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The natural generalization of a direted graph is an oriented cxxnp& a fuildamental concept 
in algebraic topology. Our..study of such qmiplms foIlq*s comt.%oato@&rath~r than top@@- 
cal lines; when an n-circuit is defined for oriented ~~plex&s *as a. %ruc@re achieved .by a 
certain minimization process? we are abk to posq a qu+tion not k&by atis*@ by topAogic=al 
methods. but one di&ctly accessible by &eti&ary ‘c&&inat~&‘~~ti#&. Indeed, “having 
asked ourselves what structure such n-c;icuits posse&, we were $bEe to find an answer, at leaat 
when n=2 

1. lFre&inti 

Let V be a finite set of elements called zlf~r&es_ A CCW@~~; (with vertex set V) 
is a collection of subsets of V, called &Z&XW, such that every nonempty subset 
of a simplex is a simplex. If K is a compl& and 1s: E X, then the &m&on of the 
simplex x is \xI- 1; the dim~~ion of the conqda- K is the maximum dimension of 
its simp\exes. An n-dimensional complex (simplex) is called an pr-complex (n- 
s&p&3) for brevity. 

Two simplexes are said to be incident if one contains the other. Let 

Xl, Yl9 x2, Y2,' l l ? &I-1, x, be an alternating sequence of m -simplexes and n- 
simplexes. If this ‘sequence has the properties 

(a) yi is incident with q and qel (i = 1,2, . . . , II,-- l), and 
(b) the simplexes in the sequence are all distinct, 

then it is called an (m, n)-path and is said to connect x1 and G. Thus we may 
define a complex to be (m, n)-ctunnected if each pair of its m-simplexes are con- 
nected by an (m, @-path. 

These definitions are generalizations of well-known graph-theoretic concepts, 

see for example [I]. However, this semi-expository paper is concerned primarily 
with generalizations of concepts from the theory of directed graphs. We give swh 
general definitions now, along with some examples. In the following sections, we 
develop some basic theory and then prove the main result, a structure theorem for 
“2-circuits”, a concept shortly to be defined. 

Let K be a complex and let x = (zJ~, ol, . . . , a,,) be a simplex of K. Two 
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orderings (Ui,,, Vi,, . . . , II&) and (Uj,,, Uj,, . . . , Uj,) of +re vertices of x will be called 

equiualent if iO, il, . . . , & is an even permutation ol I&, jr, . . . , j,,. Each eiluivalence 
class of orderings of x under this relation is called an orientutian of X. if 1x1 a2, 
then .r has exactly two orientations: if one of these is denoted by tr, then the other 
will be denoted by --UC If 1x1= 1, then x has exac$r one orientation. Denote by K 
the set of all orientations of the simplexes in F: and by Ktn, the set of all 
orientations of the simplexes :in K(,,,, the set of al i n-simplexes of K. 

The members of K(,,, will be called (oriented I -siiwtpZexes. For any ordering 

(u&,7 y,, * * * 9 t+ ) of X, we will denote by UioUil l l l :ji the orientation of x to which 
this ordering belongs. If a- = ubui, l l l ui,, we defint : \la.l\ = x. A mapping o : &,p 

i&nb is called an vz-orientation of K if \lo(x)ll = x fc I every x E K,,,,; this conclition 
merely insures that o maps x into one of its orientaioris. Given a complex K’ and 
an n orientation o of K, the pair (K, o) will be l:alled an n-oriental complex. 
When dim(K) = I and n = 1, (K, o) is just an oriented graph, i.e., a clirccted graph 
with nt3 symmetric pairs of arcs. 

We now illustrate in Fig. l(a) the concepts just defined. 
Here is a complex K with its vertices lab&e 3 u, to u6. The simplex x = 

{I+, u4, u,) has two possible orientations which we may represent b.y the (inequi- 
valen t) orderings u3u4+ and u3u5u4. Our conventio I is to follow common pra ztice 
in textbooks of elementary algebraic topology by indicating an orientation of a 
2-simplex such as x by a circular arrow. In thtn figure, we have chosen the 
orientation corresponding to the second of the t’silo orderings since the arrow 
“visits” these vertices in the sequence u3u5u4. Of course, the same orientation 
could as easily be represented by ~~27~2)~ or u4u3u5. Since all the 2-simplexes of ,q 
have been oriented, we have a 2-oriented complo.. 

v3 (a) 

Fie. 1. A Z-oriented complex and wme I I egral chains. 
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The concepts of “integral pz-chain”, “inckknee numbe? and “boundary” are 
borrowed from algebraic,topolog;r [Z&3,4]. ,However, -thug: concepts are used in a 
way which owes more to discrete optimizaticn ,theoiy aril1 less to.the &Id from 
which they were borrowed. 

