stcrete Math qnatxa 33 (1983) 149-162
. © North-Holland Pubhshmg Company ‘

‘AKDEW.NEY e B : L B G
Departmem of ComputerScwuce Umversrtyof Westem On 'London, Omarm, Canada

; Frank HARARY
Department of Mathematics, Umversuy of Michlgan, Ann Arbor, MI 48109 USA

Received 4 January 1979

The natural generalization of a directed graph is an oriented complex, a fundamental concept
in algebraic topology. Qur study of such complexes follows combinatorial rather than topologi-
cal lines; when an n-circuit is defined for riented complexes cture achieved by a
certain minimization process, we are able t0-pose a g : by topological
methods, but one directly accessible by’ elementary combmatmal technigues: Tndeed, "having
asked ourselves what structure such n-rircuits possess, we. were. able to find an answer,; at:least
when n=2.

1. Preliminari

Let V be a finite set of elements called wertices. A complex, (with vertex set V)
is a collection of subsets of V, called stmptexes, such that every nonempty subset
of a simplex is a simplex. If K is a complex and x € X, then the dimension of the
simplex x is |x|—1; the dimznsion of the complex K is the maximum dimension of
its simplexes. An n-dimensional complex (snmplex) is called an n-complex ‘(n-
simplex; for brevity. ; :

Two simplcxes are said to be incident if one contains the other. Let
X1> Y1s X25 Y20+ + - » Yn-1, X, b€ an altcmatmg. sequence of m-simplexes and n-
simplexes. If this sequence has the properties

(a) y; is incident with x; and x;,, (i=1,2,...,n,-1), and

(b) the simplexes in the sequence are all distinct, ,
then it is called an (m, n)-path and is said to cornect x, and x,. Thus we may
define a complex to be (m, n)-connected if each pair of its m-simplexes are con-
nected by an (m, n)-path.

These definitions are generalizations of well-known graph-theoretic concepts,
see for example [1]. However, this semi-expository paper is concerned primarily
with generalizations of concepts from the theory of directed graphs. We give such
general definitions now, along with some examples. In the following sections, we
develop some basic theory and then prove the main result, a structure theorem for
“2-circuits”, a concept shortly to be defined.

Let K be a complex and let x={vo, vy,...,0,} be a simplex of K. Two
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orderings (v,, v;,...,v;) and (v, v;,...,v;) of “he vertices of x will be called
equivalent if iy, iy, . .., i, is an even permutation oi jo, jy, . - ., j.- Each equivalence
class of orderings of x under this relation is called an orientation of x. if |x|=2,
then x has exactly two orientations: if one of thesc is denoted by @, then the other
will be denoted by —c-. If |x| = 1, then x has exacil one orientation. Denote by K
the set of all orientations of the simplexes in K and by K, the set of all
orientations of the simplexes in K, the set of all n-simplexes of K.

The members of K,,, will be called oriented 1-simplexes. For any ordering
(5 Uiy - - - 0;) Of x, we will denote by v, v, - - - »; the orientation of x to which
this ordering belongs. If o=, v, - - - v, we definc |lol|=x. A mapping 0:K,,—
K., is called an n-orientation of K if [lo(x)|=x fcr every x € K,,,: this condition
merely insures that 0 maps x into one of its orient:i:ions. Given a complex K and
an n-orientation o of K, the pair (K, o) will be -alled an n-oriented complex.
When dim(K)=1 and n =1, (K, 0) is just an oriented graph, i.e., a directed grapl
with no symmetric pai's of arcs.

We now illustrate in Fig. 1(a) the concepts just defined.

Here is a complex K with its vertices labelled v, to vs. The simplex x =
{13, v4, U5} has two possible oriertations which we may represent by the (inzqui-
valent) orderings v3v4v's and v;vsv,4. Our convention is to follow common practice
in textbooks of elementary algebraic topology by indicating an orientation of a
2-simplex such as x by a circular arrow. In the figure, we have chosen the
orientation correspon:ding to the second of the txo orderings since the arrow
“visits’” these vertices in the sequence v;vsv,. Of course, the same orientation
could as easily be represented by vsv,05 or v4v50<. Since all the 2-simplexes of X
have been oriented, we have a 2-oriented comples..
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Fig. 1. A 2-oriented complex and some i1:egral chains.
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The concepts of “integral n-chain”, “incidence numbe:” and “boundary” ar
borrowed from: algebranc topolog [2, 3,4]. Huwever, these concepts are used in a
way which owes. more 10 dascrete optmnzatlcn theory and less td e ﬁeld from
which they were borrowed. - :

