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Abstract—

A theoretical model is developed to determine heat transfer performance in laminar flow through a

pair of co-rotating parallel circular disks. The dual-stream flow influx enters the flow field from both sides,

proceeding radially outward. A finite-difference scheme is employed to obtain numerical results by means of

the SIMPLER algorithm. The effects of governing dimensionless parameters such as the rotational number

through-flow Reynolds number, Prandtl number and system geometry on the heat transfer performance are
determined.

1. INTRODUCTION

ROTATING mechanical devices associated with heat and
mass transfer are abundant in industry, for example,
turbomachinery [1], rotating heat exchangers [2, 3]
and rotating-disk contactors [4]. Rotating-disk
systems have been employed as the models for the flow
and heat/mass transfer that occur inside these units.
They can be classified into the free disk, rotor—stator
systems and rotating cavities [ 1]. Among them, the free
disk is the simplest model which has received
considerable attention. It is the basis of all rotor—
stator systems and also has relevance to rotating
cavities. Both the rotor—stator system and the rotating
cavity have been the subject of numerous experimental
and theoretical studies. Instead of repeating a review of
voluminous articles on rotating-disk systems, readers
are referred to Dorfman [5] concerning rotor—stator
systems; Greenspan [6] which includes a large
quantity of material on rotating cavities; and a recent
article by Owen [1] reviewing fluid flow and heat
transfer in rotating-disk systems.

Although there are many publications devoted to
rotating-disk systems, a number of important areas still
need further theoretical and experimental research.
The present work explores such areas. It deals with heat
transfer in laminar flow through a pair of co-rotating
parallel circular disks. A theoretical model is
developed. Numerical results are obtained by the
SIMPLER aigorithm [7].

2. ANALYSIS

Figure 1 shows the physical system to be analyzed. It
consists of two parallel circular disks with an opening of
diameter 2r;, at the center. A fluid flows normally
through the openings and then radially out through the
spacing B between the disks of outer radius r,. A
cylindrical coordinate (r, z} is used with the origin fixed
at the center of the lower disks. It is postulated that the
flow is steady, laminar, incompressible and axi-

symmetrical and that all physical properties remain
constant.

The differential equations governing transport
phenomena in a radial channel between parallel disks
give this continuity equation
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In Table 1, p is the pressure and v and « are the
kinematic viscosity and thermal diffusivity, respec-
tively. It is assumed that (1) both the velocity and
temperature profiles are uniform at the inlet to the
radialchannel(r = r;, atu,, and T, respectively)and (2)
the channel wall temperature is uniform at T,.
Assumption (1) is reasonable if the rotating-disk
assembly is placed in the midstream within a wind
tunnel duct. The flow is non-slip at the wall. It can be
shown that at the outlet » = r, the radial diffusion effect
is negligible compared with the radial convective effect
for all the velocity components and temperatures. Two
cases are studied : the disks are at rest and in rotation
about the z-axis while the fluid is flowing radially
outward.

The flow field in the lower half channel was divided
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F1G. 1. A side view of two co-rotating parallel circular disks.
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coefficient

gap between the disks [m]

generalized flow coordinate, equation (9)
heat transfer coefficient [W m™2 K~ '}
integrated mean heat transfer coefficient
Wm 2K 1

grid counter in r-direction

I i-counter of the nodes immediately before
the exit

grid counter in z-direction

J-counter of the nodes immediately below
the center plane

fluid thermal conductivity [W m~!' K ™'}
total mass flow rate [kgs™ ']

pressure [N m ™ 2]

variable for correcting velocity

Prandtl number

total heat transfer rate [W]
non-dimensionalized ¢, equation (7)
Nusselt number, equation (7)

integrated mean Nusselt number

disk radius divided by (B/2): R;, at inlet;
R, at exit

radial coordinate: r,,,, inner disk radius; r,,
outer disk radius [m]

Re Reynolds number, equation (8)

Rt rotation number, equation (9)

T temperature: T, temperature of inlet fluid;
T,., temperature of disk wall [°C]
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NOMENCLATURE

Ta Taylor number, equation (9}

u radial velocity component: u;, at inlet
[ms™1]

v axial velocity component [m s~ !]

w  angular velocity component [m s~ 1]

z  axial coordinate [m].