An integral n-chain on K is $any function f : l%&+_ZT yuhich, when n ,a 1, 
satisfies the condition that f(v) = -f(-o) for every CTE ffm, An integral n-chain is 
thus completely specified when its value on one orientation of each simplex in 
K(,, is given. Given two integral n-chains f and g on K, f vr*il~ be called an integiraI 
s&chain of g, written fS g, if for every a E Ecn, either 06 f(0) S g(0) or 0 3 
f(o)3 g(o). If f(u) = g(o) for every ws &;,,, we write f= 8. If f~ g and ff g, it is 
reasonable to write f< g and call f a proper integrul subchciin of g. If f(u) = 0 for 
every a 65 JIZt,,, then we write f = 0 and call f the zero n-c,hain on K. 

If (7 = XJl[ l l *II,, is an oriented simplex and if u,$ (u,, . . . , u,), denote by zlo~ the 
oriented simplex 21,2:, 1 l l u,, and observe that u&-a) = --z)~o-. Given two &en& 
simplexes CT and T of dimensions n - I and n respectively, we define the indenc~ 
number [a; 71 as follows: 

If x E KY (define N(x, K) to be the set {U E V(K) -J : 3: U(u) E K} and define 
N( U, K) to be N(l\all, K). Wh en it is clear what complex ZC is meant, we will 
replace N(x, K) and N(o, K) b:f N(x) md N(a), respectively. If (P E I&,+, and f is 
an integrall n-chain on K we define 

The function af : &,_lj + Z so obtained, is called the boundary of f and is clearly 

an (n - l)-chain since, if rla2, 

;tf(-a) = c .#.+-a))= 1 f(-vu) 
u Q W-a) 06 V(a) 

= -c f(w) = -q(T). 
uizN(u) 

In Fig. l(b), each of thle oriented 2-simplexes of Fig. l(a) has been given an 
integer value. By definition, this yields an integral 2-chain f on K. Now let the 
oriented I-simplex o be represented by the directed edge I.I~~J~. We will compute 
the value of af at u by first observing that there are only three verr;ices in N(a). 
These are u2, u3 and v6, for each of these forms a 2-simplex with \\ol\= (II,, v,}. It 
follows that 

af( a) = f(2’2u) + f( rJ3d + f(wJ)- 
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Now &,u = v:!v4 v5 and, since this orientation is 3p 1 losite to the one shown (at 

which f = 411, we h.ave f(v& = -4. Similarly, v+r ha:, the orientation opposite to 

the one at which jf= -2. Consequently, f&r) = 2. i/F ually, &$a is the orientation 
shown, at with f =: 3. Thus df(o) = -4+ 2 + 3 = 1. 

The above definition (i) of boundary coincides ‘a ith the usual oue: in our 
notation the definition of a given in [2, p. 226] is 

aft4 = 
c [a; df(d9 &I, # 89 

TEO(K~,j) 
0, K (n) =% 

where o is an n-orientation of K. It is readily 
where T = *ZXT. 

We shall have occasion to use the definition 
above. 

(2) 

clx c:ke(d that f(w) ‘= [a; T]f(r), 

of 3 given in U oth ( 1) and (2) 

The next twc, r;sults about intersection numbers axl the bourwdary a appear as 
Theorems 6’: 1r.d 6-4 in [2, pp. 22J,227j. 

Theorem 1. If f is an inlcgral n-chalin on K, then a( 1. ’ = 0. 

Theorem 2. .!f M is a complex, p F: lQ_+ the orie, 1 red simplexes a, 0’ E I&_ 1j, 

7 E &,,). and if Ml, lb’ll are each incident with 60th ID\I,IIT\~, then 

[CT, 7 ][a’, 71 = -[p. a][& a’]. 

Strictly speaking, Theorem 2 is not identical tc! ‘Theorem 6-4 in [2], but is 
contained in it as a deduction. 

The following definition of an integral n-circuit #i new, to our knowledge. 
Let c be an integral n-chain on K such that ac = C Then c is calleri an integral 

n-cycle on K. A non-zero integral n-cycle c satisf:li ~g the following colndition is 
tailed ufl infegrut’ n-cirmit on K: 

(c) If c’ is an integral non-zero n -cycle on K sue I that c’s c, then c’ = c. 
Given an n-oriented complex (K, o) and an integtbl r+chain f on K, we will say 
that f is positive on (K, o) if f(o(X)‘) 2 0 for every x E I&,,,. The next theorem show’s 
that we may restrict the minimization condition w to those integral non-zero 
11 -cycles which are positive. 

eorem 3. Let (K, o) be an n-oriented complex and (1 u non-zero integml n-cycle 
on K which is positive on (K, 0). Then c is an integru I I -circuit OH K if clnd onl;, if it 
satisfies the condition: 

(c’) Zf c’ is an integral non-zero n-*cycle on K whit h is positive on (K, o) and if 
C’GC, then c’=c. 

