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ABSTRACT 

Conflicting claims have been published concerning the consequences of earlier repro- 

duction. In particular, it has been claimed that earlier reproduction will increase the rate of 

decline in a declining population, have no effect in a stable population, and enhance the 

rate of growth in an increasing population. However, if fecundity and mortality are 

conceptually separated so that earlier reproduction is defined as moving the fecundity 

column of the life table forward in time but not changing the mortality column, then earlier 

reproduction will nearly always cause the rate of change of a population to become more 

positive. This definition is believed to be more consistent with what biologists think of as 

earlier reproduction. Also, this concept requires that the cost of reproducing earlier be 

explicitly addressed rather than hiding it in assumptions implicit in a definition of earlier 

reproduction. This paper reconciles published mathematical demography models with 

published biological claims concerning earlier reproduction. 

1. INTRODUCTION 

There have been several sources of the claim that earlier reproduction 
causes a declining population to decline more rapidly. It usually arises from 
the broad interdependence of all the parameters and variables that can be 
derived from life tables and that describe the behavior of a population. For 
example, a life table or equation may occur in which the mortality rates and 
fertility rates are tied together by the form of the variables. Then, when the 
age of reproduction is changed, the mortality rates are affected as well. The 
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result may be a simultaneous shift of both the mortality rates and the fertility 
rates. In one case, this had the effect of compressing the time scale by 
multiplying the exponential rate of increase by some positive factor; with the 
time frame compressed, an increasing population increases faster and a 
declining population declines faster. 

A similar source of confusion arises from the analogy with interest rates. 
The term epr.’ occurs in many demographic equations and has been de- 
scribed as applying a discount rate r to offspring at age x. This analogy leads 
to discussions concerning the selective advantage of having offspring early in 
life or late in life based on r, the exponential rate of increase, serving as a 
discount rate. Such discussions neglect the fact that by having offspring 
earlier in life or later in life, the life table is changed, and r, which is a 
function of the life table, may also change. The equations on which such 
discussions are based assume a constant life history and a stable age 
distribution. When the life history is changed, other parts of the equation also 
change to maintain the relationships among the variables. 

The presentation of the specific examples below will assume some 
familiarity with the mathematical methods used in studying life histories. A 
good introduction may be found in Ricklefs [33] and Mertz [26]. 

2. EXAMPLE I 

One of the earliest proponents of the idea that earlier reproduction 
increases the rate of decline in a declining population is Mertz [27-291. In his 
paper on the mathematical demography of the California condor, Mertz [27] 
presents an analysis of the effect of development time. He begins with a life 
history table for the California condor (Table 1). In this table, j3 is the 
probability at birth of surviving to the age of first reproduction and p is the 
annual adult survival rate. The birds mature at age 5 and lay one egg every 
other year. One half of the eggs are female. 

From any life history table, the growth rate can be determined using 
Lotka’s [24] classic equation: 

m 

c X-“l,yr?l, =l, (1) 
x = 0 

where X ( = er) is the geometric rate of increase, and r is the exponential 
rate of increase, of a population that has a stable age distribution and 
constant life history parameters as defined by 1, and m,. Substituting the 
entries from Table 1 into Equation (l), Mertz arrives at the following: 

P p _ 2x3 _ _ = 0, 
P ? 
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x ‘x Mx lxmx 

0 1.0 0 0 

1 . 0 

2 0 

3 0 

4 0 
5 P I 

6 PP ; 
I PP2 1 

2 
i LW5 1 

G 

0 

0 

0 

0 

P/2 
0 

PP2/2 

BP8 - 5/2 (for I odd) 

0 (for I even) 

‘x = age in years, I, = probability at birth of living to age x, 

and m, = the expected number of daughter eggs laid at age x 

by a surviving female. From Mertz [27]. 

