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The two-particle coherent-potential approximation is used to calculate Frenkel-exciton group-v&city correlatron functtons 
for substrtutionally drsordered crystals. Most of the results can be described by a relaxation-time approximatron. provided that 
k-dependent and complex relaxation times are allowed: houever. some evidence for long-ttme tails. associated wtth the finite 
frequency range of the scattenng potentials. is found. The probable accuracy of the approximatton and its relatronships w*th 
localization and kmetic theory are discussed, as IS its relevance to experimental systems (triplet excitons m isotopic mixed 
naphthalene and anthracene crystals) 

1. Introduction 

The migration of electronic excitations in substitutionally disordered solids has recently a’tracted much 
interest [l]. It now appears that most of the experimental observations can be interpreted with random- 
hopping models [l-4]. Thrs is perhaps somewhat puzzling, since the experiments are usually performed at 
quite low temperatures where there is substantial evidence of delocalized band transport in at least some 
ordered systems [5]. A plausible explanation for this discrepancy is that in the ordered system hopping and 
band mechanisms coexist, with the band term dominating at low temperatures, and that disorder 
suppresses the band component more than it does the hopping one. This suggests that a theoretical 
estimate of the effect of disorder on pure band transport could provide insight into the problem. In a recent 
letter [6]. we suggested the use of Velicky’s two-particle coherent-potential approximation (TCPA) [7] for 
this purpose; we obtained explicit expressions for the site occupation probabilities and mean-squared 
displacement and presented a sample calculation of the (long-time) exciton diffusion constant_ In the 
present work, we use this approach to calculate time-dependent transport properties. These are important 
since they determine the time scales on which the diffusion approximation 1s valid, and provide 
information about the mechanism of relaxation into the diffusive regime. We fix our attention upon the 
configuration-averaged velocity autocorrelation function, a quantity which is easily calculated at this level 
of approximation and which allows us to make contact with the extensive analytical, numerical, and 
intuitive experience developed by workers in classical statistical dynamics over the past three decades. 

Our present purpose is primarily theoretical: we discuss very detailed dynamic effects which would be 
difficult or impossible to measure with present experimental techniques, while neglectmg phenomena such 

as phonon scattering which are crucially important in the actual systems. Nevertheless, we believe that our 
results have experimental significance in that they allow one to quantify statements about the roles of band 

and hopping transport such as that given above. In the last section of this paper we describe an ad-hoc 
scheme for combining these results with pure-crystal exciton-phonon data to yield a more realistic and 
useful description. 
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2. Calculation of correlation functions 

We study the dynamics arising from a tight-binding hamiltonian having site-diagonal disorder: 

H=N”+ Y=~ln}r,(nl+ c in)J,_,.(n’l+Cin)v,(nj, (2-l) 
n n.?l’ n 

in which In) is a localized site state, co is the local-site energy in a perfect crystal, and J,_,. is the exciton 
transfer matrix element connecting sites n and n’; vector symbols on site and wavevector indices will be 
omitted. The site potentials V, are independent random variables having zero mean (this can be guaranteed 
by appropriate choice of r,); we will consider specifically a binary random alloy in which they take on 
values V, and YB with respective probabilities c, and cB_ 

The conditional probability that an exciton occupies site II at time t given that it occupied site n’ at time 
zero is 

P,,.(t) = (nle-“HIn’)(n’~e”wIn). (2.2) 
The Laplace transform of P(t). P(U). may then be expressed in terms of the one-particle Green function: 

G(z)=[r-HI-‘, (2.3a) 

as 

P,,~(u)=(2~)-‘Re /doG,,,(w+iO)G,,.,(w-iu) _ (2.3b) 

Since observable properties are related to averages of the probabilities over all configurations of the 
random potentials, the central task of the theory is to obtain an expression for the conftguration average of 
the product of two Green functions_ In ref. [6]. Velicky’s two-particle coherent-potential approximation 
(TCPA) was used for this purpose_ This appro.ximation is essentially a self-consistent extrapolation of the 
standard theory of dihrte impurity scattering [S] to higher impurity concentrations_ The extension consists 
of replacing the damped free-particle propagators which appear in the dilute theory by CPA [9] 
propagators; in order to maintain analyticity and conservation of total probability it is necessary to 
introduce multiple counting corrections when this is carried out. From the resulting explicit formula for the 
probabilities an expression for the mean-squared displacement is readily obtained [6]: 

(2.4a) 