. If c is an integral ncircuit on K, then perdition (c) above implies 
condition (c’) here. 
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L,et c be a non-zero integral n-cycle on K which is positive on (K, o) and which 
satisfies condition (c’,. Let c’ be any non-zero-n-cycle on K such that c’s c. If 
x 65 K(“,, then c’(o(x)) 30 since c’ G c. Hence et is also positive err (K, Q) and, by 
condition (c’), c’ = c. 

Obviously, there can be an infinite number of 
integral n-cycles, on some n-complexes. However, 
n-circuits, as we now show. 

integral n -4: hains, including 
this is not :i:rue fm integral 

Theo-m 4. Tbzere are only a finite number of distinct integd n-circuits on any 
complex K. 

Proof. Thrs observation depends on the fact that for no two distinct integral 
n-circuits c and c’ on K can we have c G c’. 

Assume that there exist an infinite number of distinct integral n-circuits on K. 
These are obviously denumerable and can be listed as cl, c2, c3, . . . . For any 
infinite subsequence s = il, iz, i3, . . . of 1,2,3 ..*, and any oriented n-simplex 
o E If, denote by C,(O) the sequence ci,(a), ci,(a), Go, . . . . Let K(,,, = 
1 Xl, x2, . . . ) x,), where a is the number of n-simplexes in K and for each 
n-simplex Xi in this set, choose an orie,rtation ai. Now select an infinite subse- 
quence s1 of 1,2,3, . . . such that ~,,(a,) is monotonic, an infinite subsequence s2 
of s1 such that c,~(v~) is monotonic, and so on, ending with an infinite subsequence 
s, of sa+ such that c% ((J..,) is monotonic. A subsequence of a monotonic sequence 
is of course monotonic. It follows that Ch(Gi) is monotonic for each i = 1,2, . . . , a. 

If c,(u~) is monotonic increasing (decreasing}, then there is an integer h such that 
all terms of c,,(c~) beyond the k,th are positive (negative) or else equal a constant 
quantity. Let k be the maximum of all integers k and observe that if Ci?, and Ci, are 
two integral n-circuits such that il, i,E s,, k C= il < ia, then Cil s Ciz* This contradic- 
tion yields the result. 5 

The statement that for some n-complexes there exist an infinite numher of 
integral n-cycles is true even for n = 1. Here, our terminology conflicts slightly 
with that of graph theory [l] where a ‘“cycle” means, in this context, a l-cycle il 
which all the coeficients are unity. Of the latter kind of cycle, there are obviously 
only a finite number. However, in the next section, these unit coefficients play an 
important rol,e in describing the structure of integral n-circuits. 

2. Structare of integral %-circnits 

When n = 1, an integral n-circuit turns out to mean exactly the same thing as 
“circuit”. In this case, the coefficients turn out to be unity. When n > 1, this is not 
always the case and a definition becomes necessary to distinguish such simple 
integral n-circuits. 
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Let K be a complex and f an n-chain on K. The I f is called @initi.w if 

If(a)1 6 1 for every c E Rtn,. It is not difficult to shoe tl-.at if c is an integral 
l-circuit on K, then c is primitive. This fact is due both to the minim 
condition in the definition of c and to the especiall:r simple structure of l- 
complexes. We show in the next theorem how far frotr! being primitive certain 
integral 2-circuits can be. We then show hoti the stn cture of a non-primitive 
integral 2-circuit can be related to a set of primitive CMITS. 

Theoram 5. Giver;i any positive irateger m, there exist a 2-complex K end an 
integral 2-circuit c on K such that Ic(aj 3 m for every wz I&). 

Proof. First a complex Lk is constructed, then a 2-oriellt.ation o of Lk is defined. 
A complex K is constructed from two complexes 1ik.e I.+ and the required 
oriented ‘t-circuit is then defined. 