This equation is used to construct figures with isopleths of X as a function of 

P and P. 
Examining the effects of development time, Mertz [27, p. 4451 writes, “For 

fixed values of /? and p, development time has no effect on the equation for 

R, [R, = CT=,, Ixm, = p/(2(1 - p2))]. However, X is affected, and signifying 
development time by the symbol 7, a generalization for equation (2) is 
obtained: 

x’__ P 
P 2x7-2__ =() 

2 (24 

where r is an integer 2 or greater.” Equation (2~) is used with T = 4 to 
construct additional isopleths on the figure containing Equation (2) isopleths 
[see Figure l(a)]. If the dashed isopleth (7 = 4) is below the solid isopleth 
(T = 5), this is interpreted as meaning that when T = 4 a lower juvenile 
and/or adult survival rate can result in the same rate of change for the 
population, or, if the survival rates remain the same, then the rate of change 
of the population will become more positive. From Figure l(a) Mertz 
concludes that “for declining populations.. the shorter developmental time 
accelerates the population decline.” Mertz then argues that rapid develop- 
ment would be selected against during population declines. In applying this 
and other conclusions to the California condor, he cites evidence for popula- 
tion decline through a long span of geologic time and argues [28] that “the 
California condor may have had its life history shaped by many years of 
population contraction in the absence of many colonizing opportunities.” 
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Mertz’s Equations (2) and (2~) are special cases for the particular entries 

in the life table. When he begins to vary T, he neglects the fact that /-? is a 

survival rate and that the time portion of /3 is 7. Changing 7 from 5 to 4 not 

only increases the rate of maturation but also increases the mortality rate of 

immature birds by the same factor. The I, column and the m, column of the 

life table are both moved up one year. This shifting of both columns together 

leaves R, unchanged and the direction of population growth or decline 

unchanged, but increases the rate at which the population is either growing 

or declining. 

To see the effect of early development without imposing a higher rate of 

mortality as well, /3 must be broken down into a yearly rate. Mertz [27] says, 

“a heavy proportion of immature mortality probably falls in the first year of 

life.” Taking the simplest approach, /3 can be replaced with /I, pTm ‘, in which 

/I1 is first year survival, and survival in successive years is the same as for 

adults. Goodman [15] used this same approach in examining the life history 

% CHANGE PER YEAR 
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FIG. 1. The effect of quick development on the population growth of the Califorma 

condor. The solid and dashed lines are constant percentage change isoplcths as functions of 

/3 and p. The basic life history (with earliest reproduction at age 5) results in the solid 

isopleths. The dotted lines show the effect of quick development with earliest reproduction 

at age 4. (a) Mertz’s result with p compressed from 5 to 4 years; (b) the result when /3 ia 

not compressed. j’3, is the first year mortality for both the basic life hIstory and quick 

development. (a) is from Mertz [27]. 
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FIG. 1. Continued 
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of the red-footed booby (Sulu sulu). If the resulting life table entries are 
substituted into Equation (l), the result is 

x’_p2x’-2 y’-(). 

This equation can then be used to make a new figure corresponding to 
Mertz’s Figure 2 [see Figure l(b)]. B ecause the time frame of p in Mertz’s 
figure is in question, & is used for the scale on the x-axis in Figure l(b). 
There is no simple scale translation that will allow Figure l(a) and (b) to be 
superimposed in a meaningful way. In Figure l(a), when 7 = 5 (the solid 
lines), p is in units of proportion of young surviving to age 5. When r = 4 
(the dashed lines), p is in units of proportion of young surviving to age 4. In 
Figure l(b), & is always in units of proportion of young surviving to age 1. 
When the time frame is fixed as in p, in Equation (2h) and Figure l(b), it is 
seen that earlier development, in the absence of a corresponding acceleration 
of immature mortality rates, makes the rate of population growth more 
positive even when the population is declining. Thus, we see that Mertz’s 
claims are correct only when “earlier reproduction” is coupled with earlier 
immature mortality. Earlier reproduction may sometimes contain an element 
of earlier immature mortality. 
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Nichols et al. [30] used Mertz’s approach to examine management implica- 

tions for the Everglade kite. They reformulated B as we did and got results 

similar to Figure l(b). In spite of this, they accepted Mertz’s results and used 

them in saying that inferences drawn concerning populations with high 

fecundity may not apply to populations with low growth rates. They explained 

the difference in formulation of their prereproductive mortality by saying, 

Lewontin [23] and Mertz [27, 281 have considered a development time which is indcpcndcnt 

of prereproductive mortality, for the purpose of isolating specific effects of these factors. 