An integral n-chain on- K is any fnnctnon f K(,,)—a,Z whlch when n=1,
satisfies the condition that f(o) = —f(~o) for every o ¢ K(,,), An integral n-chain is
thus completely specified when its value on one orientation of each simplex in
K., is given. Given two integral n-chains f and g on K, f will be called an integral
subchain of g, written f<g, if for every o K(,,, either 0<f(o)<g(o) or 0=
fla)=g(o). If f(o) = g(o) for every o€ f((,',,, we write =g f f<g and f# g, itis
reasonable to write f<g and call f a proper integral subchcuin of g. If f(o) =0 for
every aeﬁ(n,, then we write f=0 and call f the zere n-chain on K.

If o =v, - - ‘v, is an oriented simplex and if vo ¢ {v,, ..., v,}, denote by v,o the
oriented simplex vyt, '+ - v, and observe that vy(—o) = —v.0. Given two orieniald
simplexes o and 7 of dimensions n—1 and n respectively, e define the incidence
number [0, v] as follows:

[o,71=0 if ol

[oo7r]l=1  if 1=vo0,

[o,7]=—1 if 7=—vo, where velq|—|o].
If xeK, define N(x,K) to be the set {ve V(K)—r:xU{v}eK} and define
N(o, K) to be N{llofl, K). When it is clear what complex K is meant, we will

replace N(x, K) and N(g, K) bv N(x} and N(o), respectively. if o€ K("_,) and f is
an integral n-chain on K we define

) :é
af((r)"—’ ueg(a}f(W). N(G) ¢, (1)

0, N(o):=§.

The function af : K,_,,—> £’ so obtained, is called the boundary of f and is clearly
an (n—1)-chain since, if n=2,

f—o)= Y foi-o)= Y f(~va)

veN(-o) ve N(o)
= -2 flvo)=-af().
veN(o)

In Fig. 1(b), each of the oriented Z-simplexes of Fig. 1(a) has been given an
integer value. By definition, this yields an integral 2-chain f on K. Now iet the
oriented 1-simplex o be represented by the directed edge v, vs. We will compute
the value of af at o by first observing that there are only three veriices in N(o).
These are v,, v and vg, for each of these forms a 2-simplex with [lof| = {v,. vs}. It

follows that

af(a) = f(v0) + f(n30) + f(veo).
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Now v,0 = v,0,05 and, since this orientation is opjosite to the one shown (at
which f=4), we have f(v,0)=—4. Similarly, v;o ha: the orientation opposite to
the one at which f=—2. Consequently, f(v;o) =2. Fnally, veo is the orientation
shown, at with f=:3. Thus df(o)=—-4+2+3=1.

The above definition (i) of boundary coincides 'aith the usual oue: in our
notation the definition of 9 given in [2, p. 226] is

31(0) = ;([a TIf(r), K # 9, @

09 K(n)= gs

where o is an n-orientation of K. It is readily checked that f(ve)=|a, TIf(+),
where 7= tuvg.

We shall have occasion to use the definition of 3 given in toth (1) and (2)
above.

The next two rpsults about intersection numbers 11d the boundary 9 appear as
Theorems 6-% ar.d 6-4 in [2, pp. 224,227

Theorem 1. [ f is an intcgral n-chain on K, then 3) =0.

Theorem 2. If K is a complex, pe I_{(,,_z), the orie.ated simplexes o, o' € K.y,
r€ K., and if o, llo’|| are each incident with both |o|, ||7ll, then

[0’ Tbl[ﬂ'a T] = -’[p* G][p7 0-,]'

Strictly speaking, Theorem 2 is not identical t¢ ‘Theorem 6-4 in [2], but is
contained in it as a deduction.

The following definition of an integral n-circuit i new, to our knowledge.

Let ¢ be an integral n-chain on K such that ac = ( Then c is calle<i an integral
n-cycle on K. A non-zero integral n-cycle ¢ satisfviig the following condition is
called an integrat n-circuit on K:

(c¢) If ¢’ is an integral non-zero n-cycle on K such that ¢'<c, then ¢'=c.
Given an n-oriented complex (K, o) and an integral n-chain f on K, we will say
that f is positive on (K, o) if f(o(x)) = 0 for every x € K,,,. The next theorem shows
that we may restrict the minimization condition (c) to those integral non-zero
n-cycles which are positive.