Lt k be a positive integer and let I&_ be the 2-complex having 6k vertices and 
the following 2-simplexes: 

h t’l9 WI, (u,, V3k_1, W3k_J; 

(‘29 ‘3j-I7 ul)~ ICI7 V3j-19 w3j-2!‘9 {H.3i-2, W3j -19 U*), 
j=1,2,.. , k; 

{“3,-l, w3j-l* w3j--*19 {W3j-1, b*, U,} 

I 
1’27 u3j, u3j--11v {u3j-1, V3j, W3j-_I}, ‘LW3j-19 Wsj? 11J, 

fU3jr u3j9 U3j-l]‘r i”3j. w3j9 w3j-l), Iw3j9 U3j9 U21 > 

j=l,f::,...,k--1; 

.Id7j* &I* U3j 1. i”3jl u*w3j). Iw3j, W3j+l, U3j), 

(‘17 ‘17 u3jl, i”l, w3j+l, W3j}, {W’3j+lt Ul, U3j) I j=a.2,.. J-1. 

The complex I+ can also be seen as the complex obaahed from tlrz co:rrplex IL: 
in Fig. 2 below by identifying certain pairs of vertices. L’omplex Lt has the form 
of a triangular tube with the ends closed off and hav rig k triangular openings 
( ul, v,, Go), ( u4, u4, u,), and so on. These openings ;j,re all put together by 
identifying the vertices u3j+l with u*, Uxj+z with ~1~ and U3j+l with u1 I(i =: 
:,2,. . . , k-2). 

Now define the 2-orientation o of Lk so that the fc:lIo~rln~ oriented 24mplexes 

‘3k-2 ‘h- 1 
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. 
lie tn o(Lko): 

Wl%Ul %v3k-lW3k-1; 

u2v3j-1 u3ji, t’3j-1w3j-l~3j9 Wt;i _ 1 U2 WCJj, 

u3j”3ju3j--1v W3jv3jW3j-lr u3j’y3ju2 ) 
i = 1,2,. n . :, k - 1; 

Lc3j2)3jU19 u3jw3jz)19 j w3j”3jw3j+19 

I 

i = 1,2,. . . , k = 1. 
vlU1~3jr w3j+12;1w3j9 al w3j+l”3j 

Denote by Sk the set of 1-simplexes consisting of {uI, v,}(u,, ZJ~}, {u,, ra& 
Let f be the integral 2-chain on & such that f(o(y)) = r fcr every 2-simplex y 

of Lk. If a is any oriented bSiI@3f of & such that l]crll$! &, ,hen it is clear, either 
from examining the list of 2-simplexes in & cc considering Fig. 2 and visualizing 
the identification, that Iloll is incident with exactly two 2-sin glexes in &. If these 
2-simplexes are denoted by y1 ;Id y2, then by the definition of o above 
[a, o(y,)] = -[CT, o(y2)]. This implie:. that 

GVXO) = c [a; 4 Y M~(Y 2 
YE&v 

= cat 4Y JlfMY ,:; + b, dY2nFMY2N = 0. 

. 
Now If (+ E &(I) and Ilull E S,, then it is easily &own that @(cr) = *kr, the sign of 
af(a) depending on which orientat& of [[all is taken. For example, if u = vlu,, 
there are k 2-simplexes incident with 11 ai, namely 1~ tll, 4 and L, al, ~~1, I’ 

j=l,2,..., k - 1. By the definitiJ,n of o, for each of these 24mplexes y, o( y ) can 
be written tuIul, where t is one of wl, 2/3j, j =: I, 2,. . . , k - 1. Therefore 

VI4 = c t@, O(Y Ufb(Y )I 
Y ac(2) 

= 
&u1, tv+Jr= kr. 

On the other hand, if u = r.~21~ we find that af(~T) = -kr. 
tit g be any integral 2-chain on &, positive on (&, 0) and Satisfying, ag(o) = 0 

for each CT E G(I) such that \]crll$ Sk. G iven any two 2-simplexes y and y’ in Lk, 

there is a (2, Q-path connecting them, no interior l-simplex of which lies in Sk. 

Let a corresponding (2, I)-path sequence be y = y 1, x1, ) 2, x2, . . . , x,, ym+l = y ‘. 
Now 

ag(u) = Cm3 o(yi)lg(“(yi))+[~9 O(yi+,)lg(o(yi+l)) if Ml =Xir 

for i = 1,2,. . . , m. By the definition of o above, is; O(yi)] = -[a, o(y,+,)]. Since 
as(c) = 0 by assumption, g(O(yi)) = g(l>(yi+l)) for each i = 1,2, . . . , m. Therefore, 
g(o(y)) = g(o(f)) and it follows that g has the same value, say 4, at every oriented 
2-simpfex o(y) y E Lkt2). We may now replace f and r above by g and ‘1 

respectively, an3 obtain ag(a) = *kq if !& Sk. 
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We are now ready to construct complex K and cirn .i I: c of the theorem.. 
be distinct primes with s > t > m. Let K be the &complex consisting 
subcomplexes Ls, & and satisfying the following con&non: the vertices, of 

Let s, t 
Of’ tW0 

L, and 

L,, corresponding to ui, vi WjT denoted by Usj, IJsj, w,~ and z+, Utj, Wtj respectively, 
are all distinct with the following exceptions: us1 -= u,~, us2 = II,~, us1 = c+~. There 
should be no confusion in speakfing of the 2-orientation 8 of K for qwhich 01~ and 
olr, are just the 2-orientation given to I+ above \r’t’ben k = s land k = 1’ respec- 
t ivfely . 