We find it difficult to envisage that a change in the age of sexual maturity could occur 

independently of changes in prereproductive mortality, and we have thus combined both 

effects in our consideration of development-time. 

But prereproductive mortality occurs over a specific span of time-the 

development time. In Mertz’s formulation, when development time is changed, 

prereproductive mortality occurs over the new span of time and the mortality 

rate is changed. In terms of the life table functions I, and nz_, , the treatment 

of Nichols et al. is independent and that of Mertz is dependent, In the 

independent treatment, the question of how a change in development time 

affects mortality rates is then left to be treated in an explicit fashion. 

Goodman [15] explained that what Mertz had done was simply to distort 

the time scale of the life history so that regardless of whether the population 

were increasing or declining it would do so faster. However, Mertz’s result 

has also been cited by Wiley [40] as a special case showing that “in 

decreasing populations deferred reproduction does not necessarily reduce r, 

. even though other life-history parameters remain unchanged.” Of course, 

other life history parameters have changed. Although Mertz’s result is not 

incorrect if Goodman’s [15] explanation is used, it has often been misunder- 

stood. Many published references to Mertz [27] resemble Wiley [40] as 

quoted but with the word “necessarily” left out [2, 4, 5. 10, 

13, 16, 19, 20, 27, 28, 34, 39, 411. 

3. EXAMPLE II 

It has been common to avoid mathematical difficulty by lumping I, and 

m \ together into a single variable u, ( = I, m, ). There is nothing wrong with 

this by itself; however, results are then often presented in terms of the timing 

of reproduction without reporting the fact that mortality rates are also being 

changed. When reproduction is moved to an earlier age, the mortality rates 

are increased so that u, has the same value at that earlier age. Lewontin [23] 

used this formulation and then referred to the changes he made in the u, 

curve as “reducing development time” and “decreasing the age to sexual 

maturity.” Although in the beginning of the paper he did mention the 

incorporation of mortality rates, this was not stressed in the later discussion. 

If this approach were naively applied to declining populations, it would be 
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tempting to reach the erroneous conclusion that “reducing development 
time” causes the population to decline more rapidly. MacArthur and Wilson 
[25] used Lewontin’s model without reiterating that “changing the age to 
sexual maturity” involved a quantitative change in fecundity or a shift in 
mortality rates to maintain a constant R,. Green and Painter [17] also used 
v, and referred to a shift in v, as changing “development time.” Costello and 
Taylor [9] used a similar formulation. They concluded that “increasing the 
age at first reproduction yields diminishing returns in reduction of r as r 

comes close to 0,” and when r = 0, “the age at first reproduction matters 
not.” This conclusion is correct only when the interdependence of the 
variables is made explicit. In order for their “family size” (R,) to remain 
constant when reproduction is delayed, mortality rates must be decreased or 
fecundity increased. The net maternity function, v,, accomplishes this by 
lumping survival and fecundity together and then shifting them as a unit. 
This approach applied to declining populations would give the same conclu- 
sions as Mertz [27, 281. 

Some authors have maintained I, and 171, as separate variables in their 
analyses [6, 11, 211. By doing so, they have kept mortality assumptions 
explicit. 

4. EXAMPLE III 

A similar situation arises in MacArthur and Wilson’s discussion [25, p. 881 
of the equation 

where M is the mean age at reproduction. They made the following state- 
ment: 

Even this oversimplified formula lets us clear up one common misconception. It confirms 

that when R, is large, reducing M is the easiest way to increase r. as Lewontin’s models 

indicated. However, when R, is near 1, a reduction in mean age at reproduction will 

increase r only to an insignificant extent. 

