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INTRODUCTION

0.1. From the time they were introduced in analysis by Jacobi [13]
and in geometry by Riemann [37] the theta functions found numerous
applications in various fields of mathematics. The present paper displays one
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more application—to the representation theory of affine Ka¢-Moody Lie
algebras. The representation theory provides in turn (among other things) a
number of new theta function identities. The simplest cases of these identities
are collected in Section 5.5, which may be read independently of the rest of
the paper.

One of the starting points of this paper is an interpretation by Looijenga
of the Macdonald identities in terms of theta functions [27| and an obser-
vation made by one of the authors [18] by analogy with the “Monstrous
game” [4] that most of the generating functions for multiplicities which
appear in the representation theory of affine Lie algebras become ¢-series of
modular forms when multiplied by a suitable power of g.

Our approach to the study of these modular forms is roughly as follows.
We rewrite the character of a highest weight representation of an affine Lie
algebra in terms of theta functions and the modular forms in question. Then,
using classical functional equations for theta functions, we deduce transfor-
mation properties of our modular forms. Furthermore, using the “very
strange” formula, we estimate the orders of the poles at the cusps. As a
result, the theory of modular forms makes it possible to compute any of
these modular forms. We do so in a number of interesting cases. Moreover,
combining our transformation laws with a Tauberian theorem, we obtain the
asymptotics of the multiplicities in question. '

Another starting point of the paper is the work of one of the authors [34]
on explicit formulas for Kostant’s partition function. Using the results of this
work we derive explicit formulas for (generalized) Kostant’s partition
function in the case of certain affine Lie algebras. This allows us to compute
weight multiplicities directly, at least for the simplest affine Lie algebra 4{".
Quite unexpectedly the corresponding generating series turn out to be
intimately related to certain modular forms discovered by Hecke [9], which
are associated to real quadratic fields.

0.2. First, we explain the sort of objects studied in the paper. For
the sake of simplicity we concentrate here on the “non-twisted” affine Lie
algebras.

Let g be a complex simple finite-dimensional Lie algebra of type
X(=A,, B,,..), 8(.,.) its Killing form. Let b be a Cartan subalgebra of g, 4
the set of roots of b in §. Fix a set of positive roots 4, in 4; let a, ..., a, be
the simple roots, & the highest root. Introduce the important integer
g:=¢(6,0)"". It is more convenient to deal with the normalized bilinear
form (x,y) = 2g@(x,y), so that (6,6)=2. We identify § with h* via the
form (.,.). Let W be the Weyl group of § and let M be the lattice spanned
by the set W(#). M is called the dual root lattice of g. It is a positive-definite
integral (with respect to (., .)) lattice, which plays an important role in our
considerations.
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The affine Lie algebra g associated to § may be constructed as follows
(14,31, 7,18]. Let L = C[¢,¢™"] be the ring of Laurent polynomials in ¢, and
set L(3) =L ® 8. This is an infinite-dimensional Lie algebra over C; denote
its bracket by [,],. For x=Y,/®x;, y=3,¢ ®y;, define (x,y),=
Yt (x;,y,) €L The function w(x,y)=Res,_,(dx/dt,y), is a cocycle
on L(§) with values in C, hence determines a central extension L(§) of L(@).
Expilicitly L(g) L(3) ® Cc, where the bracket is given by

[x +Ac,y +uc] = |x,¥], + w(x, y)e (x,y € L@); A, 4 € C).

The affine Lie algebra g of type X'V is then obtained by adjoining to L(g) a
derivation d which acts on L(g) as #(d/dt) and kills c. (g is the Kaé—Moody
algebra associated to the extended Cartan matrix of g.)

We identify g with the subalgebra 1 ® g of g. The commutative subaligebra
h=b @ Cc @ Cd is called the Cartan subalgebra of g. For A € b* we denote
its restriction to b by 1. We identify {4 € h*|A(c) = A(d) =0} with b* by
A A

Introduce the important elements 6, A, and a, of h* defined by

Slhace=0, d)=1; ay=56—0;
Aglsoea=0,  Ayc)=1

The elemen_ts a, s @y, 0,4, form a basis of h*, and we extend the form
(.,.) from b* to a symmetric bilinear form on §* by

l
<Z<Ca,»,(26+c/10)=0; (6,0) = (A4,4,)=0; (6,4,)=1.

i=1

Writing |4|* for (4,4), we define

P(resp. P, ) = {2 € h* | 2(4, a;)/|a;|* € Z (resp. Z ;)
for i=0,.,1}; P={l|A€P}

Let fi, be the maximal nilpotent subalgebra of g which corresponds to
d,, and let n, cL(§)cg be the preimage of fi, under the map
Clt] ® § — @ defined by sending 7 to 0.

Following [16], for each A € P, define an irreducible g-module with
highest weight A, denoted by L(A), by the property that there exists a non-
zero vector v € L(A) such that

n,(v)=0 and h(v)=A(hw forall hReEMW.
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The g¢-module L(A) admits the weight space decomposition L(A)=
®, L(A),, where for 1 € h*,

L(A), == {v € L(A) | h(v) = A(R)v for all k € b}

is a finite-dimensional subspace; its dimension is denoted by mult,(4).

The central element ¢ acts on L(A) as multiplication by a non-negative
integer m = A(c) = (4, 6) called the level of L(A) [22]. Note that m =0 if
and only if dim L(4) = 1; we assume in the sequel that m > 0.

For 1 € h*, define a function e(d) on b by e(4)(h) = exp A(h). Introduce
the following domain in b:

Y= {h€h|Red(h)> 0}.
Now we can define the character of the g-module L(A):

ch L(4)= mult,(A) e(d).
]

This series converges absolutely uniformly on compact sets to an analytic
function on Y.