I’~‘(u)=(~~T)-~ Re ,[dw[Gl(w+iO)-G,(w-iu)]’ . 

where nc is the latttce coordination number, cx is the group velocity 

and 

G,(z)=(klG(=)lk)=[z-EE,-2(r)]-’ 

(2.4b) 

(2.5) 

(2-6) 
is the CPA Green function. which is diagonal in a wavevector basis since it is an approximation to the 
averaged Green function_ The effects of disorder are contained in the self-energy Z(z) which in the CPA is 
independent of k (local in a site basis)_ The derivation, properties, and applications of the CPA are 
discussed at length in standard reviews [9]. 
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Although eqs. (2.4) allow an explicit cakulation of the mean-squared displkement- from the spectral 
properties-of the system, they are rather complicated. The form of (2.4a) strongly suggests that a more 
natural quantity to study is a group-velocity autocorrelation function (VAF): 

(2.7a) 

4 

from which the mean-squared displacement may be obtained by integration. The averaging process in 
(2.7a) consists of a configuration average, denoted by ( >,, and a “thermal average” which reduces to a 
trace since the model contains no energy relaxation mechanisms. 

By straightforward manipulations we find 

k k 

in which Gk+(t) is the inverse Fourier transform of G,(w + i0). We refer to C,(t) as the normalized 
correlation function (CF); it provides a direct and detailed description of the loss of coherence in an 
individual k state. Indeed, it is simply a diagonal element of the exciton density matrix in a k-basis. (For a 
careful discussion of the meaning of coherence loss in this context, see ref. [lo]. Henceforth, we will use the 
wavevector k to label the states of the configuration-averaged system; these states have a non-zero energy 
width or eqmvalently a finite lifetime. Only in the weak-scattering limit are they simply related to the 
eigenstates of the pure crystal.) From eq. (2.6) one sees that C,, depends on k only through Ekr so that a 
single CPA calculation of Z(z) allows one to obtain C, for any k. In the language of diagrams one says 
that there are no vertex corrections to the VAF in the CPA [7]. 

Some qualitative features of the CF can be obtained without detailed calculations and facilitate their 
interpretation_ The short-time behavior of Gk(t), and thus of Ck(t), is determined by the large-u behavior 
of G,(o + iu), which in turn may be found from the moments of Z(o + iu) [ll]. We find 

C,(t)=l-c,c,Azr’+$c,c,A* A’+2(c,-cc,)bE,+cJ,z,-_E,’ r4+O(r6), 
n 

(2.9) 

where A = V, - Vu. The CF thus has zero slope as r + 0, as required by dynamical considerations [12]. 
From an explicit calculation of the fist four terms of the short-time expansion of the exact CF: 

Ck”““(‘(t) = u,Z((klu(r)o(0)lk)),, (2.10) 

we find agreement to this order. This result is formally pleasant, but of little practical use since the 
expansion is valid onIy for times much smaller than the characteristic time for site-to-site transfer_ For long 
times, one can deduce that the CF decays more slowly than an exponential: because of the Herglotz 
analyticity of Gp(z), IG,Jr)l can be obtained from the imaginary part of G,(o), which is identically zero 
outside of a finite range of the w axis since the mixed crystal cannot have states in regions where none of its 
components has any. The Paley-Wiener theorem [13] then implies that G,(t), and hence C,(t), must decay 
more slowly than an exponential as r --, 00. (This argument obviously fails for systems where the 
distribution of V, has tails extending over all energies; an example of this sort is described in the appendix.) 
The precise form of the long-time tail is determined by the way in which Im Gk(a) drops to zero at its 
band edges. In general this is difficult to determine, but one may set bounds by using the weak-scattering 
(smah A) limit of Z(w) [lo]: 

Z(o) = c,c,A*g’( a), (2.11) 
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where go is the pure-crystal diagonal Green function. For cubic lattices we find near the edge or,: 

ImG,(w)a(w-w,)“‘. one dimension; 

a [ln( 0 - cd,)] e-1- two dimensions; 
I/Z 

a(w-uO) . three dimensions. (2.12) 

giving 

C,(t) a tm3. one and three dimensions; 

a t-‘. two dimensions_ 
(2.13) 