Theorem 3. Let (K, 0) be an n-oriented complex and ¢ a non-zero integral n-cycle
on K which is positive on (K, 0). Then c is an integra! 1-circuit on K if and only if it
satisfies the condition:

(c") If ¢’ is an integral non-zero n-cycle on K which is positive on (K, o) and if
c¢'<c, then c'=c.

Proof. If ¢ is an integral n-circuit on K, then condition (¢) above implies
condition (c') here.
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Let ¢ be a non-zero integral n-cycle on K which is positive on (K, o) and which
satisfies condition (c). Let ¢’ be any non-zero n-cycle on K such that ¢'sc. If
x € K, then ¢'(0(x))=0 since ¢'<c. Hence ¢ is also positive on (K, ) and, by
condition (¢), ¢'=c¢. - .

Obviously, there can be an infinite number of integral n-chains, including
integral n-cycles, on some n-complexes. However, this is not true for integral
n-circuits, as we now show. '

Theorem 4. There are only a finite number of distinct integral n-circuits on any
complex K.

Proof. This observation depends on the fact that for no two distinct integral
n-circuits ¢ and ¢’ on K can we have c<c'.

Assume that there exist an infinite number of distinct integral n-circuits on K.
These are obviously denumerable and can be listed as c¢;, c;,C3,.... For any
infinite subsequence s =iy, i, is,... of 1,2,3..., and any oriented n-simplex
gcK, denote by c,(o) the sequence c (0),c(0),¢c(0),.... Let K,,=
{x1, X5,...,x,}, where a is the number of n-simplexes in K and for each
n-simplex x; in this set, choose an orientation o;. Now select an infinite subse-
quence s, of 1,2,3,... such that c, (o) is monotonic, an infinite subs=quence s,
of s, such that c (o) is monotonic, and so on, ending with an infinite st bsequence
Sa Of 5, such that ¢,_(o,) is monotonic. A subsequence of a monotonic sequence
is of course monotonic. It follows that ¢, (o;) is monotonic foreachi=1,2,...,
If ¢, (o;) is monotonic increasing (decreasing), then there is an integer k; such that
all terms of ¢, (o;) beyond the k;th are positive (negative) or else equal a constant
quantity. Let k be the maximum of all integers k; and observe that if ¢, and ¢, are
two integral n-circuits such that iy, i€ s, k <i; <i,, then ¢; <c;,. This contradic-
tion yields the result. [

The statement that for some n-complexes there exist an infinite number of
integral n-cycles is true even for n=1. Here, our ierminology conflicts slightly
with that of graph theory [1] where a ““cycle” means, in this context, a 1-cycle in
which all the coeflicients are unity. Of the latter kind of cycle, there are obviously
only a finite number. However, in the next section, these unit coefficients play an
important role in describing the structure of integral n-circuits.

2. Structure of integral 2-circuits

When n =1, an integral n-circuit turns out to mean exactly the same thing as
“circuit”. In this case, the coefficients arn out to be unity. When n > 1, this is not
always the case and a definition becomes necessary to distinguish such simple
integral n-circuits.
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Let K be a compl:x and f an n-chain on K. The1 f is called primnitive if
|f(a)|=:1 for every ce K., It is not difficult to shov that if ¢ is an integral
1-circuit on K, then c is primitive. This fact is due both to the minimality
condition in the definition of ¢ and to the especiall/ simple structure of 1-
complexes. We show in the next theorem how far froin being primitive certain
integral 2-circuits can be. We then show how the stri cture of a non-primitive
integral 2-circuit can be related to a set of primitive oni:s.

Theorem 5. Given any positive integer m, there exist a 2-complex K and an
integral 2-circuit ¢ on K such that |c(a)|=m for every € K.

Proof. First a complex L, is constructed, then a 2-orientation o of L, is defined.
A complex K is constructed from two complexes like L, and the required
oriented 2-circuit is then defined.