We express ch L(A) in terms of theta functions. For 4 € b* and a positive
integer m, set

Oum= Y elmd,+y—3[y]" ). (0.1)

My
yeM+m—lu
This series converges absolutely on Y to an analytic function. In coordinates

Y={=2ni(z+td+tc)|z€b;1,t € C,Im1 > 0},

one recognizes in (0.1) the classical theta function

2] (‘[, z, l) — e—2nimt \ enim|y}2-re—2nimy(z)
w,m i '

yeM+m=—lp
Note also that in these coordinates,
9(-—5) =4q,

where as usual g stands for e**'".

_Define_ p€bH* by (p,a)=1(a;,a), i=0,..,1 and p(d)=0. Let
W < GL(h*) be the Weyl group of the Lie algebra §. For A € P such that
A(c) > 0, define

A= Z_ (det w) O,y a00-

weW
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Now it is not difficult to rewrite the character formula from [16] in terms of
theta functions:

g*r chL(A)=4,,,/A,, 0.2)

where

s _Aa+pl 0P
YT 2m+g) 2
Another more “elementary” formula expresses ch L(A) in terms of theta

functions and the so-called string functions c(A € P), defined as follows. Put
sA(A)=s, —|4|*/2m and define ¢4 by [18,22]:

ct(@)=¢* > mult, (A —nd)q".

neC

This is a holomorphic function in 7 on the upper half-plane. We have
Chy e myras =2 for weW,yeMandacC.

It follows that there are only a finite number of distinct string functions for a
given module L(A).
We have |18, 22|

g*s ch L(A4)= N e} O3 - 0.3)

AePmod(mM + C3)

This formula provides information about the g-module L(4) as soon as we
can say something about the string functions. Our main tool for investigating
the string functions is the following identity, which follows from (0.2} and
(0.3):

AA+p/Ao: 2 cjl‘@/T.m' (04)

AePmod(mM + C8)

Finally, recall the Euler function

o@=[] (1-¢"
nzl
and the Dedekind #-function

1/24

n(r) =q"*0(g).
0.3. Now we can state the main results of the first part of the paper.

THEOREM 1. Let L(A) be a g-module with highest weight A € P, of
level m > 0. Then
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(a)
cH=t ") = (—it)™"? N b(A,A; A", 4") ¢} (0),
A'eP,modCs
A’'ePmod(mM + C8)
ACy=A'(c)=m
where

b(A, A A", A" = i8N P/M |~ m= P (m + g) ™"

X exp(2mim~'(A, 1)) Y (det w) exp(—2mi(m + g) ="' (4 + p, w(A' + ).

weW

(b) n(r)¥™8cA(r) is a holomorphic modular cusp form of weight |4, |
for the group T(Nm) N\ I(N(m + g)) with the trivial multiplier system, where
N is the least positive integer such that N |u|* € Z for all p € P.

(c) If mult,(A) > O, then one has, as n— 4w,

— 1/2
multA(/l _ n5) ~ CH (l/4)(l+3)e4n(an) ,

where ¢ is a constant which depends only on g and A (and is computed in the
paper), and
_dimg m

24 m+g ©5)

Theorem 1 appears in the paper as Theorem A(la, 4), and Theorem B for
the “non-twisted” affine Lie algebras.

Let us make some comments on the proof. For (a) we use the identity
(0.4) and a functional equation for theta functions. In particular, we use the
formula

(z,2)

1 z , ,
A, (- L B ) = s A

The crucial point in the proof of (b) is the following inequality:
s,A) > —a if mult,(4) >0, (0.6)

where a is given by (0.5).

In order to prove (0.6), we employ the following “very strange” formula.
Let A€ 3!, Qa; lie in the fundamental alcove, ie., (4, ) >0, i=1,.,1/
(A4,0)< 1, and let n be a positive integer such that nd € M. Then
o = exp 2nid is an automorphism of g of order dividing #; let d; be the
multiplicity of the eigenvalue exp 27is/n of 0. We have

n—1

dim g 1 . .
4 At N jn—j)d;. 0.7)

=1

1 ~ 2
le—gﬂ =
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In a different form (0.7) is established in [17] for “rational” o; the proof of
(0.7) in the general case is essentially the same. For 1 =0, (0.7) turns into
the celebrated “strange formula” of Freudenthal-de Vries:

1 _, dimg

2glpl =7 (0.8)
Formulas (0.7) and (0.8) yield the inequality

17— gAl> <|pI® (0.9)

for any A from the fundamental alcove which, in turn, implies (0.6).

Finally, for (c) we use a Tauberian theorem of Ingham. We need here the
fact that mult, (4 — nd) increases with n, which we prove using a Heisenberg
Lie algebra. This is the only point in the main body of the paper where
a representation-theoretical argument appears necessary. Of course, the
representation-theoretical framework provides motivations and clarifies
arguments. However, it remains an interesting open problem to find an inter-
pretation of the results of the paper in this framework.

Using Theorem 1, we explicitly determine the string functions in many
interesting cases. Let us demonstrate our method in the simplest case, that of
representations of level 1 of the affine Lie algebras of type 4", D{" or E{".
It is easy to see that in this case all non-zero string functions ¢} for A of
level 1 are equal to c(r)=¢ ">}, ,mult, (4,—nd)q". Hence, by
Theorem 1, the function n(r)c(r) is SL(2, Z)-invariant. It is also
holomorphic and has value 1 at joo; hence it is identically 1. So, we recover
the result obtained in [17] by the method of “principal” specialization (and
in [6] for g =A4{" by a straightforward computation):

N mult, (4, —nd)q" = p(g)~".

n>0

In the case of E{" this result is related to the “Monstrous game” [18].