Define the integral 2-chain c on K by the equatio 1 

do(y), = 
4 Y E L2b 

s, Y (5 b(2). 

Denote by c, and c, the restriction of c to Ls17, and c, :I) rf=spectively ant2 observe, 
with c, in place of f and s in place of k above, that 

ac,(cr) = 0, u E LsCl), Ml ti ss (3) 

and 

dC,(O) = *sr, (7 E Lso, 111,+11 E ss. (4) 

Obviously, equations (3) and (4: hold with s and f Interchanged. In equation (3), 
[I’ll is incident with the same 2-simplexes in K as in I,:, and it folta>ws in this case 
that &T(U) = 0. In equation (4), the sign of &,(c) !is deterlmined exactlly as for 
df(cr). For example, with (T= uslusl, &,(cr) = &Z&I, 1~ s I) z= st. We also have (r = 
1~,2~, and since ~c,(%~u.J = -st, it follows that &: ((r) = &~,(a%-ac,(cr) -= 0. The 
same equation is readily verified for :my choice o ’ CT such that lltrll~ S, = St. 
Therefore, c is an integral P-cycle on K. Moreover, n is positive on (K.. 0). 

Suppose now that c’ is any non-null integral 2-cycle: on K, which is positive on 
(K, 0) and satisfies c’s c. Let ct = c’IL,, c: = ~‘1~. Rep!zcing the integral Z!-chain g 
introduced abo ‘e by c& we observe that c: has the wrnca value., say qs 250, at all 
oriented 2-simplexes o(y), y E K,. On the other i and, ~c:(D) = fsq,, llu/ E S,. 

Specifically. aci( t,+,J = sq,. Similarly, ~c:(u,~u, 1) = -- tc;ft, ,whe:e CL is the constant 
value of c: on o(Llc2,). Now II,~u,~ = y,~,~ and, since c ’ IS an ix,+cg~~al 2-cycle on K, 

0 = ~c:(u,*u,,) = ac:(u,,u,,)+ac:(~,L~) 

= sq, - rqt . 

Thtrefore, sq, = Q, which, since s and t are distinct prilmes, implies that qs = rt 
and ‘;E* = PS for some non-negative integer r. Therefor C, c’(o(J~))~ = c:(o(y 1) = rt for 
every’ y E A!._(~, and c’(o(y)) = c:(o(y)) = rs for ever) y E I,,,,. Since C’GZ and 
1”’ # 0, it follows that r = 1 and c’= c. As c’ was arbli tr arily chot;en and positive on 
i K, o), c is an integral 2-circuit on (K, o) bly Theorem 3. 

Clearly, c(o, Y)) 3 m for every y E Kt2) and the t1lectre.m folk;ws Cl 

Although the emphasis of this section is primariky I,,n the skucture of integral 
2-circurt:,, it is appropriate to indicate briefly how ?‘ht:I )rem ,’ may be j;ener:&zed. 
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This is done inductively as Wlows. Suppose that K is an rr-complex and c an 
integral n-circuit on K such &h#t Ic(a)l a m for every a~ &,,,. Denote by IX the 
complex 

where s ard t are two vertices not in V(K). If we define an integra (n + Q-chain 
on DK 

d(m) = c(u), d(tu) =z -~[a), 

a E q,,, then it is easy to prove that d is an integral n-circuit on DK. Obviously 
Id(T)1 2 m for every r E rk!n+Tj. Thus the truth of Theorem 5 with 2 replaced by 
n, n 2 2, implies its truth with 2 replaced by n + 1. 

Let K, K’ be complexes with 4 : V(K’)+ V(K) a mapping such that if X’E K’, 
then 4(x’) E K. Then tjb is called a simplical map [2, p., 2431. If for Eny simplex 
X’ E K’, dim(+(x’)) <dim(x’), then 4 is said to collapse x’. The mapping (I) is 
extended to oriented simplexes (T’.= U&U: l l l uk, where Ilcr’ll is not collapsed by 4, 
as follows: 

&I$$ l l l I$) = 4(u34(u:) l l - 4(u;). 