Let k be a positive integer and let L, be the 2-complex having 6k vertices and
the following 2-simplexes:

{uy, vy, wilb,  {ug, Va1, W3k—1}§

{Uz, V31, 01t Ly, Vg5, Waj ot {Wsi, Wi, u1}’}i =1,2 k
{3, 1, Waj_1. Wajot,  {Wsi_y, g, Wy} 2, Lk
(U, usj, v3; 11 {0321, V3 Wy L Wi, Wi o}, }_= L 1
{Us;, Usjy U3; 1}y {U3j Waj, Wajoq),  \Wsj, Us, Un} 1I=L5 .0, :
gt Ogh {vap 0iwaih {Wsjo Wi, Ui, } =12 k-1
v{ul, V1» U:ﬁ}, {Uh W31y W3,-}, {W3]»H, u,, u3,-} s

The complex L, can also be seen as the complex obtzined from thic complex L}
in Fig. 2 below by identifying certain pairs of vertices. (‘'omplex L{ has the form
of a triangular tube with the ends closed off and hav 1ig &k triangular openings
(uy, vy, ty), (U4, U4, us), and so on. These openings sre all put together bv
identifying the vertices us;,, Wwith u,, us,, with u, and vy, with v, {j=
1.2, k=1

Now define the 2-orientation o of L, so that the fcllowing oriented 2-simplexes

AV ak-1

Fig. 2. The 2-complex L.
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lie in o(Ly)):

Wil UpUsp-1W3k-15

Vg1 Ua¥y, U3W3 2035, Wy;. 2u1w31 -1
: ], 1,2,...,k;

Wiy U1 Wap,  UpWay Uy

UpV3;_q1U3;  Uaj W3 1U3; —1U W3,

=178k THmT AT T P yi=1,2,.... k-1;

Dgiu3,-03,-_l, ngvai“?m_l, u3,W3;u2

U3;U3;Uy, U3W3;0q, WilUz;W3i4q

Lt R M e A , 1,2,...,k=1.

Vil V34, W31 U1W3j Uy Wi Us;

Denote by S, the set of 1-simplexes consxstmg of {ul, v Hu,, v}, {ug, ust

Let f be the integral 2-chain on L, such that ]\U\y))- r fcr every 2-simplex y
of L,. If o is any oriented 1-simplex of I, such that |lo||¢ S, .hen it is clear, either
from examining the list of 2-simplexes in L, or considering Fig. 2 and visualizing
the identification, that ||o]| is incident with exactly two 2-sin plexes in L. If these
2-simplexes are denoted by y, ad y,, then by the definition of o above

[o, o(y,)]= [0, o(y,)]. This implie.. that
@)= X [ afloly

veLi
=[a, o(y,)1f(o(y.); +[o, o(y2)](a(y,)) = 0.

Now if o€ [y, and |lofl€ S,, then it is easily shown that 3f(c) = +kr, the sign of
df(o) depending on which orientaticn of ||o|| is taken. For example, if o = v u,,
there are k 2-simplexes incident with ||lof, namely {u,, v,, wy} and {uy, v, v3,},
i=1,2,..., k—1. By the definition of o, for each of these 2-simplexes y, o(y) can
be written fv,u,, where t is one of wy, vy, j=1,2,..., k—1. Therefore

@)=Y [o,0(]fo(y)

yElye

= Z [V u,, toyu,dr =kr.
t

On the other hand, if o = u,v; we find that af(o) = —kr.

Let g be any integral 2-chain on L,, positive on (L,, 0) and satisfying ag(c) =0
for each o € L, such that |lo]|¢ S.. Given any two 2-simplexes y and y’' in L,
there is a (2, 1)-path connecting them, nc interior 1-simplex of which lies in S,.

Let a corresponding (2, 1)-path sequence be y=y,,X1,¥2 X2, . - -, X1 Ym+1 = ¥ -
Now

ag(a) =[ao, oly)lglo(y)) +[a, 0(vis))1glo(yiry)) if lloll=x;,

for i=1,2,..., m. By the definition of o above, {a, o(y;)]= —[a, o(y;+1)]. Since
dg(a) =0 by assumption, g(o(y;)) = g(o(y,,)) for each i=1,2, ..., m. Therefore,
g(o(y)) = g(o(y") and it follows that g has the same value, say q, at every oriented
2-simplex o(y).y€ L, We may now replace f and r above by g and ¢
respectively, and obtain dg(o) = tkq if |lofle S,.
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We are now ready to construct complex K and circuit ¢ of the theorem. Let s, ¢
be distinct primes with s>t>m. Let K be the 2-complex consisting of two
subcomplexes L, L, and satisfying the following condition: the vertices of L, and
L, corresponding to u;, v;. w;, denoted by uy, vy, w,; and u,, v,;, w,; respectively,
are all distinct with the following exceptions: ug = 4y, U2 = Uy, Uy = Uy, There
should be no confusion in speaking of the 2-orientation o of K for which 0|, and
o|;, are just the 2-orientation given to L, above when k=5 and k =1 respec-
tively.