We remark that in general the multiplicities apparently fail to be given by
simple combinatorial functions such as the classical partition function p(n).
In this sense, the results of (6] and [17] appear not to generalize. To
understand the string functions, it is necessary to replace the combinatorial
point of view of ¢(g)~' as the generating function for p(n) by the realization
that n(r) = ¢"/**¢(g) is a modular form.

0.4. The rest of the main results of the paper deal with the partition
function for the affine Lie algebra g of type A4 {". The set 4, of positive roots
of g consists of the roots (n — 1) + a and né — a of multiplicity 1, and #d of
multiplicity /, where @ € 4, and n > 1. The partition function K(4) on b* (K
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in honor of Kostant) is defined to be the number of representations of A as a
sum of positive roots (counting multiplicities).

Using the results of [34] on the Kostant partition function for 4,, we find
an explicit formula for the partition function for 4{" (given by Theorem C).
Here we state the result only for 4",

THEOREM 2. Let g be of type A\", and let pP(n), n € Z, be defined by
3, 0P (1) ¢" = 9(q) . Then for ny,n, € Z one has

K(nyag + ma)= Y (=1 pO((k + 1) ng — kn, — $k(k + 1)).
k>0
The importance of the partition function K lies in the fact that (as in the
finite-dimensional case) the multiplicities which appear in representation
theory may often be computed in terms of K.
Using Theorem 2, we compute the string functions for any highest weight
module over A{". The result, given by Theorem D, is

THEOREM 3. Let L(A), A€ P, be an A\"-module of level m > 0, and
let \€ P, ¢} +0. Set

a(l) = ((Asa1)+1 (4, a,)

2m+2) " 2m

)eP%

For v="(x,y) € R’ set signv=sign(x) and F(v)= (m+2) x> — my*. Let
G, be the subgroup of SL(2, R) generated by the matrix (1) " ). Then

n(@)cim)= Y (signv)e™ (0.10)
veZ2+ a(i)
F(v)>0
rmodGy

The function (0.10) is a cusp-form of weight 1 of a type studied by Hecke
[9]. Together with Theorem 3, identity (0.4) generates an intriguing series of
identities for elliptic theta functions.

0.5. Here is a brief account of the contents of the paper. In
Section I we present the basic facts about affine Lie algebras, starting with
the general framework of Ka¢-Moody algebras g(4). In Section 1.1 we
recall the definition and properties of the invariant bilinear form, the root
system, and the Weyl group W of g(4). In Section 1.2 we recall the
classification of affine Lie algebras and introduce their invariants /; k; q,
(i=0,..,1); h and g. In Sections 1.3 and 1.4 we give an explicit description
of the invariant bilinear form and of the root system A of an affine Lie
algebra. In Section 1.5 we introduce the new notion of the adjacent root
system A', necessitated by technical complications appearing in the study of
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theta functions in the “twisted” case. We have 4’ =4 in the case k= 1. In
Section 1.6 we introduce the lattices M and M’ and describe the structure of
the Weyl group of an affine Lie algebra. Note that formula (1.7) “explains”
why theta functions appear in our considerations. In Section 1.7 we recall
the realization of affine Lie algebras in terms of simple finite-dimensional Lie
algebras.

In Section II we study the highest weight representations L(A) and their
characters. In Section 2.1 we work in the general framework of Kac—-Moody
algebras. New results here are the description of the region of convergence of
ch; 4, (Proposition 2.5), and separation of WX 2miQV-orbits by the
characters (Proposition 2.10). In Section 2.2 we describe the set of weights
of a highest weight module over an affine Lie algebra and a convexity
property of weight multiplicities (Proposition 2.12), using the fact that
mult(d — nd) increases with n (Proposition 2.11). In Section 2.3 we introduce
the string functions and deduce the fundamental identity (2.18).

Section III gives the necessary information on theta functions, the modular
group, and modular forms. The main result of Section 3.1 is Proposition 3.8
on the behavior of the Riemann theta function under the full modular group.
In Section 3.2 we introduce and study the ring of theta functions. We give a
basis for it and describe its multiplicative structure in this basis
(Propositions 3.13 and 3.14). In Section 3.3 we briefly discuss modular
forms and prove Lemma 3.20, which is used in the proof of the “very
strange” formula.

In Section 1V we apply the results of the theta function theory to affine
Lie algebras. In Section 4.1 we adapt the general transformation laws for
theta functions to our situation and deduce the transformation properties of
the functions 4,, which are anti-invariants of the Weyl group (Proposition
4.5). In Section 4.2 we find more explicit transformation laws for A4,
(Proposition 4.6).

In Section 4.3 we use the transformation properties of some specializations
of the function A, to obtain a simple new proof of the “very strange”
formula (Proposition 4.12). As a consequence, we obtain an estimate for
s,(4) (Proposition 4.14). We mention that the material of this section is
related to p-function identities [29, 17,44] and to the “Monstrous game”
(4, 18].

In Sections 4.4 and 4.7 we deduce the main results partially stated above
in Theorem 1. They concern the transformation properties of the string
functions (Theorem A) and asymptotics of weight multiplicities (Theorem B).

In Section 4.5 we present results of the second author on the determinant
and the inverse of the matrix of the string functions of a given level
(Proposition 4.18 and formulas (4.20), (4.20.1, 2, 3); see [36] for more
detail). In Section 4.6 we compute the string functions for all modules of
level 1 over all affine Lie algebras, except C'V, and state a theorem of the
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second author unifying these results. We also express most of the string
functions for 4" as linear combinations of infinite products up to level 10,
and for 4" and 4{” up to level 3.

In some cases the transformation properties of A, are as nice as those of
A,. In Section 4.8 we study these 4, and deduce interesting facts about three
remarkable elements of a compact Lie group (cf. [25,21]).

Finally, in Section 4.9 we outline an approach to the general restriction
problem (Propositions 4.34 and 4.36).