The surprising result that the decay is Faster in 1D than in 2D can be explained by the divergence of the 
1D pure-crystal density of states at the edge. which leads to an enhanced damping of excitations in this 
region_ We may reasonably regard (2.13) as a lower bound on the decay rate of CA(t) in a concentrated 
mixed crystal; the Paley-Wiener theorem provides an exponential decay as an upper bound. Clearly. these 
long-time tails are always integrable so that the diffusion constant exrsts for all non-zero impurity 
concentrations. Also, the coefficient of the tail is positive, so that it signifies a persistence of dynamical 
memory through many impurity scattering events. This formal result has little practical significance for 
transport since the truncation of the spectrum will not strongly affect the shape of G,(w) unless E, is near 
a band edge, where the group velocity is small; it may, however. be important for other time-dependent 
phenomena, such as dephasing of an optically created wavepacket (this case was discussed in ref. [lo] from 
a somewhat less general standpoint). In this context. we make the trivial, but important, observation that 
C,(t) as obtained from (2.8) is always positive so that the diffusion constant cannot vanish. The correlated 
back-scattering processes which lead to a negative-going VAF are not included at this level of approxima- 
tion_ 

3_ Results 

We have carried out calculations for a two-di- 
mensional nearest-neighbor square lattice for d = 
0.5 (amalgamated bands) and 2.0 (separated 
bands). and for majority component concentra- 
tions c, = 0.97. 0.85. and 0.60. (Here and 
throughout this paper energies and times are med- 
sured in units of the pure-crystal half-bandwidth. 
and lengths in nearest-neighbor iattice spacings.) 

The CPA equation for a binary alloy is 

‘(Z) = 
cqcrj@g( Z) 

I + Kc, -c&+E(:)]g(;)‘ 
(3-I) 

where 

g(=)=gO(=-Z(Z)). (3.2) 

is the site-diagonal CPA Green function. We used 
Newton’s method to solve (3.1) at 128 or 256 
values of o evenly spaced within the spectral 
bounds given by the Saxon-Hutner theorem [9]. 

As an initial guess we used either the average 
r-matnx approximation [9] or, once the calculation 
was undenvay, the result for a neighboring value 
of w. This calculation turned out to be quite 
time-consuming (= 1 min of CPU time on the 
Amdahl 5860 at the University of Michigan was 
required to obtain 128 points) because of the many 
evaluations of go involved; whtle this function is 
an easily computed elliptic integral for real z, its 
continuation to complex z is more costly to 
evaluate. (Particular care is needed near the band 
edges where Im Z(z) is small but non-zero.) For 
the c = 0.97 sample, the number of points calcu- 
lated was too small to obtain the long-time behav- 
ior; to avoid excessive cost we calculated extra 
points in the vicinity of the band edges and then 
interpolated within the band, where Z(o) varies 
slowly, to get a total of 2048 points. Once Z was 
obtained, CL(i) = C( Ek, t) was calculated for 80 
values of EL using a fast Fourier transform and 
o(t) obtained from eq. (2.4). To simplify the 
wdve-vector integration, we first calculated a 
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vekity-weighted density of states function: _ 

(3.3a) 

(3.3b) 

By using the Fourier representation of the S-func- 
tion, p,(v) can be reduced to integrals over prod- 
ucts of Bessel functions which may in turn be 
related to off-diagonal lattice Green functions. In 
two dimensions the latter can be expressed in 
terms of the complete elliptic integrals K and E 
[14], giving finally: 

p,(p) = (4/7?)[ E&l- v’,‘“) 

-v*K((l - I>~)“*)] _ (3.4) 

This function decreases smoothiy with negative 
curvature from 4/n” at Y = 0 to 0 at Y = +: 1. 

Figs. 1 and 2 show typical resuIts for Ck(t)_ In 
the separated-band case (fig. lb), a high-frequency 
oscillation appears; this clearly arises from the fact 
that for each value of EL the spectral dens&y has a 
component in each subband, so that C, is a coher- 
ent superposition of contributions from these com- 
ponents. Except for this, most of the curves are 
well represented by exponentials over most of the 
time domain for which they were calculated. The 
quadratic short-time asymptote is hard to see in 
the figures but can be verified by a close examina- 
tion of the results. The long-time tails, however, 
are very hard to see except in the nearly pure 
crystal; in the concentrated crystals, the decay of 

C, is approximately exponential over 8-12 orders 
of magnitude, after which it is lost in numerical 
noise. In general, we found that the decay of C,(t) 
is fastest near the center of the band and slowest 
near the edges. in the amalgamated-band case, it 

decreases smoothly from the center towards the 
edges, as one expects from perturbation theory, 
while in the separated-band case the variation is 
rather irregular, again reflecting the superposition 
of two components for each k. 

