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Systems of the form 

iiza,fi*y--pifi*Jij i = l,..., n 
j=l j=1 

occur in the analysis of biological networks. They also include as special cases the 
known growth laws and probability functions, famous differential equations like 
those of Bessel, Chebyshev, and Laguerre, and solutions to important physical 
problems. These systems have no known analytical solution. However, an 
important subclass comprising many of the special cases mentioned above is 
solved. Q 1984 Academic Press, Inc. 

1. 1NTRoDucT10~ 

Sets of ordinary nonlinear differential equations of the form 

yi = ai fj Xyij-pi fi XTij i = I,..., n 
j=l j=l 

(1) 

have previously been called “synergistic” systems (S-systems) [5, 61. They 
represent an enormous range of mathematical and physiological problems. It 
has been shown, in particular, that Eq. (1) can be used efficiently to analyze 
biochemical networks [4,9, 11, 121 and genetic regulatory systems [4]. 
Furthermore, all of the well-known growth laws found in the literature are 
special cases of Eq. (1) [7], and almost all probability distribution functions 
are represented by Eq. (1) [8]. Because the known growth laws and 
probability functions correspond to only a few combinations of the a,/?, g 
and h parameters in Eq. (l), it can be considered as a “suprasystem” for 
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both classes of functions [7,8]. Many physical laws, for instance those 
describing electrical circuits, gravitation, unforced vibrations, cooling, and 
dilution problems, that are formulated as differential equations [ 11, also can 
be shown to have an equivalent representation in Eq. (1). Finally, many 
famous differential equations like those of Bessel, Chebyshev, Hermite, 
Laguerre, and Legendre [lo] are readily rewritten as a system of the form in 
Eq. (1) by defining suitable new variables. 

Most of these special cases of Eq. (1) were solved earlier, but no analytical 
solution to Eq. (1) in its general form is known. Many of the examples 
mentioned above, for instance the growth laws and probability functions, can 
be shown to belong to an important subclass of Eq. (1) that is defined by 
two equations. One equation contains a single variable and has an explicit 
solution; the other equation is “separable” in the sense that g,, = h,, : 

In this paper we show that Eq. (2) can be solved analytically. 

2. FORMULATION OF THE PROBLEM 

It is convenient to eliminate some of the parameters by choosing suitable 
scaling factors for X,,X,, and t. If a,,a,,/3r, and &#O, g,,#h,,, and 
g,, # 1, Eq. (2) can be simplified by replacing X,/X,, by X, , X2/XzS by X,, 
and yt by t, where 

x,, = (p/al)llh-w 

x2, = (J2/f-#‘g22-” (3) 

are the non-trivial steady-state solutions of X, and X,, respectively, and 
y = (rrX;;1-~X;;2 is a scaling factor of time. With these substitutions and 
upon renaming g,, = a, g,, = b, h,, = c, g,, = d, and B,/Y = P, Eq. (2) 
becomes 

Y1 = x;(x; - Xi) (44 

k* = P(Xif - X,). (4b) 

Equation (4b) is a Bernoulli differential equation with time-invariant coef- 
ficients. Its solution, also referred to as the Bertalanffy growth law [7], is 

X,(t) = (1 -( 1 - Xitd)(exp((d - 1) /3t)))1”1-d’ 

where X,, is the value of X, at t = 0. 

(5) 
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Since the variables in (4a) are separable, it can be integrated to yield 

j(x~-xf)-ldx*=jx;dt. (6) 

By substituting 

u = -(l -X&d)exp[(d- l)Pt)] 

the integral on the right side of Eq. (6) is transformed into 

(7) 

/!-‘(d- 1)-i 
I 

(V + 1)-V’ dv (8) 

where p = a/(d - 1). By substituting 

u=pc-- 1 
1 

the integral on the left side of Eq. (6) can be transformed into 

(9) 

(b-c,’ j (2.4 + 1))“U-’ du (10) 

where c = (b - I)/@ - c). 
If ai = 0 or /3i = 0 or g,, = h,, , then Eq. (2a) reduces to the form 

2, = (a, -P,) xpxp (11) 

which upon separation yields 

rather than Eq. (6). The left side is a simple integration and the right side 
reduces to integral (8). 