Define the integral 2-chain ¢ on K by the equation

y € L, 2),

t
c(o( ))={’
oty S, yEL((z).

Denote by ¢, and ¢, the restriction of ¢ to L ., and L, ., respectively and observe,
with ¢, in place of f and s in place of k above, that

BCS(O') = Ov gc Es(l)! “C’n¢ Ss (3)
and
ac,(o)=xst, oeLly, |7eS. 4

Obviously, equations (3) and (4} hold with s and ¢ interchanged. In equation (3),
lloll is incident with the same 2-simplexes in K as in I, and it foliows in this case
that dc(o)=0. In equation (4), the sign of dc,(o) is determined exactly as for
df(a). For example, with o = v;,uU,,, d¢c,(0) =3¢, (v L) = st. We also have o =
u,u,; and since dc,(u,u,) = —st, it follows that ac ()= dc, (o +ac,(cr) =0. The
same equation is readily verified for any choice o’ ¢ such that ||o|e S, =S.
Therefore, c is an integral 2-cycle on K. Moreover, : is positive on (K. o).
Suppose now that ¢’ is any non-null irtegral 2-cycl: on K, which is positive on
(K, 0) and satisfies ¢'<c. Let ¢{=c’|,, ¢c/=c’|.. Replecing the irtegral 2-chain g
introduced abc e by ¢, we observe that ¢/ has the same value, say q, =0, at all
oriented 2-simplexes o(y),ye K. On the other tand, dci(o)==sq,|lolleS.
Specifically, dci(t,,u,,) = sq,. Similarly, ac/(u,,u,,) = -, wheze ¢, is the constant
value of ¢; on o(L,;,}. Now v, u, = u,u,; and, since ¢’ 1s an in'cgral 2-cycle on K,

0= dcdv,1uyy) = dc (V51 Ugy) +dci (U, U,
= 8q, — q,.

Therefore, sq, = tq,, which, since s and t are distinct primes, implies that g, = rt
and ¢ = rs for some non-negative integer r. Therefore, ¢’'(o(y)) = c/(o(y)) = rt for
every yelL,, and c'(o(y))=ci(o(y))=rs for every ycL . Since ¢’<c and
' #90, it follows that r=1 and ¢’ =c. As ¢’ was arbitiarily chosen and positive on
K, 0),c is an integral 2-circuit on (K, o) by Theorein 3.

Clearly, c(o, y))=m for every y € K,, and the thecrem follows [l

Although the emphasis of this section is primarily on the st-ucture of integral
2-circuits, it is appropriate to indicate briefly how Theorem ¢ may be generalized.
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This is done inductively as follows. Suppose that K is an r-complex and ¢ an
integral n-circuit on K such *hat |c(o)|=m for every o € K,,,,. Denote by DK the
complex ‘ :

KU{xU{s}:xe K}U{x U{t}:xe K},

where s ard t are two vertices not in V(K). If we define an integra (n+ 1)-chain
on DK

d(so)=c(o), d{to)=:—clo),

o € K,.,, then it is easy to prove that d is an integral n-circuit on DK. Obviously
{d(7)|=m for every Temn+1). Thus the truth of Theorem 5 with 2 replaced by
n,n=2, implies its truth with 2 replaced by n+1.

Let K, K’ be complexes with ¢ : V(K’)— V(K) a mapping such that if x’¢ K’,
then ¢(x")e K. Then ¢ is called a simplical map [2, p. 249]. If for any simplex
x’e K’, dim(¢(x’)) <dim(x’), then ¢ is said to collapse x’. The mapping ¢ is
extended to oriented simplexes o’ = vjv} - - - v4, where [la’|| is not collapsed by @,
as follows:

d(vho] - - - vl =¢(v)d(vy) - - - (V).

Ifoe I-”{(,,,, let ¢ () denote the set of all o’ € K{", such that ¢(o’)=o. If f’ is an
n-chain on K’, let ¢f’ be the n-chain f on K such that for every o€ K,

fo)=) % (o) if (o) is non-empty,

a'ed o)

0, if ¢"'(a) is empty.