Greek symbols

thermal diffusivity [m? s~ 1]

angular coordinate

viscosity [N s m ™ 2]

kinematic viscosity [m?s™!]

variables (general)

angular velocity of rotating disks [m s~ 1].

Ne <R SR

Subscripts

east wall of a grid cell
east node

radial grid counter
inlet

axial grid counter
north wall of a grid cell
north node

outlet

center node

south wall of a grid cell
south node

wall.
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into a non-uniform grid network of rectangular shape
(with grid size of Ar; x Az;), I x J msshes in the radial
and axial directions, respectively, as shown in Fig. 2.
The governing equations (1) and (2) were reduced to a
set of algebraic finite-difference equations using a
discretization method called the hybrid scheme [7-9]
which is a combination of the central and upwind
schemes.

In the present study, the discretized governing
equations were solved by the SIMPLER (semi-implicit
pressure-linked equations revised) algorithm [7]:

Table 1. Definition of ¢ and S
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pressure was determined from the equation derived by
coupling of the discretized momentum equations to the
discretized continuity equations, while the velocity
determined by the momentum equation was corrected
to satisfy the continuity equation through the use of an
additional variable p’. The equations for p’ were derived
also by coupling of the discretized momentum
equations to the discretized continuity equation.
However, the difference equations for each dependent
variable were solved by the line-by-line interactive
method.

New schemes were incorporated in the present study
in order to increase the accuracy of the numerical
scheme and to reduce the number of steps required for
convergence and also to improve the numerical
stability in computations.

2.1. New treatment of the velocity correctionthroughp’ at
the exit

In the conventional treatment [9, 107, the boundary
condition for p’ at the exit is provided by assigning O to
the a; coefficients which relate p'sati=1and ati =
I+ 1. Tt makes the system of the difference equations
for p’ a singular system, which has generally a faster
convergence ratein the differenceamong p'sthana non-
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F1G. 2. Flow field and numerical grid.

singular system. This scheme, however, can satisfy only
the overall continuity at the outlet but not the
continuity at each cell. Thus, it may result in large
continuity errors in this region even in a final solution
which has already passed a convergency test. To
remedy this defect, a new treatment was devised which
was based on the fact that the difference between p’s in
the z-direction is much smaller than that in the r-
direction, which will be explained in more detail in
Section 2.2. From this consideration, a constant 0 was
assignedtoall p'sati = I + 1. Since the linkage between
p'sati = Iandi = I + 1 arenotserved, the continuity at
each exit cell can be satisfied through the non-uniform
correction of the exit velocity and the error in the
continuity in the exit region can be thus reduced to the
level of other regions.

2.2. Initial guessing of the additional variable p’ for an
inner iteration

Even though accuracy is improved, the new
treatment at the exit in Section 2.1 changes the system
toanon-singular one, whose convergence rate becomes
slower. This is very important since the value of p’
changes at each global iteration and only a few inner
iterations can be performed for p’ at each global
iteration. A good initial guess of p’, however, can be
found by calculating the average value of p’. The
velocity-correction formulas (7) at nodal point P are

u, = ug +d,(pp— P (3)
vy = Uy +d,(pp—pr)- 4)

A similar expression is obtained for uy, and ug. u* and v*
are the velocities determined by the momentum
equations. They are corrected by p’ to satisfy the
continuity. Values of d are proportionality coefficients.
Since (4, —u¥) is generally much larger than (v, —v¥)
while the proportionality coefficients d, and d, are
almost the same, the difference between pp and pg
becomes much larger than that between pp and pj.
Consequently, p’ undergoes a major change only in the
r-direction. This feature makes it possible to determine
the average p’ at each i which can be used as a good
initial guess. Only a fine adjustment of p’ across the
channel (j-direction)is required for inner iteration. The
average value is calculated by adding the difference
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equation (7) for p’ over the j-direction. The result is

(Z ap.-,) pi= (Z as,»,-) Piv1+ (Z aw.-,«) 13;'—1+Zbij-
J J J J (5)

Here, values of a are the coefficients which define the
relationship between p’ at the center node P and the
surrounding nodes at E and W, while the term b;;
represents a ‘mass source’ which must be annihilated
through the velocity correction. A more detailed
explanation can be found in ref. [11].