If GE z& let 4-‘(n) denote the set of all a% Qn, such that &(a’) = cr. If f’ is an 
n-chain on K’, let #f’ be the n-chain f on K such that for every CFE &), 

f(a) = ) 2: f”W) 1 if 4-‘(a) is non-empty, 
a’&--‘(cr) 

0, if ++(a) is empty. 

Now suppose that #: V(K’)+ V(K) is a simplicial nraip and that &:K’) = K. 
Denote by V’(K’) the set of vertices of K’ which are fixed under 4. The number 
1 V(K’) - VJK’)I w?ll be called the or&r of 4. If ME V+(K’) for every v E 
V(K’), then #> will tie called a contraction of KC From this definition, it is easily 
proved that the composition of tw?s contractions is a contraction. 

In order “io diriplay the structure of integral 2-circuits, two lemmas are needed. 

Lemma 6a. rf 45 I V(K’) + V(K) is a sitnpkal map and c’ is an integral n-cvcbe 
on K’, then c = (+(c’) is an integml n-cycle on K. 

Proof. This is Lemma 6-15 in [2, I>. 2511. 0 

Let K be a complex, f an integral n-chain or K. Then f will be called univalent 
over K if If(T)! = If(+)! f or every two oriented n-simplexes 7,~’ such that 11~11 n 
lb’11 # 8 and f(d, jW # 0. 

k-mmma 68. Let K be a complex, c an integral w-circuit on K. If c is uniwkwt over 
K, then c is primitive. 
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Pro&. Denote by C the smalllest complex \vhose n-simplcxes lie in 
{liol(: c(a) f 0). If C is Xib connected, it may br: written as the d:isj&nt union 
C = C, + (72 of two 2-complexes. Define ci to be tb c! integral 2-chain on K such 

that 

Cjbserte that c, and c2 are non-zero integral 2-t vcks on K such that cl s c, _ 

i = 1,2 Since c is an integral 2-circuit on K$ (. = (Zip i = 2,2. But obviously 

c=c+Z2, implying that (3ne of c1 OP c2 is zero aid contradicting the fact that 
bDtF are non-zero. 

Since: every simplex of C lies in an n-simplex aid since C is connected, C is 
(0, r&connected. Now let u, u E V(C). Th-erz is a (0, #%)-path (u} = 

‘0, y,, :c1, y1, - * ’ , yn _1, x, := {v} in C. Denote by ,Ici l.he positive integer such that 
/c(T)~ = ki whenever Xi E)/T(). For each i = 0, 1, . . . , rl - 1, x1, q+l c yi and for any 
orientzltion 7i of yi, ic(Ti)( = ki, k,+l. It follows that k, = k, = l l l = k;,. Therefore, 
!c!T)\ is a constant, say k, over all T E c. Thus (l/k)c is a non-zero integral 
n-cycle’ for which (l/k)c SC. Since c is an integral n-circuit, k r= I. and c is, 
theref(!re, primitive. 0 

As seen in Theorem 5 there alre non-primitive ir teg:al 2-circuits. Such integral 
2-circuits are now related 1.0 primitive ones throut,h the notion of contraction. 

Tbecrem 6. LA c be an integral 2-circuit on a conqhx K. There is a Cowplex K I, 0 
primitive integral 2-circuit c’ on K’ and a contract ‘cm C$ of K’ such that 

(i) K=4(K’) and 
(ii) c = &‘. 

Proof. Let d be an arbitrary integral 2-circuit. cbn a complex 1,. Define the 
quantity 

and observe that d is primitive if and only if QC ) = 0. 0therwise 1N.d) :> 0. The 
quantity p(d) thus measures the “non-primitiven&’ of d. The proof proceeds by 
induction on Q(C). 

If Q(C) = 0, there is nothing to prove since 
alre.ac! y primitive. 

Let c)(c) I= k > 0 and assume the theorem holds f :r all integyal,2-circuits d on K 
such that p(d) < k. Since Q(C) >. 0, c is non-primitive and, by Lemma tib, non- 
univalent. Let u be a vertex of K for which there t?xi:<t two oriented 2-rimplexes 
T, I’ such that 2’ E HIT/, 11~11 and c(tr), ~(7”) 7: 0 whilr: !( (a- I(# )+‘)I. Denote by nl the 
maximum non-zero value of l&)1 ovv all olricnted 2-sirnr;lexes r such that 
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(a) (b) 

Fig. 3. The basic operation. 

t, E 11~11. Define a l-chain c, on K,, = lk(u, K), the link of v in K, bq 

c&) = 4=4, @E%(l)* 

To better visualize the formation of co, Fig. 3(a) illustrates K, with the values of cU 
at orientations of its l-simpiexes. Fig. 3(b) displays a portion of g in the 
neighborhood of v with the values 1~f c at orientations Iof its 2-simplexes. 