In Section V, which is largely independent of the previous sections, we
prove Theorems 2 and 3 above. We first find an explicit formula for the
partition function for the affine Lie algebras of type A" (Theorem C and
Section 5.2). In Section 5.4 we use Theorem C to compute the string
functions directly in the case 4" and unexpectedly encounter “indefinite”
theta series (see Section 5.3 and Theorem D). Finally, in Section 5.5 we
present explicit formulas which are special cases of our results.

Apart from the material cited above, the paper has four Appendixes,
which are only indirectly related to the main body of the paper. In
Appendix 1 (Section 1.8) we study the asymptotic behavior of root
multiplicities in general Kat-Moody algebras. Appendix 2 (Section 2.4) is
intimately related to Appendix 1. Here we study the structure of a highest
weight module over an arbitrary Kac-Moody algebra and give an explicit
description of the region of convergence of its characters. We included
Appendix 3 (Section 2.5) in the paper only because of the mysterious coin-
cidence of a constant involved in a cocycle (studied here) and the constant a
(see formula (0.5)). Finally, in Appendix 4 (Section 4.10) the results of the
second author on the independence of the fundamental characters are
announced.

0.6. This paper represents work done by the authors primarily from
August, 1979, to March, 1980. Theorems A (except for (2)), B, C, and D
were proved during this period. The authors have subsequently discussed this
work in several conferences, including the conference on Infinite-dimensional
Lie algebras held in Oberwolfach in June, 1980. Some of the results of the
paper were announced in [22]. Preprints of the paper were distributed in
February 1982.

NOTATIONS AND CONVENTIONS

(a) 72,,Z,Q,R,,R,C denote the sets of non-negative integral,
integral, rational, non-negative real, real and complex numbers, respectively.
Fora, beC, wewriteazbifa—beER_.

(b) @ and ® denote direct sum and tensor product of vector spaces.
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(c) |S] denotes the cardinality of a set S.
(d) |A|* stands for (4, 1), where (.,.) is a bilinear form.

(e) If Q is an abelian group and P a subgroup, J mod P denotes a set
of representatives of cosets of Q with respect to P.

(f) If zeC, z#0, define logz by requiring that e'°®? =z and
—n<Imlogz <, and let z" = e"'°®* for all r € C.

(f) For t€C, let g stand for """, and more generally, let ¢" stand
for e?*"*, (This conflicts with (f), but should not cause confusion.)

(g) The topology of a real or complex finite-dimensional vector space
is taken to be the metric topology.

(h) If V is a finite-dimensional real Euclidean space and L is a full
lattice in V, we put vol(L) = u(V/L), where g is the Euclidean measure on V.

(i) U(g) denotes the universal enveloping algebra of a Lie algebra g.
(/) The base field is C unless otherwise specified.

I. AFFINE LIE ALGEBRAS AND ROOT SYSTEMS

In SectionI we present the necessary information about root systems of
affine Lie algebras. We first outline the general framework of Ka¢-Moody
Lie algebras, and then work out in detail the case of affine Lie algebras.
Some proofs and details are omitted; they may be found in [14, 17] or in the
book [50].

1.1. Basic Facts about Kad-Moody Algebras

(A) Let I be a finite set and let 4 = (a;)); ;, be a generalized Cartan
matrix, i.e.. a matrix satisfying the following conditions: a;;= 2 for all i; a;;
is a non-positive integer if i # j; a;; =0 implies a;; =0.

The matrix A4 is called indecomposable if I cannot be decomposed into a
disjoint union of non-empty sets I, and I, such that a;;=0for i€ 1,,jE I,.

The matrix 4 is called symmetrizable if there exists an invertible diagonal
matrix D such that DA is symmetric.

Let b be a complex vector space of dimension || + corank A. Then there
exist linearly independent indexed sets

= {o;};e; = b* and m= {hitier <,

such that a;(h;) = a;;. They are determined up to isomorphism by A. The a;
(resp. h;) are called simple roots (resp. dual simple roots).
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(B) Let g(4) be the complex Lie algebra generated by HU {e;,fi}ie;
with defining relations

le:f;] =0k, for i,jel;
(he]=a(h)e, [hfi]=—afh)fi for i€l heED;
[h,h']=0 for hh' EWY;
(ade;)' "% e; =0, (ad f;)! 7% f;=0  for i, jELi#}].

The Lie algebra g(4) is called a Kad~Moody algebra and A4 is called its
Cartan matrix. The commutative subalgebra b of g(4) is called the Cartan
subalgebra.

Let g'(4) denote the derived algebra of g(4). Then g'(4) is generated by
the elements ¢;, f;, i € I, and we have g(4)=g'(4)+b.

The center of g(4) is c:={hE€h|a(h)=0 for all i€ I}.

g(4) decomposes into a direct sum of Ka¢—-Moody algebras associated to
the indecomposable components of 4.

It has been established only recently that for an indecomposable 4, any
ideal of g(4) either contains g’(4) or is contained in ¢, provided that 4 is
symmetrizable [8]. Since g(4) is usually defined to be the quotient of our
g(4) by the sum of all ideals intersecting b trivially, our definition and the
usual one coincide for symmetrizable 4.

(C) Fix a Ka¢-Moody algebra g(4). Denoting by n, (resp. n_) the
subalgebra of g(4) generated by {e;};., (resp. {fi};c;)» we obtain a vector
space decomposition

gA)=n_®bon,.
Furthermore, one has the root space decomposition of g(4) with respect to

P 8d)= @ g,.
ael

Here g, = {x € g(4) | |4, x| = a(h)x for all hE b} and g,=h. If @+ 0 and
8, # (0), then «a is called a root of multiplicity mult & :=dim g, (which is
always finite). Note that ta; are roots of multiplicity 1 since g, = Ce;,
9_,,= Cf;. Denote by 4 the set of all roots.