Now suppose that ¢: V(K’)— V(K) is a simplicial map and that ¢(K’) = K.
Denote by V,(K’) the set of vertices of K’ which are fixed under ¢. The nurber
[V(K")—~ V,(K")| will be called the order of ¢. If d(v)e V4(K’) for every ve
V(K’), then ¢ will e called a contraction of K’. From this definition, it is easily
proved that the composition of two contractions is a contraction.

In order to display the structure of integral 2-circuits, two lemmas are needed.

Lemma 6a. If ¢: V(K')— V(K) is a simplical map and ¢’ is an integral n-cvcle
on K', then c = $(c’) is an integral n-cycle on K.

Proof. This is Lemma 6-15 in [2,p.251]. [

Let K be a complex, f an integral n-chain or K. Then f will be called univalent
over K if |f(7)|=|f(7")| for every two oriented n-simplexes 7, 7’ such that |l=||N

i+l # @ and f(z), f(=) #0.

I.emma 6b. Let K be a complex, c an integral n-circuit on K. If ¢ is univalent over
K, then c is primitive.
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Proof. Denote by C the smallest complex whose n-simplexes lie in
{to):c(o)#0}. If C is nct connected, it may be ‘rritten as the disjoint union
C =C,+C, of two 2-complexes. Define ¢; to be the integral 2-chain on K such
that

.:i(T)::{C(’)’ T€Ga g0
01« T¢E (:i(?)

Observe that ¢, and ¢, are non-zero integral 2-cvcles on K such that ¢;<g,
i=1,2. Since c¢ is an integral 2-circuit on K, ¢=¢, i=1,2. But obviously
¢ =c,+c,, implying that one of ¢, or ¢, is zero a1d contradicting the fact that
both are non-zero.

Since every simpiex of C lies in an n-simplex ad since C is connected, C is
(0, n)-connected. Now let u,veV(C). Ther: is a (0,n)-path {u}=
s Yor %15 Y1 - - - » Yn-1- X, ={0} in C. Denote by k; the positive integer such that
lc(7)| = k; whenever x; c|i7|l. For each i=0,1,...,n—1, x,, X,, <y, and for any
orientation 7, of y;, |c(7))|=k;, k. It follows that k,=k, =" - - = k,. Therefore,
'o(7)| is a constant, say k, over all 7€ C,. Thus (1/k)c is a non-zero integral
n-cycle‘for which (1/k)c<c. Since ¢ is an integral n-circuit, k=1 and c is,
therefcre, primitive. [

As scen in Theorem 5 there are non-primitive irtegral 2-circuits. Such integral
2-circuits are now related (o primitive ones through the notion of contraction.

Theorem 6. Let ¢ be an integral 2-circuit on a complzx K. There is ¢ complex K', a
primitive integral 2-circuit ¢’ on K’ and a contract on ¢ of K’ such that

(i) K=¢(K’) and

(ii) c=oc’.

Proof. Let d be an arbitrary integral 2-circuit on a complex L. Define the
quantity

pld)= 2 |ld(=)|=1]-|d(r)]
Tel
and observe that d is primitive if and only if ptd)=1. Otherwise ptd)>0. The
quantity p(d) thus measures the “non-primitiveness’ of d. The proof proceeds by
induction on p(c).

If p(c) = 0, there is nothing to prove since f may be taken as the identity map (a
contraction of order 0) on K’=K and c is already primitive.

Let p(c) =k >0 and assume the theorem holds f :r all integral 2-circuits d on K
such that p(d)<k. Sinze p(¢)>0, c is non-primitive and, by Lernma bb, non-
univalent. Let v be a vertex of K for which there exist two oriented 2-simplexes
7, 7" such that v |||}, |7’|| and c(7), c(7") 7: 0 while ¢ (1) # |c(7")l. Denote by m the
maximum non-zero valve of |c(7)| ove- all oriented 2-simpiexes 7 such that
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Fig. 3. The basic operation.

ve|l. Define a 1-chain c, on K, = 1k(s, K), the link of v in K, by
co(0) =c(ve), oek,,,

To better visualize the formation of c,, Fig. 3(a) illustrates K, with the values of c,
at orientations of its 1-simplexes. Fig. 3(b) displays a portion of K in the
neighborhood of v with the values \f ¢ at orientations of its 2-simplexes.