Fig. 3 shows our results for the VAF D(t) 
obtained from eq. (3.3). One can see that the 
oscillatory structure is not entirely washed out by 
averaging over ki This is expected since if the 

4 

0 20 00 40 00 6000 60.00 
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a 

Fig. 1. Normallzed correlation function C,Jt) at E,, = 0 for 
c = 0.60 (left curve) and c = 0.85 (right cume). and (s) A = 0 5. 
(b) A = 2.0. 

Fig. 2. Nonnalizcd correlation function Ck(t) for c= 0.57, 

A = 2, at (left to right) Ek = 0,0.5 and 1. 
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a 

b 

Fig. 3. Vrloc~ty correlmon functton O(f) for (A) 1 = 0 5. (b) 
_I = Z 0. md (left to right)) c = 0 60. 0 55 and 0 97. 

bands are well separated the separation between 
spectral density components is roughly constant 
( = A) over the band. so that the oscillations add 
up coherently (the structure was unchanged when 
the number of points used in the integration was 
increased by a factor of four. so that we are 
confident that it is not a discretization artifact). 

In table 1 we show our final results for the 
diffusion constant D; these were obtained from eq. 
(2.4) evaluated at u = 0 rather than from D(t) (to 
avoid an unnecessary Fourier transform)_ In light 
of what has been discussed, these results contain 
no surprises; the diffusion constant increases 
rapidly as the impurity concentration becomes 
small, and decreases with increasing A due to 
reduced tunneling through impurities. 

Table 1 
Diffusion constants 

;I Concentration 

0.97 0.85 0.60 

OS 94.6 15.5 66 
2.0 442 66 24 

4. Discussion 

We address here two distinct points: the extent 
to which our calculations correctly describe the 
dynamics of the model (2.1). and the extent to 
which they can be used to interpret the behavior of 
experimental systems. A comprehensive study of 
the first point would involve comparison with 
exact numerical results, which are not now availa- 
ble. Such calculations would be very interesting, 
though rather difficult to carry out because the 
quantities of interest are non-local in space. The 
mean-squared displacement would be straightfor- 
ward to calculate by the method which Prelovsek 
[15] has used for the Anderson model, but it would 
be less informative than the VAF itself, and It 
would be difficult in practice to extract the VAF 
from the mean-squared displacement unless a very 
short time step were used in the numerical calcula- 
tion. In the absence of exact calculations, we can 
compare our results to those limiting cases which 
are reasonably well understood_ In the weak- 
scattering and low-density limits, the TCPA re- 
duces to the well-known perturbative expressions 
[7]. For sufficiently strong disorder. we know that 
the exact eigenstates will become exponentially 
localized. and the diffusion constant must vanish; 
as mentioned in section 2 this cannot occur in this 
approximation, although in practice the diffusion 
constant can become extremely small. The prob- 
lem of localization in a binary alloy is quite com- 
plicated and no precise estimates, either from the- 
ory or from numerical calculations, of the fraction 
of localized states are available except in the limit 
A 5 cc (qu&rtum percolation j16)). It might ap- 
pear that our approach will always fail for large 
enough A. regardless of concentration, since at 
least one of the subbands will contain many IocaI- 
ized states. However, at low impurity concentra- 
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tions the contribution of the impurity (minority 
component) subband to the diffusion constant is 
negligible so that this defect is unimportant_ We 
expect then that in the large-A limit our results will 
be accurate away from the quantum percolation 

edge, which very nearly coincides with the classical 
edge [16]; as A decreases the range of concentra- 
tions for which this approximation is useful will 
increase, and when the subbands are merged (A = 
1) we urlll have an accurate description for all 
concentrations. 

The discussion above implicitly assumed a spa- 
tial dimensionality greater than two, since per- 
turbation theory, of which the TCPA is an ex- 
trapolation, breaks down for d < 2 [17]. In one-di- 
mensional disordered systems, all states are ex- 
ponentially localized and this theory will be use- 
less for them. Although it is now generally accepted 
that extended states do not exist in two-dimen- 
sional disordered systems (in the presence of 
time-reversal symmetry) [18], the length and time 
scales associated with this peculiar phenomenon 
are extremely large. The absence of quantum dif- 
fusion in two dimensions arises from a small, 
negative l/t component in the VAF [17,19] which 
would probably be invisible on our time scales 
since it is very difficult to detect in numerical 
calculations on the Anderson model [15]. (Of 
course, it would eventually wipe out the positive 
long-time tails we have discussed; the competition 
between these tails would make a definite numeri- 
cal identification of either a very difficult task.) In 
the experimental systems, either inelastic scatter- 

ing by phonons or the finite exciton lifetime will 
cut off the long-time anomalies; the overall result 
will be that our diffusion constants will be some- 
what too large at all concentrations in two-dimen- 
sional systems. 