Although they did not mention declining populations (R, < l), their reason- 
ing might suggest the conclusion that in declining populations “a reduction 
in mean age at reproduction” would cause the population to decline more 
rapidly. The validity of this claim depends on the relationships between 

r, R,, M, and the life table. Their implicit assumption that R, remains 
constant requires that the mortality rates be increased as the fecundity is 
shifted to earlier ages. This is not simply “a reduction in the mean age at 
reproduction.” If only the fecundity were shifted, then R, would increase as 
M decreases. The overall effect would be that as reproduction is moved to 
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earlier ages, r becomes more positive even in cases where r is zero or 

negative. This conclusion (which is actually correct) seems to be their 

unstated “common misconception.” 

5. EXAMPLE IV 

Stenseth [37] and Pianka and Parker [32] also exemplify the interdepen- 

dence of variables in their analysis of an organism’s choice between current 

and future reproduction. Their analysis begins with Fisher’s [12. p. 271 

equation for the reproductive value of an individual at age x: 

where w is the age at last reproduction. The reproductive value is then 

partitioned into two parts: 

where m, represents present progeny and OF IS the “residual reproductive 

value” defined by 

Equation (5) is rearranged to give 

v* = e’v, - e’m, , \ (7) 

which is then used in a graphical analysis to determine the optimal allocation 

of reproductive effort between current and future progeny as shown in Figure 

2. Using empirical or hypothetical data, the relationship between nz, and 11: 

is determined for an individual at a particular age. This relationship is given 

by the solid line. Any solution representing a choice of m , and a resulting OF 

must fall on this line. The object is to choose the value of nz, that results in 

the maximum value for 0:. Equation (7) gives a relationship for nr , , ~1,. and 

u:, but it requires a value for r. Stenseth [37] determines the value of r for a 

given population and enters it into Equation (7) fixing the slope of the 

dashed line in Figure 2. The dashed line is then moved perpendicularly (so 

that the slope is unchanged) until it just touches the solid line. The point of 

contact is the solution for m, that maximizes II,, because the dashed line 

going through that point has the largest intercept value of any line with the 

same slope that touches the solid curve. If the solid curve were represented by 

an equation, an alternative method for finding the maximum 11, would be to 

use partial derivatives. 
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PRESENT PROGENY, mX 

FIG. 2. Expectation of future reproductive success, or residual reproductive value. is 

plotted against current reproductive output for a hypothetical case. The solid line represents 

the assumption that as an individual’s current reproductive effort increases, the cxpcnditure 

of resources reduces its expectation of future reproductive success. The dashed lines 

represent families of parallel lines from Equation (7). where a value of r determines the 

slope of the family of lines and a value of tiV determines the intercept for particular line. 

The dot represents the combination of m, and tl: which gives the maximum value for I’, as 

determined by the family of lines for r = 0.231. The triangle is a similar combination for 

r = ~ 0.273. Modified from Stenseth [37]. 

The graphic analysis in Figure 2 can be done for any given value of r and 
led Stenseth to the conclusion that “allocating relatively more resources to 
current reproduction is the optimal strategy in a growing population.” The 
same analysis would lead to the conclusion that in a declining population 
reproductive effort should be saved for future progeny. This is similar to the 
examples described previously. To reach Stenseth’s conclusion, changes in 
age dependent survivorship and fecundity must be considered. The values for 
r are based on and derived from an assumed constant life history. When a 
change is made in allocation to current versus future offspring, the life 
history changes and r changes. Indeed, if r did not change, there could be no 



226 C. Cr. HOOGENDYK AND Cr. F. ESTABROOK 

long term selective advantage to changing one’s life history (assuming of 

course that such a change is passed on to one’s progeny). 