We now observe that:

(d) c, is an integral 1-cycle on K,, and that:

(e) for any non-zero integral l-cycle f on « complex and for any oriented
1-simplex o such that f(o) #0, there is a primitive integral 1-circuit g on the
complex such that g(o)#C and ;<f '

Statement (e} 15 obvious. To establish statement (d), let p be an oriented
0-simplex, i.e., a vertex, say p=w, in K,. Then

ac,(p) = Z ¢, (up), by the definition of 9

ueN(pK,)

= Z c(vuw), by the definition of ¢,
ueNGL.K,)

= '“Z c(uvw), since vuw =—uwvw and N(p, K,) = N(vw, K)
ueN(w,K)

= —3c(vw) = 0.

Therefore, ¢ is an integral 1-cycle on K,. Since m =1, ¢, is non-zero and, by
statemen* {e), there exists a primitive integral 1-circuit g¢ on K, such that g=<c,
and such that g(o,) #0, where c,(uv,) = c(vo,)= m.

Now let u be a vertex not in V(K) a1d define L = KU C(y, K,) as illustrated ui
Fig. 3(c). Here only the 1-simplexes have been displayed: the 2-simplexes are
easily inferred from Fig. 3(b). Let ¢ be the mapping ¢ : V(L)— V(L) defined by
¥(u) = v, ¢ being the identity e!'sewhere on L. Obviously ¢ is a contraction and
K =¢(L). In what follows deiote by $, and S, the sets of orienteid 2-simplexes
containing v and u respective y.
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Define an integral 2-chain d on L as follows:

c(7) if u, véll,
d(T) = C(T)_ g(O') if ve uT“ and 1 = vo,
(8(o) if uelr and 7= ucr

We now show that d is an integral 2-circuit on L. FFi-st, it must be shown that d is
an integral 2-cycle on L. This is done by examiring four cases for o in the
equation:
dd(o) = Z d(wa), oeLy. 5
weN(o.L)
Case 1: ucelol.
Here N(o, L)= Nip, K,), where o = tup. Suppose that o= vo and that ||p||=
{t}. Now wo = wut = utw and, by (5)
ad(o)= ) glw)= Y g(wp)=-a3(p)=0.

weN(p.K,) weN(p,K,)
Simitarly, dd(o) =0 if o= —up.
Cuse 2: vela].
Here N(o, L)= N(p, K,), where o =+uvp. Suppos: that o =uvp and that ||p||=
{s}. NHow wa = wous = —ows, d(vws) = c(vws)— g(ws) == ¢, (ws)— g(ws' and, by (5)
dd(ag) = ~2: c,(ws)+ Z g(ws)
weN(pK,) weN(p.K,)
= —~dc,(p)+ag(p)=0.
Similarly, od(o)=0 if 6 = —uvp.
Case 3: o< K,.
Let S = N(o, 1.)—{u4, v} and observe that

ad(x)= Y. d(wo)+d\wo)+ d(uc)

weS

Y. c(wo)+c(vo) - gla) + g(a)

weS

f

Y c(ws)=dc(o) = 0.
weN(o L)

Case 4 u,vé|dl, o¢K,.

I this case, d(wo)=c(wo) by the definition of d and (vi) becomes dc(o)
directly.

In order to show that d is an integral n-circuit on L, let d’ be a non-zero
integral n-cycle on L such that d’<d. We will shov' first that yd’ = c, then that
d’=d. ‘

Iet 7€ K, and suppose that ¢(7)=0. Since d’= 7<c, it follows that d’(r)<
dity<scl(r). If 7¢S,, then Yd'(1)=d'(t)<c(7). If 7=S,, then 7=vo for some
o e K., and yd'(1) = d"(uc) - d'(va). Since ¢, (o) =20, ii follows from the defini-
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tion of d that d(s0)=0, whence d’(uo)< a(ua) Therefore d'(mr)+d'(vcr)<
d(uo) +d(vo) = c(vo). We have thus shown that when ¢(7) =0, ¢d (). By
a similar argument, the same mequahty ds ; e d’#0
let 7€ K, such that d’()#0. If r¢S,, then ud'(») d'(»r);éo ¥ re s‘,, then
7=vo for some g€ K,(,, and ¢d’(7) = d"(uo)+d'(vo). By the deﬂmtlon of d and
the mequahty d’=<d, d’ has the same sign at both uo and vo. Hence, Yd ’(1-) #0.

