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This paper studies the minimal surfaces in Seifert fiber spaces equipped with their natural 

geometric structures. The minimal surfaces in these 3-manifolds are always either vertical, namely 
always tangent to fibers, or horizontal, always transverse to fibers. This gives a classification of 

injective surfaces in these manifolds, previously obtained by Waldhausen for embedded injective 

surfaces. As usual in this context, equivariant versions of this classification can also be obtained. 
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1 S$mertrt&r;~ incompressible surface 1 

Introduction 

Recent years have seen a growing number of results tying together 3-dimensional 
topology and the theory of minimal surfaces. Techniques developed in each field 
have been successfully applied to solve problems in the other. This paper pursues 
this trend and examines the interaction of minimal surfaces with the l-dimensional 
foliations of 3-manifolds given by a Seifert fiber structure. In a related paper [3] 
the interaction with codimension one foliations of manifolds is examined. 

To use minimal surface techniques to study Seifert fiber spaces and their submani- 
folds, we need to equip them with some Riemannian metric. These manifolds actually 
admit certain natural metrics, modelled on one of six geometries. These natural 
metrics are compatible with the foliations, in that their isometry group will include 
rotations about the circles, possibly after passing to a double cover, and this allows 
the nature of the minimal surfaces present to be well understood and in some cases 
classified. As a consequence, a topological classification of injective surfaces is 
reached in Corollary 1.2. This classification can be done for surfaces not homotopic 
to embeddings, as well as for the embedded case where it is well known and due 
originally to Waldhausen. As is often the case when proving topological results via 
minimal surface theory, we can get an equivariant version of the results also, if a 
finite group is acting on the manifold. 
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A map or a manifold will be assumed smooth throughout this paper. A surface 

is a minimal surface if it is an immersion with zero mean curvature. This is 

distinguished from a feast area surface which is one that minimizes area in its 

homotopy class. 

1. One dimensional foliations 

In this section we will examine compact 3-manifolds foliated by circles. Such a 

3-manifold is a Seifert fiber space [I, 71. These manifolds have been extensively 

studied by 3-manifold topologists, recently from a geometric point of view. Like 

surfaces, they admit natural geometric structures, modelled on one of E’, S3, S* x R, 

HZ x R, S?, R) or Nil. 

We will study the minimal surfaces in these 3-manifolds equipped with their 

natural metrics. In some cases we can classify these. As a consequence we generalize 

known results on the nature of incompressible surfaces in such manifolds. 

Let M be a closed 3-manifold which is a Seifert fiber space and F a closed 

surface, F # S2, P2. We say that f: F + M is injectiue if the induced map on the 

fundamental group is an injection. We abuse notation by referring to the image 

f(F) as F. If F is an immersed surface in M, we say it is horizontal if F is everywhere 

transverse to the fibers of M, and we say it is vertical if F is everywhere tangent to 

the fibers of M. We now state the main theorem of this section. 

Theorem 1.1. Let M be a Seifert fiber space with a geometric structure. Let F be a 

closed surface, F # S2, P2, and let f : F --, M be a minimal injective immersion. Then F 

is either vertical or horizontal. 

Note that the hypothesis of the theorem implies that the geometric structure is 

not modelled on S3 or S2 x R, as the Seifert fiber spaces modelled on these contain 

no injective surfaces. 

Before proceeding we will look at some consequences of this result. 

Corollary 1.2. Let f: F + M be an injective map. Then f is homotopic to a vertical or 

horizontal map. 

Proof. It is known that an injective map is homotopic to a map minimizing area in 

its homotopy class, and that such a map is an immersion [S]. The result now follows 

from the theorem. 

Corollary 1.3. Let f: F + M be a 2-sided injective embedding. Then f is isotopic to a 

vertical or horizontal embedding. 

Proof. As in the previous corollary f is homotopic to a least area immersion which 
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is vertical or horizontal. This map is either embedded or a 2-1 cover of an embedding 
by Theorem 2.1 of [2]. In the latter case, we take instead the boundary of a regular 
neighborhood of the minimal immersion, which can clearly be chosen to be horizon- 
tal or vertical if the minimal immersion is horizontal or vertical. This surface is 
isotopic to the original map f as two homotopic and embedded 2-sided incompress- 
ible surfaces in a Seifert fiber space are isotopic [9]. 