2.3. Initial guessing of pressure p

Since the equations for p and p’ are similar in
characteristics, a good initial guess of p can be
conducted in a similar fashion as that for p’ as described
in Section 2.2. When the following condition was
satisfied, p{; ! was employed as a starting value for an
inner iteration

J J
Z lﬁi_l)i,ﬂ 2 Z |p(i,;l)_pi,j| (6)
Jj=2 Jj=2

where p{; ! is the value of p; ; at the previous iteration.
This criterion was usually achieved in seven to ten
iterations.

2.4. Modification of the coefficient of p’ in the central
region of the flow field

ap, a coefficient of p’ in the difference equation of p', is
a function of similar coefficients in the discretized
momentum equations while the coefficients in the
momentum equations depend on the boundary
conditions for velocity. With this functional relation-
ship, the symmetry condition on the center plane for u
makes the coefficient ap at nodal points (i, J)
significantly different from the a, at other nodal points
at the same radial location. It results in an over-
correction of u at the nodal points (i, J). The over-
correction deteriorates the satisfaction of the momen-
tum equations even though it satisfies the continuity
equation. The satisfaction of the momentum equations
can be improved by adjusting the proportionality
coefficient, values of d in equations (3) and (4), without
affecting the satisfaction of the continuity equation. To
prevent the over-correction due to the symmetry
condition, modification was made on the coefficient aj,
which is a coefficient for up in the discretized
momentum equation. When the proportionality
coefficients of d are calculated from the a, the ap at (i, J)
was set equal to the ap at (i, J — 1). The modification was
crucial in achieving the convergence, especially when
the Ar/Az ratio of a grid cell was large.

2.5. Use of different relaxation factors for global and
inner iterations

The under-relaxation factors of 0.7, 0.7, 0.7, and 0.5
were used for the calculations of u, v, w, and p,
respectively, in the global iterative procedure, while 1.0
and 0.7 and 1.0 were utilized as the relaxation factors of
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Table 2. Methods and required CPU time for channel flow
between two parallel plates of channel length—height ratio of
20, Re = 200 and 30 x 15 grid system

CPU
Guessing of p’ and P time
Method in inner iteration (s)
New method
(p'=0ati=1I+1) Yes 243
Conventional method
(forp',ap = Oati=1I) No 3.58

u, v, and w, respectively, for their inner iterations. An
over-relaxation factor between 1.5 and 1.7 was
employed for the inner iterations of p and p’.

Table 2 shows the effectiveness of the new measure
introduced in this study.

The solution of the discretization equations was
obtained by the TDMA (tridiagonal-matrix algorithm)
[12]. Computations progressed in the radial direction
from the boundary where an explicit condition was
specified toward the opposite side.

The convergence criteria were set as

1 J
2 Y Ib

VIR =R

Here, b; ;denotes the error in the continuity equation at
the cell centered at the nodal point (i, j). u. and u* are the
values of u at the point (i, j) determined by the velocity-
correction formula and the discretized momentum
equations, respectively, in the SIMPLER algorithm.

< 00002 and {u, —u¥|pme < 0.004.

3. RESULTS AND DISCUSSION

Numerical computations were performed using an
AMDAHL 5860 digital computer with an H compiler.
The accuracy of the mathematical model and computer
program was first tested by solving the problem of a
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fully developed channel flow using a rectangular grid
network. The largest error in the velocity components
was found in the u value to be 0.6%, whereas the error in
the pressure gradient was 0.3%; with a network of 20
x 15 meshes when Re = 200. Numerical computations
were also performed to determine local heat transfer
coefficients in slug flow through a radial channel
between stationary parallel disks at uniform wall
temperature. For Reynolds numbers of 18850 and
94 240, numerical results were in excellent agreement
with the exact solution throughout the entire radial
flow path except in the thermal entrance region.

Then, the model and computer program were
applied to solve the problem of flow and heat transfer
in the radial channel between rotating parallel disks. I
and J were selected as 28 and 15, respectively.
Approximately 5-10s of CPU time were consumed for
each computation.