3. SOLUTION 

By transforming equations and substituting variables as described in 
Section 2, the problem of solving Eq. (2) is reduced to the solution of the 
known integral [2] 

i (2.4 + l)-“u-1 du. (13) 

We will call c the “characteristic parameter.” 
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If u is a positive integer, the integral (13) can be reduced through 
recursive integration: 

I (u $ 1))“UP du = (u + l)‘-“(a - 1)-l +i (U + 1)1-0~-1 du. (14) 

The last integral in this series can be solved explicitly: 

(24 + 1))‘u-i du=lnlu(u+ 1))‘I. (15) 

Hence, the complete solution to the integral (13) when the characteristic 
parameter is a positive integer is 

o-l 

C (u+ l)‘-“(o-i))‘+ln]u(u+ 1))‘I. (16) 
i=l 

Similarly, if (3 is a negative integer the integral (13) can be reduced using 

s (24 + 1))%-’ du = -(u + 1)-Y’ + (U + l)-0-1& du. (17) 

The remaining integral has the solution 

1 (u+l)u-‘du=u+lnlul. (18) 

The complete solution to the integral (13) when the characteristic parameter 
(T is a negative integer is therefore 

-0-2 

- C (u+l)-“-‘(~7+i))~+utIn~ul. (19) 
i=O 

If the characteristic parameter c is a rational number, the integral (13) can 
be reduced successively until u is between 0 and 1. For u > 1, a reduction 
according to Eq. (14) yields 

+q.l 

w4101-s+9-l 

wq - 1 
dw (20) 

where (I = s/q, s, q E N, s > q, [u] is the greatest integer less than u, and 
w = (U + l)llq. For (T < 0, a reduction according to Eq. (17) yields 

I du = _ y (24 + 1)-,-i W-q[-ul+s-l 

(u t l)“u i=O u+i +qc wq - 1 
dw (21) 

where c = --s/q and s, q E IN. 
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For both positive and negative rational characteristic parameters, the 
remaining integral has the form 

I wp-‘(wq - 1)-l dw. (22) 

The same integral also is obtained from integral (13), if 0 ( c < 1. wq - 1 
can be considered as a polynomial in w and, therefore, factored into 

wq-l=(w-l) fi ( w2 - 2w cos(2k7r/(2m + 1)) + 1) 
k=l 

for q = 2m + 1 (23) 

or 
m-1 

wq-l=(w-l)(w+l) n (w*-2wcos(krr/m)+l) 
k=l 

for q = 2m. (24) 

The angles 2kn/(2m + 1) and kn/m in Eqs. (23) and (24), respectively, 
correspond to the complex conjugate roots of wq - 1. 

The integrand of (22) can be expressed as a sum of partial fractions, 
which can then be integrated. The solution to the integral (22) is then 

I wp-’ dw 
wq- 1 

= & il COS($$-) ln[ w* - 2w co”(&) + 11 

-& $, sin(&) tar-r 1 w ~~~,$$~~ :,f “1 

+ ln(w - 1)/(2m + 1) for q=2m+ 1; (25) 

i 
wp--l dw 
wq- 1 

=~~~cos~~)ln[w2-2wcos(~) +l] 

‘-iz: sinr$) tanP1[w~~~s~~~)] 

+ [ln(w - 1) + (-l)p ln(w + 1)1/&n) for q = 2m. (26) 

With Eqs. (16), (19), (20), (21), (25), and (26) the differential equations 
in (2) are solved (at least implicitly) for all rational characteristic 
parameters. 
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If g,, = 0, then Eqs. (2a) and (2b) are uncoupled. This special case of 
Eq. (2) already contains many of the growth equations and the physical 
interpretations mentioned in the Introduction. 

4. DISCUSSION 

The general synergistic system (1) has no known analytical solution. But 
because the system has many applications in mathematics and the sciences, 
it is desirable to develop analytical solutions at least for important 
subclasses, even if they cannot be extended to a general solution. 

A solution to one important subclass is given in this paper. This subclass 
(2) is not only of academic interest, because it contains many equations with 
known interpretations, as mentioned before. The analysis of observed growth 
phenomena, for instance, is no longer restricted to the well-known growth 
laws, which correspond to but a few parameter combinations among the 
multitude defined by Eq. (l), but now can be approached easily in a more 
general and unbiased way. Furthermore, the estimation of parameter values 
yielding an optimal fit to observed data is now considerably simplified 
because Eq. (2) has an analytical solution. The parameter values can be 
found from the analytical solution with a standard searching routine. 
Without an analytical solution, they would have to be estimated by 
repeatedly solving the differential equations (31 with slightly changed 
parameter values, which is costly and time consuming [4], or by determining 
slopes from the empirical data [ 121, which tends to aggravate the errors 
inherent in the data. 

Because Eq. (2) includes not only the known growth laws and probability 
functions, but defines a much more general class, Eq. (2) can serve as a tool 
for a “natural” classification of the known and the yet to be considered 
functions of this class. The n-variable system (1) provides an even more 
general underlying structure showing that there are fundamental principles 
that connect seemingly very different phenomena like biochemical networks, 
probability distributions, electrical circuits, gravitation and growth. 
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