Pianka and Parker [32] presented a slightly different version of the same 

model. They chose to discuss only populations in which r = 0. Since r = 0, 

e r = 1 and drops out of all their equations. In fact, they never give a version 

of the equations with r included and only mention in passing that for a 

population changing in size (i.e. r + 0) the equation is slightly more com- 

plicated. Because r was eliminated only in appearance by the requirement 

that it be 0, the formulation of their model is the same as Stenseth’s and is 

subject to the same limitations. 

6. EXAMPLE V 

Bell [l] analyzed the effect of age at maturity on the rate of increase of a 

population. The simplified case that he discussed at the bottom of p. 69 is for 

a population with the life history shown in Table 2. The values from the life 

table are substituted into Equation (1) to arrive at 

which is simplified to 

and rearranged to 

e ru 
- ce rto-1) _&I ‘h = 0, 

TABLE 2 

A Simple Iteroparous Life Table” 

(8) 

(9) 

(IO) 

“Made up from the example 

used by Bell [l, p. 691. 
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In Equation (8) Bell had the summation terminate at age w, but the 
simplification to Equation (9) assumes w + cc. This is an important point, 
and a later section of this paper will deal with finite versus infinite summa- 
tions. Implicit differentiation of Equation (10) yields 

de’ sbcUpl lnc -= 
da er(‘-‘)[a-c(a-l)ep’]. 

(11) 

The numerator of this equation must be negative, since c < 1. If the deriva- 
tive is to be positive, that is, if an increase in the age at maturation is to have 
a positive effect on the rate of increase of the population, then the denomina- 
tor must also be negative. For that to be the case c( a - l)e-r must be 
greater than a. Rearranging, e’ ( = h) must be less than c( a - 1)/a. From 
this, Bell concludes that “a heritable tendency for delayed maturity may be 
selected.. . if the population is decreasing in numbers rather rapidly.” What 
must be noted is that for this example, even if there is no reproduction, the 

population cannot decline faster than the death rate. After the first year, if 
there is no reproduction, s is no longer important and the population will 
decline at a rate e’ = X = c. This can be seen intuitively or it can be derived 
from Equation (10) by setting b = 0. The condition for the derivative de’/da 

to be positive is thus impossible in the context of this model. In the context 
of this model a correct conclusion is that a decrease in the age at first 
reproduction will always cause a positive change in X. 

Demetrius [ll, p. 1341 derived a similar but more detailed inequality using 
the Leslie matrix formulation. His inequality is 

ax ax 
~>7q, i<j, for X>P=max(P,), (12) 

where F; is the fecundity at age i and P, is the probability that an individual 
age i will survive to age i + 1. This shows that a given increase in fecundity 
will have a greater positive effect on the growth rate if it occurs at an earlier 
age. The result applies to increasing or stable populations and to declining 
populations in which X > P. It leaves other cases where X < P unresolved. 
Caswell [6] gives a slightly stronger proof that applies if and only if X > P,. 
Both Demetrius and Caswell were working with a formulation that allows the 
P, to vary with age and that does not assume an infinite life span. This is 
different from Bell’s model, and under these circumstances X can be less than 
a particular P, Infinite life span will be discussed in more detail below. 

7. EXAMPLE VI 

Mertz [28] examines the consequences of various changes in life history. 
Among the equations used are Equation (1) in this paper, an extended 
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version of Equation (3) in this paper, and g, = em”/, m,. the “probability 

density function for the age of reproducing females in an infinite stable 

population.” According to Mertz [28], these three equations 

show that a lengthening of dcvclopment lowers r for growing population&. product.\ no 

elfect for r = 0. and actually increases r (makes it Ica strongly negative) for decreasing 

populationa. In other words, a lcngthrning of development, which ih ordinarily opposed b! 

selection, may be favored in declining populations lnahrnuch ah It slows the rate of 

population decline. 