Note: This corollary is well-known and previously obtained by topological methods. 
We can get an equivariant version of the above theorems using the following 

result of Meeks and Scott. 

Theorem 1.4. (Meeks-Scott.) Let M be a closed Seifert Fiber space with metric 
modelled on one of E3, HZ x R, PSL(2, R) or Nil and let G be a finite group acting 
on M. Then after conjugation by a diffeomorphism, G acts on M by isometries. If the 
geometric structure is not modelled on E3, then the action can be taken to preserve the 
fibers of the Seifert jibration. 

We now state the equivariant version of the above corollaries. 

Theorem 1.5. Let f: F + M be an injective map and let G be a finite group acting on 
M. Then f is homotopic to a map f : F + M such that g * f(F) is either horizontal or 
vertical for each g E G. If f is embedded and 2-sided then f can also be taken to be 
embedded and g * f (F) is isotopic to g *f(F). 

Proof. By the Meeks-Scott theorem we can assume that G acts as isometries on 
the natural geometric structure on M. Then g -f(F) is a minima1 immersion iff( F) 
is. Picking f to be the minima1 immersion homotopic to f, the result follows. The 
result in the embedded case is similar to Corollary 1.3. If f collapses to double 
cover a l-sided embedded surface when it is homotoped to a minimal embedding, 
then the boundary of a small regular neighborhood of this minimal immersion serves 

as f(F). 

We now proceed to the proof of Theorem 1.1. 

Proof of Theorem 1.1. Case 1. F is 2-sided in M and M is an S’ bundle over an 
orientable surface, admitting an S’ action where the action is isometries preserving 
each fiber of the Seifert fibration. 

We let MF be the covering space of M with fundamental group corresponding 
to l? That is, if p: MF -, M is the covering map, then p+~,(Mr) = f,rr,(F). f lifts 
to a minima1 immersion f, : F-, Mr. Clearly f is vertical or horizontal if f, is vertical 
or horizontal respectively, as these are local properties. MF is foliated by either 
circles or lines which cover the fibers of M and it is relative to these that we speak 
off, being vertical or horizontal. To proceed we need some lemmas on the local 
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behavior of minimal surfaces. The first states that a minimal surface can not lie 

locally on one side of a second minimal surface which it meets. 

Lemma 1.6. (Maximal principle for minimal surfaces.) Let J;: D + M, i = 1,2, be 

two minimal immersions of the 2-disk into a Riemannian 3-manifold M, such that 

f,(O) =fz(0). Then eitherf,(D) coincides with h(D) in a neighborhood of f,(O) or 

f,(D) meets both sides offz( D) in any neighborhood offi (0), similarly to the intersection 

of x3 = 0 and x3 = Re(x’ + ix*)“, n 2 2, in R3, up to a C’ difleomorphism. 

Proof. See [2] or [S]. 

Lemma 1.7. Let M be a geometric Seifert fiber space, let p E M and let V be a vector 

in TM, not tangent to thejiber through p. Then there is a vertical minimal surface W 

in a neighborhood of p with VE TW, 

Proof. This is a local property that is being claimed so it suffices to prove it in each 

of E3, HZ x R, SL(2, R), Nil, S3 and S* x R. For E3 = E* x E’ and for H* x R we 

simply pick the union of all the fibers over a geodesic, which is a totally geodesic 

surface. Since a geodesic can be found in the base having any tangent vector at a 

given point, the result follows for these product geometries. S3 and S” x R similarly 

have totally geodesic vertical surfaces whose tangent planes contain any given vector 

at a point. These are the great 2-spheres and products of equatorial circles with R. 

For SL(2, R) and Nil, we first note that a vertical minimal surface exists. We can 

see this by looking at a compact manifold which is a circle bundle over a surface 

with one of these two structures and admitting an S’ action. Consider a least area 

surface homotopic to a vertical surface over an embedded circle. It follows from 

[2] that this least area surface is equivariant under the S’ action, and thus must be 

a vertical surface, in fact a vertical torus. This lifts to a vertical minimal plane in 

G, R) and Nil respectively. We now note that the isometry group of each of 

these includes a screw motion about any vertical line, and thus there is a vertical 

minimal surface spanning any vertical tangent plane through a given point. The 

result follows. It is easy to see that these vertical minimal surfaces consist of all the 

fibers above a geodesic in the associated orbit space. 