In the dilute impurity limit, the two-dimen- 
sional anomalies arise from a class of terms, the 
“maximally subcrossed diagrams” 1171, which are 
not included in the TCPA. This suggests that a 
more powerful theory could be obtained by incor- 
porating CPA propagators into these diagrams in 
the same way that they were inserted into the 
dilute limit ladder diagrams to give the TCPA. 
Unfortunately, this procedure leads to expressions 
which fail to conserve total probability, because 

the one- axid two-particle propagators are not mu- 
tually consistent; additional scatteiing events are 
accounted for- in one but not in the other. The 
formal expression of this consistency condition is a 
“Ward identity” relating the two propagtitors, 
which is satisfied in the TCPA but violated by the 
new terms, even in the dilute limit [20]. Chitanvis 
and Leath [20] have presented a systematic scheme 
for incorporating multiple scattering into the 
TCPA which obeys the “Ward identities” at every 

level of approximation; it is not cIear, however, 
whether the new terms include those which one 
expects to be important for transport. A numerical 
study of the lowest-order Chitanvis-Leath ap- 
proximation would be interesting, though rather 
involved. 

Having discussed the defects of the TCPA at 
some length, we emphasize here its positive fea- 

tures: it incorporates a convenient and accurate 
description of the spectral properties of a random 
alloy, the CPA, into a transport theory in a self- 
consistent way. The calculations are carried out 
upon a discrete lattice, for which excluded-volume 
effects are completely accounted for by the multi- 
ple counting corrections, and the exact single-site 
r-matrix is used so that the penetrable nature of 
the scatterers for A -Z oo is included_ The overall 
scheme is analogous to the Boltzmann-Enskog 
kinetic theory of dense gasses: genuine many-body 
correlations are neglected, but some of their more 
obvious (excluded-volume) physical consequences 
are grafted onto a low-density theory [21]. 

Turning now to experimental systems, we first 
remark that the hamiltonian (2.1) is grossly incom- 
plete as it contains no mechanism for energy re- 

laxation. For excitons, energy relaxation is pro- 
vided by the exciton-phonon interaction (which 
also, of course, provides an additional phase re- 
laxation channel). We have recently carried out a 
detailed theoretical study of exciton-phonon in- 
teractions in disordered systems [22]; the results. 
however, are either quite formal or require tedious 
calculations involving many unknown parameters 
if they are to be applied realistically. We suggest 
here an ad-hoc procedure, which can to some 
extent be justified by the formal theory, for build- 
ing known exciton-phonon information into a 
rigid-lattice theory: multiply each C,Jt) by 



272 R Parson. R Kopehan / Excilon rransporr in ahordered crystals 

exp( - 2y,t), where yk is the total rate of scattering 
out of state ]k) in the pure crystal, which at low 
temperatures can be calculated in a one- or two- 
phonon approximation_ We must then modify the 
definition of the VAF so that it mimics a canoni- 
cal distribution over the exact eigenstates of the 
disordered system. This step is in general ill-de- 
fined: it is obviously wrong simply to introduce a 
factor exp( -BE,), except in the weak-scattering 
limit, since in a strongly disordered system Ek is 
not an energy_ If the bands are well separated, 
however, there will be a range of temperatures for 
which the equilibrium population of the upper 
subband is negligible. One can then discard the 
upper-subband contributions to the transport en- 
tirely, and weight the lower-subband contributions 
by exp[ -fl( Ek + x’)], where Er is the average 
value of the real part of the self-energy in the 
lower subband. (In the split-band limit Zr(o) 
varies very little within a subband; its principal 
function is to shift the entire subband away from 
the virtual crystal energy at which E,, is defined_) 
Clearly. this procedure will only work if the major- 
ity subband is lower in energy: in the opposite 
case. the minority subband, which the TCPA treats 
poorly, will be entirely responsible for the trans- 

port. 