The heat transfer performance of radial flow through
the rotating parallel disks can be expressed in terms of
the dimensionless heat transfer rate Q, local Nusselt
number Nu, and average Nusselt number Nu. They are
defined as

q hB

C= BT, Ty

Here, g denotes the total heat transfer rate between the
disk wall and the bulk fluid, k the fluid thermal
conductivity, B the disk spacing, T;, the inlet fluid
temperature, T,, the disk temperature, h the local heat
transfer coefficient, and / the integrated average value
of h. The Reynolds number based on the disk spacing is
defined as

m

Re = —
Bu

®)
where m is the mass flow rate and p is the absolute
viscosity. In addition to Re and Pr, the heat transfer
performance depends on the Taylor number Ta or the
rotational number Rt and the system geometry
represented by the generalized flow coordinate Gx.
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FiG. 3. Distribution of radal velocity component u in a flow with Re = 25200 through disks (R;, = 30,
R, = 67.5) rotating at Rt = 2.0.
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They are defined as

B*Q
Ta=-——;
v

n(R*—R3)
=———— 1 Rt
Re Pr

Gx

Uu:
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where Q represents the angular velocity, u;, the radial
velocity at the inlet, R;, = 2r,,/B, and R = 2r/B. Note
that Rt Re = 2n Ta(r,,/B)*.

The parameters were varied to determine their effects
on the heat transfer performance: Re = 20000-
140000, Pr =0.7-8.0, Rt =0-3, R,, = 5-80 and
R, = 40-206. In the interest of brevity, only typical
results are presented here.

It is well recognized that radial flow through parallel
disks results in a decrease in the radial velocity due to
an enlargement in the flow area. Consequently, a
continuous pressure buildup, i.e. an adverse pressure
gradient, along with the flow induces flow separation to
occur at a distance downstream from the inlet. When
the disks are set in rotation, the centrifugal force comes
into play. Its effect is to shift the peak of radial velocity
profile ufrom the channel center (in the entrance region)
toward the wall (near the exit), as shown in Fig. 3. As a
result, several interesting phenomena are observed. (1)
On the r—z plane, the bulk flow as indicated by velocity
vectors shifts its direction from center-bound near the
entrance to wall-bound, as depicted in Fig. 4. The
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location of the maximum magnitude of these vectors
also shifts from the channel center toward the wall
along the radial direction. (2) On the »—6 plane, the flow
vectors are maximum at the wall and increase along the
channel but reduce toward the center, as seen in Fig. 5.
The flow direction is tangential at the wall. With an
increase in z, however, the flow velocity decreases with
its direction shifting radially outward. Factors (1) and
(2) contribute to heat transfer enhancement by rotating
the disk walls, as will be discussed later. (3) Figure 6
shows the pressure distribution which is determined by
the combination of viscous effect, momentum change
due to an increase in flow area, and centrifugal effect.
The viscous effect is most prominent in the region of
steep velocity gradients. The momentum change is
large at the inlet where the radius is smallest, while the
centrifugal effect is most important at the exit where the
radiusis the largest. Itis seen in Fig. 6 that pressure falls
to a minimum, followed by a continuous increase.
Figure 7 shows the effects of rotational speed Rt,
radius R;, and generalized flow coordinate Gx on the
local Nusselt number for Pr = 0.7 and Re = 267.5. Gx is
defined as n(R? — R%)/Pe, in which n(R? — R2) signifies
the wetted surface area of a disk from the inlet R;, to a
location R in dimensionless form. Pe is the Peclet
number defined as the product of Re and Pr. It is
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FiG. 5. Distribution of velocity vectors on r—0 plane in a flow with Re = 25200 through disks (R;

57.50

= 30,

R, = 67.5) rotating at Rt = 2.0.
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FiG. 6. Pressure distribution in a flow with Re = 25200 through disks (R, = 30, R, = 67.5) rotating at
Rt =20.

observed in the figure that Nu decreases steeply in the
entranceregion, i.e.small values of Gx. In the stationary
disk case, Nu eventually takes a value of 3.7 as Gx
increases. With disk rotation, the value of Nureaches a
minimum followed by an upturn and eventually levels
off at large Gx values. An increase in R;, reduces the
extent of an upturn in Nu.

The effect of Re on Nu is shown in Fig. 8 for Pr = 0.7
and a fixed disk geometry, i.e. R;, = 60 and R, = 130.
As seen in Fig. 7, there is a sharp decrease in Nu in the
entrance region. Nu takes a value of 3.78 at large values
of Gx, irrespective of Re in the stationary disk case. At
higher fluid flows, Nu is characterized by a minimum
value. When the disks are in rotation, Nu reaches a
minimum followed by an upturn and then levels off at
large Gx. In general, Nu increases with disk rotation Rt
and fluid flow rate Re.