Lemma 1.8. Let M be one of E3, HZ x R, SL(2, R) or Nil, F a minimal immersion in 

M which is tangent to a fiber at PE M and A:&! x M + M an action of 154 on M as 

isometries preserving eachjber. Then A(t) - F n F # 0 for t in some open neighborhood 

of 0. 

Proof. Let G be the vertical minimal surface through p which is tangent to F at p. 

G exists by Lemma 1.7. If F is vertical the lemma is trivial. If not then Gn F is 

transverse in a deleted neighborhood of p, and looks locally like the graph of 

x3 = Re(x’ +x2)“, n 2 2 by Lemma 1.6. The local picture for G n A(t) - F at 
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A(t) * (p) = q is similar. Let r and s be two lines in the intersection which cross 

transversely. Then for small values of t, A(t) . r n s # 0. But A(t) - r c A(r) * F n G 

and it follows that Fn A(r) * F is non-empty. See Fig. 1. 

A(t 

r S 

Fig. I. Local picture of G n F on G. 

We now return to the proof of the theorem. We are considering a minimal 

immersion f, : F + MF MF admits either a circle action or an R-action where the 

action is by isometries preserving each fiber. If MF admits an R-action, A: R x M + 
M, then the compactness of F implies that A(r) -f,(F) nf,( F) = 0 for r sufficiently 

large. Iff, is not horizontal, then A(r) -f,(F) nf,( F) # 0 for sufficiently small positive 

r by Lemma 1.8. Thus there exists to= {sup rlA(r) *f,(F) nf,(F)} #0. But 

A( r,,) -f,(F) is a minimal surface meeting f,( F) and lying on one side of it and this 

contradicts the maximal principle, Lemma 1.6. Thus f, is horizontal if MF admits 

an R-action of this type. 

If MF admits an S’-action preserving the fibers then F must be a torus or a Klein 

bottle, as the center of its fundamental group is nontrivial. So f( F) is an immersed 

minimal torus or Klein bottle in M. Our assumptions on M imply that it’s a torus. 

The next lemma will describe the nature of such tori. 

Lemma 1.9. Let M be a circle bundle over a surface, modelled on one of HZ x R, E’, 
P-2, R), Nil. A minimal torus Tin M is either horizontal or the vertical torus above 
a geodesic in l3, where B is the natural orbit surface associated to the Seiferrjber space. 
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Proof. Let G =La,( T) where f: T+ M is a minimal map. If G n {center( v,( M))} 

is trivial then f lifts to a homotopy equivalence fT: T+ M, and MT admits an 

[W-action, so the previous argument showsfis horizontal. If MT. admits an S’-action 

preserving the fibers, then there is a natural projection pT : MT + BT where BT is an 

annuius. B, inherits a hyperbolic structure if M is modelled on HZ x R or PT(2, R), 

and a flat metric if M is modelled on E’ or Nil. Let K be the compact set 

pT(fT( T)) c BT. If K is a simple closed geodesic in Br then the conclusion follows. 

If Br is hyperbolic and K is not the unique simple geodesic y, then there is a point 

p in K at maximal distance from y. There is a geodesic S in BT through p, whose 

closest point of approach to y is at p. The fibers above 6 in MT form a minimal 

surface meeting fT( T) in a manner contradicting the maximal principle. 

If Br is flat, a similar argument shows that K is precisely one geodesic and the 

Lemma is proved. 

Returning to the proof of the theorem, we see that in the case of an S’-action 

on MF,f( F) lifts to a vertical torus in MF. Since verticalness is a local property, f 

is a vertical map itself. This concludes the proof of Case I. 

To prove the general case, we use again the observation that verticalness and 

horizontalness are local properties. Given any injective map f, : F, * M, where M 

is any Seifert fiber space, there is a finite cover M, of MI, a finite cover Fz of F, 

and a map fi: F2+ M2 covering f, : F, + M, such that f2: F2+ M2 falls into Case 1. 

Since a lift of a minimal surface is minimal, fi and thus f, is either vertical or 

horizontal. 

Note. The theorem is false without the assumption of injectivity. For an example, 

consider a lens space containing a geometrically incompressible surface. Such a 

surface can always be isotoped to a minimal surface [6] but in general can not be 

homotoped to a vertical or horizontal surface, when the lens space is fibered over 

the 2-sphere with two critical fibers. A vertical surface would have to be a torus or 

klein bottle and a horizontal surface would have to be orientable. 
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