is not identical 
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to zero. Therefore, (18) can be solved - at least in principle. In the special case n = 2 
we find that 

and 

E[zN~ = go1 + go? -&2&l - &l&f12 

1 - g12g21 
(22) 

E[z “r,] = 
go1 - go2g21 go2 - g01t312 

1 -g12g21 ’ 
E[zN12] = -. 

1 - g12g21 
WI 

Remark. As pointed out and elegantly shown by a referee, (18) has a unique solution 
for any Markov chain with countable state space, since: G, = (gij), i, j = 1, . . . , n, is 
nonsingular for all n. This is obvious for n = 1. By the induction assumption G, is 
nonsingular. Then the system 

Xlglj +’ ’ ‘+&&j=grt+lj9 (24) 

j=l , . . . , n, has a unique solution which (because of (18) with 0 replaced by n + 1) 
must be xi = &+l[zNl’~j. The matrix G ,,+I is singular if and only if this solution 
satisfies (24) for j = n + 1, i.e., if 

E,,l[zNll]gl n+1+ l l l +&+l[ZNLlgnn+l = &+l n+l* (25) 

The left-hand side is the generating function of the time needed to reach bn+l starting 
in 6,+1 if one first has to visit the set (61, . . . , 6,). For 0 s z c 1 its value is strictly less 
than one, which is the value of the right-hand side. 

4. Sequence patterns in repeated experiments 

We shall use the following notation: If B = (61,. . . , bk) and C = (cl,. . . , Ci) are 
two ordered sequences, the symbol (B/C)j stands for the condition that 

bl= ci+l-j, l l l 9 bj = Ci, 

i.e., that the first j members of B are the last j members of C. Note that this condition 
cannot be satisfied unless j s min(k, ;), 

We consider an experiment that has countably many possible outcomes. This 
experiment is performed repeatedly and independently. Let Z[ denote the tth 
observation. If B = (bl, , . . , bk) is an ordered sequence of possible outcomes, we are 
interested in the number of experiments it takes to observe B for the first time. We 
shall also study the more general (but perhaps less natural) case, where a sequence 
A = (al,. . . , a,) is already given. at the beginning. Then it is assumed that B is not a 
connected subsequence of A. 

We associate to this problem a Markov chain as follows: The state space consists of 
the integers 0, 1, . . . , k, and the state at time t is 

St = max{j: (Bf Wt)i), (27) 
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where WI=(al ,..., a,,,,&, . . . , Zt). Note that a positive increment of the process 

{S,) is necessarily one. Then 

NAB = min{t: St = k} = min{t: (B/ WJk) (28) 

is the number of experiments it takes to observe B for the first time (if we are given A 
to start with). 

Before we compute the expectation and the generating function of NAB, we 
introduce the following notation. First let P(x) denote the probability of outcome x 
in any particular experiment. If C is another sequence of possible outcomes, we 
define the function 

-i 

’ * B(‘)=z(p(b,)~. . p(bj): 1 s js k and (B/C)j), (29) 

where 2 # 0. 
It has been proved in [6] (and, for some special cases, in [2]) that 

E[NA~]= B *B(l)-A *B(l). (30) 

We generalize this result as follows: 

Theorem 4.1. The generating function of NAB is 

E[r NAB] = 1+(1-M *B(z) 
l+(l-r)B *B(z)’ 

o<z<l 
. 

Note that this expression is particularly simple, if no initial sequence is given (in 
which case the numerator becomes one) and if the sequence B consists of identical 
outcomes, i.e., where B is a ‘run’ (of successes, for example). For this case, the 
generating function has been known for some time, see [3, Section X111.71. Xn [S, 
Section 7.31 and in [7, appendix] it is alao shown in certain cases how the generating 
function can be found with a flow graph analysis combined with the method of 
collective marks (or additional event ml=thod). 

Proof of Theorem 4.1. For j 2 1 -m and t 20 we define M:” as follows. Set 
Mj” = 1 for t C j, 

if (Bi W)r-j+l, 
(31) 

otherwise 
. I 

3 j + k. Imagine a gambler whose initial 
fib experiment, wages his total fortune 

, . . 

for j s t < j + k, and Mj” = M$k-l for t 

fortune is 1, and who, starting with the 
sequential4y on the Gccurrence of the sequence B. Then, assuming fair bets, Mi” is 
the gambler’s fortune at time t, and it follows that {Ml”, t 2 0) is a martingale for 
every j. Thus 

(32) 
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is a martingale for 0 < f < 1. Since M!” s K, where K-~ = P(bl) l l l P(bk), it follows 

that 

and from this that 

Xo = EIXI 

for any stopping time Y. In the following let v = NAB. Then 

u-k 

x,= c+ i + z 
j=l-m j=v-k+l j=v+l > 

zi-lMji) 

v 

= c r’-‘{[P(bl) 9 l 
j=v-k+l 

l P(by_j+l)]-l: (B/ WvIv-j+l) +A 
- 

=tY i z-‘{[P(bl) 
i = 1 

l 9 l P(bi)]-‘: (B/B),}+& 
- 

=tV 
1 

B *B(r)+- 1 f-z l 

Similarly, 

zi-l{[P(bI) . l 

j=l-k 
l P(bl-j)]-‘: (B/A)l-j}+& 

- 

1 
=A *B(z)+- 

1-Z’ 

(33) 

(34) 

(35) 

(36) 

Finally, we substitute (35) and (36) in [34), and solve for Ecz”). 

Now let n sequences Bl, . ‘ . , B, be given. Let Ni denote the number of experi- 
ments it takes to observe Bi for the first time, and let N be the minimum among 

N1, . . . , N,. We define the generating functions 

pi(z)= i P(N=Ni=t)Z’ 
r=l 

(37) 

and 

p(z) = $ P(N= t)t’. 
r=l 

(38) 

We a!;sume that none of these sequences is contained in any of the others, which 
excludes ties. In this context we consider the following Markov chain: The state at 
time z is an n-tuple, where, as in (27), the ith component is the length of the maximal 
overlap between the tatil of the sequence Wt and the beginning of the sequence Bi. 
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Note that not all the Ps-tuples qualify as states. For example, if n = 2, B1 = 

(a, b, b, c), and & = (6, a), the pairs (0, 0, (1, O), (L2), (2, I), (3,l) and (4,O) 
constitute the state space. 

Applying (18) and Th eore.m 4.1 to this Markov chain, we obtain the following 
matrix equation: 

A system of equations comparable to this has been derived by combinatorial 
arguments, see [4, Theorem, 3.31. 

If n = 2, (39) can be solved explicitly. Alternatively, we can use Theorem 4.1 in 
(22) and (23) to obtain formulas for p(z), p&), and p2(2). 

This paper has benefited greatly from Professor Wendel’s and a referee’s sugges- 
tions. The work of the first author was partly done at the F’orschungsinstitut fur 
Mathematik, ETH Zurich. The research of the second author was supported in part 
by NSF Grant MCS77-03533, 
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