The Z-span Q of the set II is called the root lattice. For a =), k;a;, the
number hta:=},k; is called the height of a. Let Q, =3 ,7Z a;, and
introduce a partial order on bh* by

A>u if A—peqQ,.
Denote by 4, =4 M Q@ the set of all positive roots. Then:
A=4,0(=4,).
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(D) The Kaé-Moody algebra g(‘4) is called dual to g(4). We can (and
will) identify the Cartan subalgebra b of g(‘4) with h*, so that the set of
simple roots of g(“4) (resp. dual simple roots) is identified with IT¥ (resp. II).
We will use freely the notions QV, 4", etc., which are defined in an obvious
way.

(E) For i €I, define the fundamental reflection r; € GL(b) by

rih)=h-—aih)h; for hehb

Note that r; operates contragrediently on h* by r,(a) =a —a(h;) a;.

The Weyl group W is the subgroup of GL(h) generated by the r;, i € L.
Note that we can identify r; with r;’ and W with W" via the contragredient
action. One knows that for i € I, ad e; and ad f; are locally nilpotent, and
7; := (exp ad e;)(exp ad(—f;))(exp ad e;) € Aut g(4) satisfies

Fi(8a)= 8ria) and Fily=1;

In particular, the root system A is W-invariant and, moreover, mult a =
mult w(a) for w € W. 1t is easy to see that r; permutes 4_\{a,}.

(F) A root which is W-equivalent to a simple root is called real; a real
root has multiplicity 1. Denote the set of all real roots by 4™. All other roots
are called imaginary; the set of all imaginary roots is denoted by 4'™. We
put AT =4"MNA4,, 4™ =4"NA,. Then the sets 4™ and A'™ are W-
invariant, and 4™ =4 U (—4), 4™ = 47U (—4'").

Let @ € 4™ then w(a)=a, € II for some w € W and i € I, and we set

a'=wl'(h)EM.

aV e 4V is called the dual root of a. This is well-defined by the following
lemma.

Lemma 1.1, If w(a,) = a; for some w € W and i,j € I, then w(h;) = h;.

Proof. w=W | for some W from the subgroup of Aut g generated by the
Fi» k€I Applying W to both sides of [g,,9_,]=Ch;, we obtain
Ch; = Cw(h;). Since w(a;)(w(h))) = ah;)=2, we get w(h)=h;. |

Now it is clear that the map v: 4™ — (4Y)™ defined by ai—a" is a W-
equivariant bijection which maps IT onto I7".
For a € 47, we define r, € W by

r,(h)=h—a)a” for he,

so that r2=1, r (B)=8—Ba")a for BEb*, wrow '=r,,, for wE W,
andr, =r fori€ I
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(G) Symmetrizability of the matrix 4 is a necessary and sufficient
condition for the existence of a non-degenerate g(A4)-invariant symmetric
bilinear form (,) on g(4). The restriction of such a form to b is non-
degenerate and W-invariant. Conversely, any non-degenerate W-invariant
symmetric bilinear form (,) on } can be uniquely extended to a non-
degenerate g(A4)-invariant symmetric bilinear form on g(4).

For the reminder of (G), we assume that A is symmetrizable; we then can
choose a non-degenerate invariant symmetric bilinear form (, ) on g(4) such
that (k,, h;) is positive rational for all i € I. Such a form is called standard.
We identify b and h* using (, ). A root a is real if and only if (a, @) > 0 and
is imaginary if and only if {a, @) <0 [14]. A root a is called isotropic if
(a,a)=0.

Furthermore, for a € A4,

2
av=—2_
(o, )

rA)=4— @4, a"a,
and for a € 4,
[8a:8-a]=Ca.
The last equation defines a non-degenerate pairing of g, and g_,.

Remark. If « is a root such that (a,a)>0, ie, a is real, then
mult(+a) =1 and mult na =0 for n# +£1. If (a, ) <0, then na is a root for
any integer n % 0 |14]. Any isotropic root a is W-equivalent to an imaginary
root of an affine Lie subalgebra [19] and hence mult a can be found from
Table M in Section 1.4; in particular, we have: mult a < |I|. The situation
changes drastically when we pass to a non-isotropic imaginary root a. In this
case (D,.,8,, i a free Lie algebra, mult na is a non-decreasing sequence,
and moreover, lim, , (log mult(na))/n exists and is positive. We prove these
facts in Appendix 1 (Section 1.8).

(H) Set hp={h€b|a;(h)ER for all i€I}. This is a W-stable real
subspace of h. We define b similarly. Define the fundamental chamber
C b by

C={hebgla;(h)y>0forallicl}.

The set
X= U wo)

wew

is called the Tits cone; each w(C) is called a chamber. Define the imaginary
cone Z to be the closure of the convex hull of {0} U 4" [17].
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Using Lemma 1.1, the usual proof of the “exchange condition” works in
the framework of Kac-Moody algebras. We need only the following
corollary of it.

LEMMA 1.2. Let w=r; ---r; be a reduced expression of wE W (i.e., w
cannot be represented as a prod"ct of fewer than s fundamental reflections).
Then —w(a; ) > 0.

Proof. Standard (see, e.g., [11, p. 50].)

It follows that ¥ maps At onto (4Y)'¢. (In particular, for i € I and § € 4",
we have a,(8Y) <0<« ry(a,) € AT < ry(h;) € (47)™ < B(h;) < 0. Hence, for
a, B € 4™, we have a(8") <0 = B(a") <0.)

We now establish some important properties of the Tits cone (cf. [41] and

[28]).

ProposITION 1.3. (a) For any h € X the orbit W{(h) meets C in exactly
one element.

(b) The stabilizer W, of any h € C is generated by the fundamental
reflections contained in it.