By Lemma 6(a), yd’ is an mtegral n-cycle on K We have shown moreover,
that ¥d’ is non-zero and that Yd’<c. Since ¢ is an integral n-circuit, ¢d’ =c.
Finally, we will now show that d’=d, proving that d is an integral 2-circuit.

Let ve L and suppose that 7¢ S, S,. Then d(7)=«( 1) while d’(7)=gd’(7) =
c(7). Therefore d'(7) = d('r) Suppose next that 7 lies i1 one of S,, S, so that 7 is
one of uo, vo, where o € K,,,. Suppose further that ¢ (o) =0. By the definition of
d and by the inequaiities ¢, (0)=0, d’=<d, it follows that d’(ve)< d(vo) end
d’(uo)=< d(uo). Therefore,

clvo) = Yd'(vo) = d’(va) + d"(uo)
< d(vo)+d(uo) = c(vo),

which combined with the foregoing two inequalities, implies that d’(vo) = d(vo)
and d'(uc) = d(uo), whence d’(7) = d(t). We would reach th: same conclusion if
we initially assumed that ¢, (o) =<0. Since d’(v) = d(7) for every 7€ f(z) it follows
that d’=d and we have proved that 4 is an integral 2-circuit.

We now compare p(d) with p(c). For this purpose it will be convenient to
regard ¢ as an integral 2-circuit on L by setting ¢{7)=:0 for every 7€ I:(,_)—-K 2)-
Thus

p@)=p(d)= 2, (lle¢:: =1 le(ml~|ldn)|=1| - |din)). (6)
T€l2: .

Since d(7)=c(r) whenever 7¢S,US,, the terms oi (6) corresponding to such
oriented 2-simplexes all vanish. The remaining terms can be recombined and each
oriented 2-simplex 7 rewritten as 7= uo or 7= va, where o€ K, and

p(c)-p(d)= Y (o),

2
AR ST )

where

r(a) = (| |ctvo) = 1| - |c(vo)| - | |d(v) - 1] - 1d(va)]
—|ld(uc)| - 1] - |d(uo))).

The last summation can be rewritten

plc)-p(d) =2 Y r(o),

a8eT

where T is the set of oiented !-simplexes aefé‘, at whicli ¢(ve) (and, therefore,
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d(ve) and d(uo)) is non-negative. Each of th: crms r(o) now becomes
r(o) =(c(ve)— 1)c(vo)—(d(ve)— 1)d(ve) —(d(uo) — 1)d(uc)
= 2g(0o)(c(vo) — g(o).

Since g<c, c(vr)=(C and g(o)=9, we have -o)=0. Therefore, p(c)=p(d).
Recalling that o, is an oriented 1-simplex for which c¢(ve)=m and that m>1,
we have

r(oy) =2g(o)(c(vo,) — gloy))
=2(m—-1)>0.

Therefore, p(¢) > p(d) and by the induction hypothesis, there exists a complex K’,
a primitive int2gral 2-circuit ¢’ on K’ and a contraction ¢ of K’ such that

L=«4(k’) and d=dc".

Clearly, ¢ = 14d and, therefore, ¢ = ¥pc’. Moreom er, K = fip(K’) and the theorem
follows at once from the fact that the composition of two contractions is a
contraction. [

3. Sammary and conclusions

We de not know whether a higher-dimension:i' form of Theorem 6 exists. The
argument i» its present form is ‘““blocked” in kig12r dimensions at the generaliza-
tion of Staternent (e) in the proof of Theorem €. It will be recognized moreover
that the following statement, if it were true, would generalize the essential part of
Statement (e).

(e’) For any non-zero integral n-cycle f on K there is a primitive non-zero
integral n-circuit g on K such that g<f.

However, Theorem 5 provides an integral 2-circuit ¢ (noi-zero by the defini-
tion of integral n-circuit) the minimum magpit. de of whosz values exceeds an
arbitrarily prescribed number. Clearly no primitive non-zero integral 2-circuit can
be an integral sub-chain of c, which shows (e’) 10 be false. Perhaps a generaliza-
tion of Theorem 6 is possible, however, if one attempts a second induction in
place of Statement (e), using the theorem in a lo'ver dimension to “expand” K, to
the point *vhere the required primitive integred (n— 1)-circuit exists, then to
“expand” K by the argument used above.
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