Although the reason for these conclusions is not stated, they seem to be 

based on the division by M in Equation (3) and on the appearance of e ” in 

the other two equations. The interpretation of Equation (3) has already been 

discussed in Example III above. The interpretation of e ” was mentioned in 

the introduction and should be clear from other discussions throughout this 

paper. 

The reader of Mertz [28] could easily believe that the spacing of births will 

be dealt with independently from death rates. However, Mertz concludes that 

a change in prereproductive period in itself has no effect on R,,. For this ia to 

be true, there must be a corresponding change in mortality or the magnitude 

of the fecundity must change. The quotation above is valid only in very 

limited conditions of complete interdependence of fecundity and mortality 

that should be made explicit in each case. Nonetheless, it has been used to 

explain or support results in both theoretical and applied studies by a 

number of other authors [2, 4, 5, 7, 8, 10. 13, 14, 19, 20, 29. 411. It has also 

appeared m reviews by Stearns [35, 361, and similar statements have been 

made independently by Laughlin [22] and Hamilton [1X]. 

The factor emr’ appears in many of the standard demographic equations. 

The analogy between it and discount rates has caused repeated difficulties in 

interpretation. These difficulties have occurred most often in dealing with 

reproductive values and are exemplified by Laughlin [22]: 

in a dccrcasing population the older mothers actualI> make the most important contribu- 

tion to reproduction. 

Hamilton [18]: 

For an organism which reproducea repeatedly the concept of fitnab is not so casil? dcfincd. 

The expectation of offspring suffers from the obyxtion that early births arc \\orth mow 

than late in an increasing population, and ww W’YW in a decreasing one.. 

and Hirshfield and Tinkle [19]: 

In a declining population, offspring produced late in a female’s life would contrihutc more 

to her fitness 

(cited Mertz [28] and Hamilton [18]). These three quotations are all in 

reference to reproductive value as a measure of fitness (cf. [12. p. 271). 

However, the reproductive value is derived ussuming constmt life hisfoq~ 
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functions. It gives the relative contribution an individual currently of age x 
will make to future generations. It does not refer to the contribution of 
particular offspring to the fitness of that individual. Reproductive values are 
useful in discussions of colonizing propagules, exploitation, and perhaps the 
effects of selective pressures at different ages (as suggested by Fisher). It is 
tempting to conclude, using r as a discount rate, that later offspring 
contribute more to an individual’s fitness in a declining population. But this 
is incorrect, because if we change the life history by adding later offspring or 
earlier offspring, r will change. If the change in life history is a heritable 
attribute, then the question of fitness is whether this individual’s descendants, 
given their own fixed life history, will increase in numbers more rapidly than 
will the remainder of the population, which is determined by the difference in 
r. A similar argument also applies to Stenseth’s [37] analysis, which is 
discussed in Example IV above. 

To determine the age at which added reproductive effort will yield the 
greatest selective advantage, we should be looking at the change in growth 
rate resulting from a given change in reproduction at different ages. In other 
words, we should be looking at ax/am, as a function of x. The age x at 
which this partial derivative has the largest positive value is the age at which 
reproductive effort should be added. Analyses of this partial derivative have 
been published by Demetrius [ll] and Caswell [6] and were discussed at the 
end of Example V above. 

8. DISCUSSION 

A. EVOLUTIONARY ASPECTS OF THE RATE 

OF CHANGE OF A POPULATION 

Mertz’s [28] paper centers around the evolution of life history strategies in 
Triholium. In laboratory culture conditions they go through repeated cycles 
of rapid growth in fresh culture medium followed by prolonged periods of 
stable or declining populations. Dawson [lo] pointed out that similar popula- 
tion dynamics may occur in the natural habitat of Triholium. Mertz argued 
that the life history of Triholium has been shaped by selection during these 
repeated long periods of decline. He claimed that during a decline, increased 
development time slows the rate of decline and is therefore selectively 
advantageous. 