(c) C=thebg|foralwe W, h—wh)E Y, R, h;}

(d) X={h€bglalh) <0 for only a finite number of a €4 }. In
particular, X is a convex cone. The same result holds with A, replaced by
4%,

(e) IfhE€ X, then h € Interior X if and only if |W,| < 0.

(f) Z={ae€bv*|a(h) is non-negative real for all h € X}.

Proof. Let w=r; -.-r, be a reduced expression. Take # € C and
suppose that 4’ = w(h) € C. We have: a; (k) >0, so that w(a, )(h') > 0. But
by Lemma 1.2, w(a; ) <0 and hence w(a; )(h') < 0. Therefore, w(a, )(h') =0
and so a; (k) = 0. Hence, r; (1) = h and both (a) and (b) follow by induction
on the length s of w. To prove (c), note that C={hE hg|h—r(h)ER A,
for all i€I}. Hence it suffices to show that for h€C and w€E W,

—w(h)=>3,c;h;, where all ¢; >0. This is proved by induction on the

length s of a reduced expression w=r; ---r;. Indeed, for s =1 it follows
from the definition of C. For s > 1 we have h wh)y=(h—r,r,_(h)+
riyooo i (h—r;(h)); using the inductive assumption and Lemma 1.2,

apphed to 4V, (c) follows.

To prove (d) set X' ={h€bhg|a(h) <0 for only a finite number of
a€d, },and for h€ X' set M, = {a € 4, |a(h) <0}. Itis clear that C = X’
and that X’ is stable under W. Hence X' > X. We prove that & € X’ implies
h € X by induction on |M,|. If |M,| = 0, then & € C — X. Otherwise, a; € M,
for some i€l But then M, =r(M,\{a;}), so that r(h)EX by the
inductive assumption. The same argument works for A%, proving (d).

607/53/2-2
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To prove (f) we may assume that the matrix A is indecomposable. Put
Z'={a€bh*|a(h) >0 for all A € X}. We must show that Z=2'. Zc Z'
since 4™ Q, is W-stable. If |[4| < oo, then {0} =Z' < Z by (d). If 4 is an
affine matrix (cf. Section 1.2), then Z’ < Z follows from Proposition 1.9(a)
below. In the remaining case, there exists y € 4'™ such that y{h;) < 0 for all
i €1 [19]. Suppose Z’' & Z. Since Z is a closed convex cone, we may choose
h' €Y such that a(h’) >0 for all e € Z, but a(h’) < 0 for some a € Z’'. We
deduce that a(k’) > 0 for all @ € 4'", but A’ & Closure X. Choose # € ) near
h’ and ¢ > 0 such that A€ X but a,(h)>a;(h')+eforall il If e AT,
then p(8Y) < —1, and ry(y)(h) > € ht r5(p) since ry(y) € 4’7", We deduce that
B(h) > —y(h) + eht f for all € A%, so that h € X by (d). This contradicts
h & X, proving (f).

To prove (e), we may assume that # € C. Then (e) follows from (b) and
the following lemma applied to W,. 1

LEMMA 1.4. The following conditions are equivalent:

(i) |W|< o,
(i) X=bhg,
(iii) |4| < co.

Proof. (i)= (ii) since for any A€ by, each A’ € W(h) with maximal
ht¥(h' — k) lies in C. (ii) = (iii) by taking 4 € hg such that a;(k) < O for all
i € I, and applying Proposition 1.3(d). (iii) = (i) as 4 is W-invariant and any
w € W leaving 4 pointwise fixed is the identity by Lemma 1.2. |

Finally, introduce the following important domain Y in § [28]:

Y = Interior (X + fHg).

ExamMpPLES. If A is an affine matrix, then
Y={hEy|Red(h) >0}
If 4 is a generalized Cartan matrix of hyperbolic type, then

YU-Y={x+ip|x,y € bg, (x,x) <0}

1.2. The Classification of Affine Lie Algebras

One knows that dim g(4) < oo if and only if 4 is of finite type, ie., all
principal minors of A4 are positive. In this case, g(4) is semisimple;
conversely, every finite-dimensional semisimple Lie algebra is of the form
g(4).

A generalized Cartan matrix 4 is called an gffine matrix, and is said to be
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of affine type, if all its proper principal minors are positive, and det 4 = 0.
Note that 4 is an affine matrix if and only if ‘4 is. One knows that any
generalized Cartan matrix with all principal minors non-negative
decomposes into a direct sum of matrices of finite and affine types. The
corresponding Kac—-Moody algebras are characterized by the property that
root multiplicities are bounded.

The Ka¢-Moody algebra associated to an affine matrix is called an gffine
Lie algebra.

To each affine matrix 4 = (a;;); ;c, we assign a diagram S(4) as follows.
The set of vertices of S(4) is I = {0, 1,...,{}", and if i,j € I, i #j, the vertices
i and j are connected by a;;a; lines; if |a;| > |a;|, these lines are equipped
with an arrow, pointing toward the vertex /. One associates numerical marks
a; to the vertices i as follows: a;, i € I, are positive integers with greatest
common divisor 1 such that for all i€ 1, ;. a;a;;=0. The diagram S(4)
with [+ 1 vertices is called the Dynkin diagram of g(4).

It happens that two affine Lie algebras are isomorphic if and only if they
have isomorphic Dynkin diagrams. These diagrams are listed in Tables I, II,
and III [14, 31]. The numerical marks are written beside the vertices. To the
left of the Dynkin diagram of g(4) in the tables is a symbol such as 4",
called the type of g(4). The superscript of this symbol is &, the number of the
table, which, along with /, is an important invariant of g(4).

In the remainder of this paper we always assume that O is the leftmost
vertex of the Dynkin diagram of g(4) as shown in the tables. In particular,
a, =1 unless g(4) is of type 4%, when a, = 2.

We denote by a; the numerical marks of the diagram S(‘4), so that
>:ala;=0for all j€ I. Note that ag = 1 in all cases.