We now observe that: 
(d) c,, is an integral l-cycle on &;, and that: 
(e) for any non-zero integral l-cycle f on .L complex and for any oriented 

l-simplex u such that f(a) # 0, there is a primitive integral l-circuit g on the 
complex such tt at g(o) f (! and c < $ 
S1:atement (ej IS obvious. To eslablish statement (d), let p be an oriented 
O-simplex, i.e., a vertex, say p = w! in it;. Then 

ac&) - c c,(( up), by the definition of d 
ueN(~.iG) 

= c c(vuw), by the definition of c 
u~N(ti.K,) 

= -c c(uvw), since vuw = -uvw and N(p, &,I== N(vw, M) 
u~N(uw,K) 

=-~c(uw)= 0. 

Therefore, c is an integral l-cycle on &. Since m 2 1, c, is non-zero and, by 
statemen’ {e), there exists a primitive integral l-circuit g on K, such that gs c, 
and such that g(q) # 0, where c,(q) = c(zwJ= no. 

Now let u be a vertex not ig V(K) L .rd define L = K U C( u, It;;) as illustrated iii 

Fig. 3(c). Here only the I-simplexes have been displayed: the 2-simplexes are 
easily inferred frd)rn Fig. 3(b). Let + be the mapping @ : V(L)+ V(L) defined by 
q?(u) = v, q? being the identity elsewhere on L. Obviously # ;S a contraction and 
K = $(I!,). In wh,Zt follows de late by +!$, and S,, the sets of orientetl 2-simplexes 
containing v and u respective .y. 



Define an integral 2-chain cd on L as fklllows: 

I 

471 if u, u4 11~11, 

d(r) = C(T)- g(a) if u E ~~T~~ and T = VU, 

[g(o) if u E I\711 and 7 = ucr’. 

We now show that d is an integral &circuit on L. I%%, it must be shown that d is 
an integral 2-cycle on L. This is done by examir kg. four cases for a in the 
equation: 

ad(a) = c dwd, aJ-z &* (3 
WEPJ(U.L) 

Cme 1: u E Ilull. 
Here N(o, L) = N!p, K,,), where cr = *up. Supps~ that G =: up and that llpll= 

{t}. Now W(T = wut = utw and, by (5) 

a&) = c g(twl = 1 g(wp)= --a :(p)=O. 
WE~CP,&) W~~(P,Fi) 

SimiMy, ad!(v) = 0 if v = --up. 
C&se 2: u E Iloll. 
Here ~((7, L) = N(p, &), where u = *up. Suppos: that ci = up ar,d that lIpI\ = 

(s>. &W WIJ- = wvs = --uws, d(uws) = c(uws) - g(ws) == c,,(ws) - g(ws! and, by (5) 

ad(a) = - c c,(ws)+ c gM 
w~N(p.#, 1 w~Nb.Gl 

== -a,(p) -++g(p) = 0. 

Similarly, ad (a;\ = \? if S =: --up. 
Gse 3: at: &. 

Let S = ZWr, ZJ-{:A, u) and observe that 

ad( cr) = 1 d(wa) + J\ucr) + d(m) 
WES 

= z c(wa)+(:(ua)-g(cr)+rl(a) 
w 15s 

= r: c(wj.) =: &(a) =: 0. 
wGN(rr,I_) 

1~~ this case, d&r) = c(wcr) by the definition of d and (vi) becomes &z(o) 
directly. 

In c3rder to show that d is an integral n-circuit on L, let d’ be a no:n-zero 
integral n-cycle on L such that d’ G d. We will shov r first that $& = c, then that 
A”=d. 

Lelt 7 E I&, and suppose that C(T) ~0. Since d% 3’ G c, it follows that d’(+ 
di~)s C(T). If T$ S,, then @‘(T) = d’(rbScC(T). If T ES,, then T= ua for some 
u E <( 1, and @UT) = d’(ucr) -‘- d’(w). Since c,(a) Z? 0, it follows from the defini- 



tion of d that d( zla) * 0, whence &(ua) =G d( MT). Therefore, d’(t~) + d’(uo) e 
d(m)+ d(w) = c(~w). We havle, thus showq that when c(7)++?, qki’($+q(~), By 
a similar argknenz, the ‘same inequa&y hoids when &$@I. “To see j%at-#& # 0, 
let T E &) such! that &CT) # 0. if ,r& S,,, then ~$d’(s) = d’(v) f’0; If TE S,, the.n 
7 = ~a for some o E L?& and #d’(7) = d+ur)+d’(~). By the definition of. d and 
the inequality d’s d, d’ has the same sign at both uu and zxx Hence, #d’(7) $0. 