Since the above argument is incorrect, other biological explanations must 
be found. Mertz [28] pointed out the high incidence of cannibalism on eggs 
and larvae in dense populations. It seems clear that the reproductive behavior 
of Triholium is a selective response to short periods of abundant resources 
followed by longer periods of crowding and intense competition for re- 
sources. Pianka [31] argued that “in order to maximize overall lifelong 
contribution to future generations, an optimal organism should weigh its 
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immediate prospects of reproductive success against its long-term future 

prospects.” (Pianka cited Williams [38] and Pianka and Parker [32].) In this 

light, when the population is crowded and the rate of cannibalism on eggs 

and larvae is high, it is advantageous to an individual beetle to delay 

reproduction and put its resources into its own survival. Then, at some future 

point when the competition has died down or the individual has emigrated, it 

can reproduce with a higher likelihood of success. The declining population 

does not lead to delayed reproduction; rather the reverse is true. Cannibalism 

and delayed reproduction in response to overcrowding cause a population 

decline. 

The above argument can be applied to I and K selection in general. An 

organism’s evolutionary objective is to obtain resources and convert them 

into offspring. If there is an abundance of resources available, emphasis can 

be put into reproduction and the result will be an increasing population. If 

there is heavy competition for resources, then emphasis must be put on 

obtaining resources and it is likely that a stable or declining population will 

result. Thus, the rate of change of a population is not a cause of reproductive 

strategies but rather an effect of reproductive strategies that arise from 

conditions of resource availability or competition. 

R. FI,vITI: VERSUS INFINITE SUMMATIONS 

The usual demographic analysis is based on the assumption of constant 

life history functions and the consequent stable age distribution that arises 

under the operation of those functions. For rapidly increasing populations. 

the stable age distribution is skewed so that the younger individuals form the 

largest proportion of the population [see Figure 3(a)]. As individuals become 

older, the age groups to which they belong become less important. Under 

these circumstances the distinction between finite and infinite series in the 

mathematical summations (e.g. w = 50 versus a in Bell [l]) is of little 

importance. The truncated end of the series [on the right in Figure 3(a)] will 

form a minute fraction of the population being considered. However, for 

rapidly declining populations, the older age groups can form the most 

important part of the population [see Figure 3(b)]. The stable age distribution 

is given by 

f = 0 

For the simplest case where I, = P‘, the numerator of Equation (13) can be 

rearranged to show that 

P ’ 
c - , 

i 1 x . (14) 

If P/X is greater than 1, i.e. if X < P, then c’, will increase as s increases. 
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FIG. 3. (a) General form of the stable age distribution for an increasing population. (b) 

A truncated age distribution (not stable) for a rapidly declining population. In a stable age 

distribution, the mode would have moved to the right and been truncated. The result would 

be a mirror image of the distribution for the increasing population. 

We noted above (in reference to [l]) that a population with infinite age 
(no senescence) and a constant death rate (I, = P" for x = 0 to 00) cannot 
decline at a rate faster than its death rate (i.e. A cannot be less than P). 
However, if the population has a finite maximum age, w, at which I, = 0, 
then the geometric rate of increase, A, can be less than P. Under such 
conditions, the older age groups make up a larger portion of the population 
[see Figure 3(b)], and the oldest age group is dying off entirely at each time 
interval. Thus, when X is small, the choice between finite and infinite series is 
no longer simply a question of mathematical nicety. The tails (older age 
groups) of the summations are no longer negligible portions of the overall 
population. The choice must therefore be made with careful attention to the 
biology of the organism that is being studied. 
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A related point is that as X approaches P, the likelihood that the 

population will approach a stable age distribution in a reasonable length of 

time becomes much smaller. When the series of age groups is very long or 

infinite, the mode of the age distribution would move continuously to older 

age groups as the population declines [see Figure 3(b)]. A declining popula- 

tion of Triholium, for example, is unlikely to approach the stable age 

distribution determined by the modified life history functions that exist 

during the population decline. 