The integers

hi=> a => a
iel iel
are called the Coxeter number and the dual Coxeter number, respectively, of
the affine Lie algebra g(4). Note that when k = 1, & is the Coxeter number
of the finite root system with Dynkin diagram S(4)\{0}, and g is the inverse
of the square of the length of a long root with respect to the Killing form for
this root system (cf. 4.12.2, 3).

1.3. The Normalized Invariant Form on an Affine Lie Algebra

For the next four sections we fix an affine matrix 4. Let g(4) be the
associated affine Lie algebra, §) its Cartan subalgebra, etc.

"' We take I of this form merely for convenience.
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TABLE 1
N —
1 1
Aél) (4 > 2) m
11 11
(1) i—lo
B0 (2 > 3) 0—0—0—. . .-0=30
122 2 2
cél) (2 > 2) 0=0—... —0%0
12 21
1 1
Dél)(ﬂ, > 4) O—E—O~~E—o
- 122 2 1
c ) 0-0=30
123
(1)
0—0—0—0—0
Fy

0
(1) |2
E 0—0—0—0—0—0—0
1234321
03
") 0—0—0—0—0—0—-0—0
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TABLE II

) 2 2 2 1
Ayl (2 >2) 0&=0—. .. —0&=0
1
(2) 7
a0l 023 0—0—0 0¢=0
1 2 2 2 1
D20 (4 > 2)  Ge=0— ... —0=30
1 1 11
(2) .
ES 0—0—0&=0—0
l1 2 3 2 1
TABLE 111
5 (3) PV
4
1 2 1

Then the center of g(4) is one-dimensional and is spanned by the
canonical central element

— vV
c:=> ah.
iel

Since a,(c) =0 for all i € I, ¢ is fixed under the action of the Weyl group W.
Fix an element d of b such that:

a(d)=0 for i=1,.,1 a,d)=1.
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Then g(4) =g'(4) + Cd. The elements h,,..., h;,d form a C-basis of §. For
i € 1, define A4; € h* by

Ai(hj) = 5ij§ 4,(d)=0.

The elements Ay,..., A, are called fundamental weights. Note that A,(c)=a;
and that {a,,..., a;, 4,4} is a basis of h*.
We define a bilinear form (, ) on h* by

(ai’aj)zai_laivaij (i,jE]),
Ay, a;)= (0;,,45)=0 for i+#0,
Ay, ap)= (ag,dg)=ag", (A4, 44)=0.

It is easy to see that this form is symmetric, non-degenerate, and W-invariant
(so that, in particular, 4 is symmetrizable). Hence, it induces a bilinear form
on b, which we extend to a standard form (, ) on the whole Lie algebra g(4)
(see Section 1.1{G)). The form (,) on g defined above is called the
normalized standard form.

Introduce the following two important elements of b*:

As |ay|* = 2a; !, we have
6" = 2a,,
6—0=ay.

Identifying §* with § via the normalized standard form, we obtain

d=c¢; Ag=ay'd; aa;=ala; for i€

Hence (4, Q) =0 and ¢ is fixed by W.

Denote by h* the linear span over C of a,..,a,. Then h* is the
orthogonal direct sum of h* and the two-dimensional space Cd + CA,. One
knows that the restriction of (,) to b¥:=Y! | Ra, (resp. Y!_, Ra,) is
positive-definite (resp. positive-semidefinite with kernel RJ). Furthermore,
one has

(Ag, 45) = (5,0) =05 (Ay,0)=1.

For 1 € bh*, denote by 1 the orthogonal projection of 4 on h*. Then, if
A € b* is such that A(c)# O, one has the following useful formula:

A= 1= Me) A+ Q)" (AP 1[0 (1.5)
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Weput Q= {@|a € Q), 0V = {d|a € Q"}". Note that:
0'cQifk=1;,0cQ"ifk+1

1.4. An Explicit Description of the Root System of an Affine Lie Algebra

Set 4=ANBH*. Then 4 is isomorphic to the root system of the finite-
dimensional complex simple Lie algebra d:=b+ Y .x4g,, with Dynkin
diagram that of g(4) with the vertex O omitted. Thus IT := {a,,..., a,} is a set
of simple roots of 4, and 4 + :=AM4, is the corresponding set of positive
roots. Denote by 4’ and 4° the sets of long and of short roots of 4.

We shall reconstruct 4, 4™, 4, 4, II, 6, etc., from 4, 8, k, a,. The
proof can be easily adduced from the explicit construction of affine Lie
algebras in Section 1.7.

It is known that

A™={nd|n€Z, n+0},

and that the multiplicity of an imaginary root nd is / except in the following
cases:

TABLE M
Typexd  Af, DR ED P
n odd odd odd #0 mod 3
mult nd I—1 1 2 1

Note that mult nd =/ if k divides a,n, and mult #é = |IT N 4°| otherwise.
Furthermore:
A ={a+nd|acd} when k=1,
A% ={a+nd|a €A} Ula+nkd|a€ A’y  when ayk=2 or 3,
A ={a+nd|a €A} U{a+2nd|laE A"}
U@+ @2n—1)8)|a€d'y  when ak=4.
Here n ranges over Z.
The set 4, of positive roots consists of those roots given above for which
n>0,and of 4.

Note that § is the highest root of A, when agk =1 or 4, and is the highest
short root of 4, when a,k =2 or 3. We have

H={ay=ay'(0—0),a,..aq,.

* For typographical reasons, 0V has sometimes been rendered in the text as ?’, F as g’,
etc.
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Warning. 4 is the orthogonal projection of 4™ on b* in all cases except
for A§P, when the projection of 4™ on h* is a non-reduced root system and
A is the associated reduced root system.

1.5. The Adjacent Root System

The facts presented in this section are easily deduced from Section 1.4.