The integrated-average Nusselt number Nu is
plotted against the inlet Reynolds number Re in Fig. 9
for two typical fluids, air (with Pr = 0.7) and water (at
Pr = 8.0).Itisof interest to observe that when all curves
areextrapolated toward lower Re, they reach Nu = 3.8
at Re = 0, which corresponds to the Nusselt number
for a fully-developed laminar flow in parallel channels
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having constant wall temperature. The reason for all
curvesin Fig. 9toconvergeat Nu = 3.8at Re = Oisdue
to a large diffusion effect. Theory underpredicts the test
results as shown in Fig. 10.

4. CONCLUSION

A theoretical model is developed to predict the heat
transfer performance in flow through parallel circular
disks at rest or in rotation. With a dual-stream influx,
the flow is radially outward. A finite-difference scheme
is employed to obtain numerical results by means of the
SIMPLER algorithm. Heat transfer performance is
enhanced with rotational speed, Prandtl number and
through-flow Reynolds number. It deteriorates with an
increase in the inner radius of the parallel circular disks.
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ETUDE NUMERIQUE DU TRANSFERT DE CHALEUR EN ECOULEMENT LAMINAIRE
ENTRE DISQUES PARALLELES CO-ROTATIFS-

Résumé — On développe un modele théorique pour déterminer le transfert thermique en écoulement laminaire
entre une paire de disques circulaires, paralléles et co-rotatifs. Le double flux d’entrée se fait par les deux cotés et
la sortie se fait radialement. Un schéma de différences finies est employé pour obtenir des résultats numériques
au moyen de l'algorithme SIMPLER. On détermine les effets sur les performances des paramétres
adimensionnels actifs tels que le nombre de Reynolds rotationnel, le nombre de Prandtl et la géométrie du

systéme.

NUMERISCHE UNTERSUCHUNG DES WARMEUBERGANGS BEI LAMINARER
STROMUNG DURCH GLEICHSINNIG ROTIERENDE SCHEIBEN

Zusammenfassung—Zur Beschreibung des Warmeiibergangs bei laminarer Stromung durch ein Paar

gleichsinnig rotierender paralleler Kreisscheiben wurde ein theoretisches Modell entwickelt. Die

Fluidstromung tritt von beiden Seiten in das Stromungsfeld ein und strémt radial nach auBen. Das Verfahren

der finiten Elemente wurde angewendet, um mit Hilfe des SIMPLER-Algorithmus numerische Ergebnisse zu

bekommen. Der EinfluB der maBgeblichen dimensionslosen GrBen wie Rotationszahl, Reynolds-Zahl,
Prandtl-Zahl und der Geometrie auf den Warmetbergang wird bestimmt.
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YUCJIEHHOE UCCJIEAOBAHUWE TEIJIOINTEPEHOCA INPHU JIAMHUHAPHOM
TEYEHUHU MEXOY [MAPAJJIEJIbHBIMHU JUCKAMH, BPALIAIOIIMMHUCH
B MPOTHUBOITOJIOXKHBIX HATTPABJIEHHUAX

Annorauns—Pa3paboTaHa reopeTHYecKas MOJEIb 1A ONPEE/IeHHs XAPAKTEPHCTHK TenIonepeHocy
NpH JAMHHAPHOM TEYEHMU MEXIY ABYMS MaPAJLIEIbHBIMU KPYIJBIMH IHCKdMH, BPAlLAIOLIUMHCA B
[IPOTUBOMNOJIOKHbIX HArpaBieHusX. [|ByCTpYHHBIH 11OTOK NOCTYN4€T B NOJIE TEYEHHS C JIByX CTOPOH
M BLIXOJMT HAPYXY B PAJHAJILHOM HANpaBjicHUM. 15 10O1y4eHHS YHCICHHBIX DPELUEHHMH C HCMOJb-
joBanueM aiaroputma SIMPLER npumeHeHa koHeyHO-pa3HOCTHas cxeMa. OnpeseneHo BIMsHHE Ha
X4APAKTEPUCTHKH TEIUIONEPEHOCA TAKMX OCHOBHBIX O€3PAa3MEPHBIX [1APAMETPOB, KaK OTHOLICHHE
BPALUATENBLHOIO YHCIA K KpUTepHio Peithosbaca, kputrepus [1paHaTIg U reOMETPHUH CUCTEMBI.