C. CASES IN WHICII SELECTION MA Y FA VOR DELA YED REPRODti~‘TlON 

In some of the cases referred to in this paper, particularly those dealing 

with infinite series and age independent death rates (no senescence), it is 

clear that earlier reproduction will always cause the rate of increase to 

become more positive. However, in dealing with finite series and with age 

dependent death rates, it is a different matter. Clearly, there is not a 

symmetry about r = 0 as claimed by many of the authors cited in this paper. 

Demetrius [ll, p. 1341 and Caswell [6] proved that the point of change is 

where X = P, (see Example V above). For example, in the simple life table 

shown in Table 3, the following cases are instructive: 

(a) Let P = 0.9 and m =l. Then X = 0.9. If m is now moved to age group 

3, X is still 0.9. This is the turnover point at which h = P and the timing of 

reproduction does not affect X. 

(b) Now, let P = 0.9 and m = 0.8. In this case, X = 0.851 and is less than 

P. If m is moved to age group 3, X changes to 0.835. This result indicates 

that when X is less than P, earlier reproduction will accelerate the rate of 

decline. 

TABLE 3 

A Simple Life Table 
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The biological importance of cases such as the one just described has yet 
to be established. If the life histories are fixed, then populations that are 
declining at rates such that X < P for a substantial proportion of time are in 
exceedingly precarious positions with respect to selection and extinction. 
Even granting that the condor may have been declining for a thousand years, 
it cannot have been declining fast enough for this condition to apply. If a 
population of 10,000 condors were declining at a rate of X = 0.95, there 
would only be 59 of them in 100 years and they would be extinct in 200 
years. If X were 0.90, they would be extinct in 100 years. 

Not only are these cases precarious with respect to extinction, but they 
would appear to be evolutionarily unstable. For the cases to which this 
applies, X = P is a turnover point. If X < P, selection favors delayed repro- 
duction. If X > P, selection favors earlier reproduction. If X < P, an individ- 
ual that makes a heritable gain in reproduction might achieve a growth rate 
for its progeny that would reverse the direction of selection. This instability 
would be accented by variability in the population. 

If life histories are variable or there is behavioral plasticity, as has been 
suggested for Tribolium [28], then there are demographic difficulties with the 
stable age distribution as have been pointed out above. In addition, Tri- 

bolium population cycles have been described as rapid increases followed by 
longer periods of slow decline [28]. Granting that “slow” and “rapid” are 
subjective, a “very” rapid decline in which X < P is required for selection to 
favor delayed reproduction from a purely demographic point of view. 

It should also be pointed out that the rate of selection may be different 
during the periods of increase and decline. Therefore, the length of those 
periods alone is not sufficient to tell which, if either, will dominate in the 
evolutionary history of an organism. 

D. SCALING EFFECTS IN INCREASING POPULATIONS 

This paper clarifies a number of related concepts in the demography of 
declining populations. However, by altering the scale of effects, these con- 
cepts can be applied to increasing and stable populations as well. For 
example, Costello and Taylor [9] examined population strategies for humans 
and the question of reducing r by increasing the age at first reproduction. 
They claimed that as r approached 0 the effect of further increases in the age 
at first reproduction would be less, and when r equaled 0 the age at first 
reproduction would not matter. They obtained this result by lumping survival 
and fecundity together so that an “increase in the age at first reproduction” 
implicitly involved increased fertility and/or increased survival in order to 
maintain the same family size (R,). In the absence of these implicit changes, 
increasing the age at first reproduction should achieve greater gains in 
reduction of r than they suggested and there should still be gains in 
reduction of r when r = 0. Busby and Mode [3] examined the effects of age 
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of marriage for human populations and showed a numerical example in 
which a declining population declined more rapidly when reproduction was 
delayed. This is particularly important and has implications for government 
policies since human populations have the flexibility of choice and can affect 
age at first reproduction without altering the biology of development up to 
reproductive age. 

William D. Hamilton and Richurd D. Alexander provided valuable advice 

and support. In addition, the following people read various drafts of this paper 
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