To illustrate these ideas, we have calculated the 
self-energy for the well-studied first triplet exciton 
of C,,Hs/C,,D,, using a square-lattice approxi- 
mation to the actual band structure. This case is 
especially simple since the guest-host separation is 
so large (93 cm-’ for a bandwidth of 10 cm-’ 
[23]. or 18.6 in our units) that the imaginary part 
of the self-energy varies very slowly over the lower 

subband except very near the edges which are 
irrelevant for transport_ We can then define a 
single disorder scattering time for the subband: 
velocity correlations will decay exponentially with 
a rate -2Im(H). Moreover, we can use the much 
simpler average f-matrix approximation (ATA) [9] 
instead of the CP_4 since the shape of the subband 
is not important_ In fig. 4 we show the average 
ATA self-energy for the lower subband in the low 
impurity concentration regime- The value of Z at 
c = 0.15 :4elds a scattering time on the order of 
four intersite transfers, so that at this concentra- 
tion disorder has essentially extinguished coherent 

0 
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Fig 4. Imaging self-energy (averaged oter the lorrer sub- 
band) for the first tnplet exciton of a C,,Hs/C,,D, mlxed 

crystal. for sewral impurity (C,,D,) concentrations For thts 
system. one energy umt is = 5 cm-‘. A J-axis value of 0.01 
then corresponds to an Interval of = 50 intersite transfer ttmes 
betueen scattering events. 

effects. By comparing these results to the phonon 
scattering rate, estimated from the optical line- 
width. of = 0.1 cm-’ at 7 K (0.02 in our units) 
1241, one can estimate that phonon scattering will 
prevail for impurity concentrations less than = 
0.05. Since the optmal lineshape only measures the 
k = 0 scattering, and since one expects on general 
grounds (increased density of states) a somewhat 
larger rate within the band, the crossover to behav- 
ior dominated by disorder scattering might be 
closer to 10% In contrast, at 1.8 K the optical 
linewidth of the first triplet state of anthracene, 
which has a bandwidth of 20.5 cm-‘, is = 0.009 
cm-’ [25], or 0.0008 in our units. A perdeu- 
teroanthracene concentration of only 0.002 yields 
a self-energy of about this size (again using the 

ATA, which is certainly valid in this concentration 
regime), so that at this temperature disorder 
scattering dominates except in an extremely pure 
crystal. The available data concerning exciton- 
phonon scattering in two- or three-dimensional 
crystals at low temperatures are scanty and their 
interpretation subject to considerable uncertainty, 
so that more precise statements are unwarranted at 
this time. 

In conclusion, we believe that the approach 
presented and illustrated here allows one to make 
a reasonable estimate of the extent to which static 
disorder alone can destroy transport coherence. 
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When one-observes the amount by which the 
transport in a 85% crystal has been -reduced, it 
comes as no surprise that in a real system with 
phonon scattering coherence effects are negligible, 
as is suggested by the available experimental data 
on transport in mixed crystals 1261. In the course 

of this investigation, we have produced a good 
deal of very detailed.dynamic information which 
may be of use for comparison to numerical calcu- 
lation or, eventually, to experiment. 

Appendix: Results for the Lloyd model 

Lloyd 1271 has shown that the exact configura- 
tion-averaged one-particle Green function can be 
found for the hamiltonian (2.1) if the probability 
density of the random site potential V, takes the 
Cauchy (Lorentz) form 

P(v,)=u/+‘+ V2). (A-I) 

For this case, the exact self-energy, which coin- 
cides with the CPA self-energy, is amazingly sim- 
ple 

Z( w f iu) = Tie. (A-2) 

From the TCPA, which is still an approximation 

even though the CPA is exact, one readily finds 

D(t) = C,(t)/2 =+e-‘O’, D = l/40. (A-3) 

The pure exponential autocorrelation implies that 
the exciton velocity, interpreted as a random pro- 
cess, is markovian on all time scales, like the 
velocity of a brownian particle in the Langevin 

approximation [12]. The mean-squared displace- 
ment initially varies at t2, crossing over to diffu- 
sive behavior on the time scale 1/2a. 

Because of the long tails of the Cauchy distribu- 
tion, the result (A-3) conflicts with the short- and 
long-time considerations of section 2. The moment 
expansion which gave the short-time limit fails 
since the moments are infinite. Indeed, the infinite 
variance of the distribution implies that the model 
has no genuine weak-disorder limit; for arbitrarily 
small (J there are many sites having large V,. 
Moreover, the spectral density develops an a-’ 
tail which leads to pure exponential decay in its 

transform; in effect, every- impurity collision in- 
volves a complete loss of memory_ In contrast, in 
the binary alloy there is a persistence of dynamical 
behavior, shown by-the long-time tails, although in 
practice this effect is small. 
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