By Lemma 6(a), 11/d’ is an integral n-cycle on I%, We have shown, moreover, 
that t+bd’ is non-zero and that #&Gc. $incc c 3s an integral n-circuit, #dp = c. 
Finally, we will now show that d’= d, proving tihat d is an integral 2-circuit. 

Let TE Lln and suppose that T# S,, S/I’hen &(T) = ~(-7) while d’(T) = #d’(r) = 
C(T). Therefore d’(7) = d(7). Suppose next that 7 lies i I one of SU, S, 90 tha.t T is 
one of UC, w, where CT E & l). Suppose further that c,(m) 2 0. By the definition of 
d and by the inequalities c,,(a) 20, d ‘ 6 d, it follows that d’(w) s d( ucr) 2nd 
d’(ua) s d( uo’). Therefore, 

c(w) = @d’(w) = d@(w)+ d’(ua) 

which combined Twith the foregoing two inequalities, implies that d’(w) = d(m) 
and d’( ucr) = d (uc), whence d’(7) = d(7). We would reach th( : same conclusion if 
we initially assumed that c&) 6 0. Since d’(7) = d(T) foi every 7 E L(:,, it follows 
I hat d’ = d and we have proved that d is an integral 24rcuit. 

We now compare p(d) with p(c). For this purpose it ~31 be convenient to 
regard c as an integral 2-circuit on L by setting C(T) == 0 for every r E L,,, - &2j. 
Thus 

P(C) = p(d) = c (I Id7 : - 11 l \c(T)~ - I Idb=jl- 11 . Id{ 7,)1). 
T42r 

(6) 

Since d (7) = c(r) whenever T$ S, U S,, the terms oi (6) CcJrresponding to such 
oriented 24mplexes all vanish. The remaining terms can be recombined and ea.& 
oriented 2-simplex 7 rewritten as r = eaa or T = w, where CTE &u(l, and 

The last summation cau be rewritten 

P(C) - ptd! = 2 x dd, 
i3ET 

where T is the set of o:.rented I-simpkxes u E & at which 1 e(w) (and, therefm, 
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I and d(ucr)) is non-negative. Each of thI: .t:rms r(u) now becomes 

r(a) =(c(ua)- l)c(ua)-(d(uri)- l)d(ZH’)--_(d(U+- l)d(ucir) 

= 2;~(a)(c(uo) - g(m)). 

Since g 6 c, c(eor) > Cl and g(a) 3 0, we have +r:la 0. Therefore, p(c) 3 p(d). 

Recalling that u1 is an oriented 3 -simplex for M hiclh C(UJ,) = m and that m > 1, 
we have 

rh) = 2gb,)(c(uu~) - g(q)) 

=2(m---l)>O. 

Therefore, ~(1’) > p(d) and by the induction hygo t h&s, there exists a complex 

a primitive int:gral 2-circuit c’ on K’ arnd a C’CN I,tra(ztion 41 of K ’ such that 
K’, 

L = $(I?) and d = &Y. 

Clearly, c = lgd and, therefore, c = @#cl. Moreolcr, K = #&(K’) and the theorem 
follows at once from the fact that the corn position of two contractions is a 
rontraction. 0 

3. &BUBIIXY and conchwions 

We de not know whether a higher-dimension:<! form of Theorem 6 exists. The 
argument i:l its present form is “blocked” in big 112r dimensions at the generaliza- 
tion of Statement (e) in the proof of Theorem 6. Ht will be recognized moreover 
that the following statement, if it were true, woul~;i generalize the es,sential part IDf 
Statement (e). 

ie’) For any non-zero integral n-cycle f on Ii: there is a primitive non-zero 
integral n-circuit g on K such that g ~fi 

However, Theorem 5 provides an integral L:.!rcuit c (~OIXXXO by the defini- 
tion of integral n-circuit) the minimum magkit ; rle uf whose values exceeds an 
arbitrarily prescribed number. Clearly no prim&i be non-zero integral kircuit can 
be an integral. sub-chain of c, which shows (e”) tr\ be false. Perhaps a generzliza- 
tion of Theorem 6 is possible, however, if OI~IE attempts a second induction in 
place of Statement (e), using the theorem in a ‘!otCer dimension to “expand” K,, to 
the point =-Jhere the required primitive integI:IE i:n - 1)-circuit exisis, then to 
“expand” K by the argument used above. 
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