We associate to the root system A the adjacent root system A’, with
multiplicities mult’, etc., as follows. If g,k=1 or 4, then A4’ =4,
mult = mult’, etc. Otherwise,

A4'"™ = (k" 'nd{n€ Z,n+0}

mult k6 if n=0 (mod k)
muit k6 — mult 6 if n#0 (mod k),

A= la+nd|a€EASNE L)
Uik~ a+nd)|lacd,neZ}
={2aa) (a+nd)|a€EAneEl};

A ::A/im UA/re;

A, =4'"0k7'Q, .
Set k' =a, 'k, so that k' =1 if a,k =1 or 4 and k' = k otherwise.
Then 4’ is isomorphic to the root system associated to some affine Cartan

matrix A’; furthermore, g(4) and g(4’) are isomorphic unless g(4) is of type

A, or D, when g(4’) is of type D¥, or A%} |, respectively. More

precisely, there exists a linear isomorphism @ from h* onto the dual of the
Cartan subalgebra of g{4’) such that for all ¢ €b* we have:
dim g(4')g =mult' @ if a#0; @(a)>0 if a€d; |P(a)’=k'|a|’
@(a)= (). Using @, we have notions IT', 8, 6, Q', W', T'; Q', 4", 4, ;
ay, Ag; ete.

Denote by & (resp. §") the highest root of A, (resp. 4",). Then:

10)? = 2k; 0 =6; k' =4 ke =6,
a,ab=90'—46'; Ay=A4; Q':Q—-{-Q—V.
Moreover, the dual Coxeter number of g(4’) is g (cf. (4.6.1)).

Fore € Ar_re’ piav= 2a/|a|2' Put Q’v= Zaen’ Zav’ QIV: {dlf‘ € Q_, v}‘
Then Q'V=0NQ".If k' # 1, we have: Q' = Q¥+ 26", Q'V=0Q, 4", =47 .
Warning. The Dynkin diagram of g(4’) is found in Table &, not in Table
k'.
1.6. The Weyl Group of an Affine Lie Algebra and the Lattice M

Let W be the Weyl group of the affine Lie algebra g(4). Recall that W is
generated by the fundamental reflections ry, r,,..., r; (cf. Section 1.1(E)). Let

mult’ k= 'nd =
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W be the subgroup of W generated by r,,..., r,; this is the Weyl group of the
finite root system A.

Denote by M the Z-span of the set W(8") and by M’ the Z-span of the set
W(8"). Then it is easy to see that

M >D>M>k'M'.

Wehave M=0NQY(=0"ifk=1land=Qifk# 1)and M' =Q"=
Za;. Moreover,

M+76=Q'Vand M +756=0Q".

For t€C set hF¥={l€bh*|(Ad)=t}, bfr=bFMNb}k Note that
#=3"!_,Ca,. Since the bilinear form (, ) is W-invariant and J is fixed by
W, the affine hyperplanes b are W-invariant.

Consider the affine space h* mod CJd. Since the action of W on b is
faithful by Lemma 1.2, its action on h*/Cd ~ (hF)* and thus on b} mod Cé
is also faithful. The latter action has the following simple geometrical
meaning. We identify ¥ mod Cé with h* by projection, thus obtaining an
isomorphism from W onto a group W,; of affine transformations of h*. We
denote this isomorphism by af: W — W, so that

w(A) =af(w)A)  for A€ b}

The group W, is called the gffine Weyl group.
For w € W, we have: af(w) = w. Furthermore:

af(r, JA) =re(A) + 6" for A€ h*,

so that af(r,) is a reflection in the hyperplane =1, ie, in
(A eb*|(4,6)=1)

Since r,€ W, the group W is generated by W and the element
tev =T, re. We have af(t,v)(A) =4+ 6" for A€ b*. For a = w(8"), where
weE W, set 1, :=wtgvw™', so that af(t,)()=4+ a. Denote by T the
subgroup of W generated by {t,,v,|w € W}

Then Tz af(T) is an abelian normal subgroup of W, and we have the
semidirect product decomposition:

W=WNxT.

Since M is the Z-span of W(#"), we have an isomorphism a - ¢, of M
onto T defined by: af(¢,)(A) =4 + a.

Since (, ) is W-invariant, we have |¢,(4)]> = |A|* for all A € h*. From this
we deduce the following formula, which is crucial in our considerations:

t,(A=21+ @ &a— (A, 8 +(a,4))0 for A€bp* (1.6)
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We extend the definition of ¢, to arbitrary a € h* by (1.6). Then one easily
checks that ¢, is linear and preserves (, ), f,,5=",13, and wiow ' =1t,.,
for w € W.

It is sometimes convenient to use an equivalent formula for ¢,, derived
using (1.5), which holds for A € h* such that m :=A(c) # 0:

- Lars+a _Ly 2
ta(/l)—m/lo+2m |12+ (A + ma) 2m|,l+moz| 0. (L.7)

Another useful pair of formulas, not depending on the normalization of the
form, is

16]° 7 oo
A 0) =4k + (1O A=Y afi(hy). (1.8)

i=0

For the adjacent root system, we similarly define W’ and the decom-
position W’ = W X T'. We note that W and W’ differ only in their trans-
lation subgroups T and T’, and that T’ consists of the translations 7,
aEM.

Recall Section 1.1(H). We describe explicitly the Tits cone X and the
domain Y.

ProposiTioN 1.9. (a) X={h € by|d(h) > 0} U Rc;
= {h € b|Red(h) > 0}.

(b) Ifhe€ C(=lhe€bg|ah)>0 for all i€ I}), then W, is generated
by the fundamental reflections contained in it. If h € X, then W(h) N C has
exactly one element. If h€ Y, then W, is finite.

Proof. (a) follows from Proposition 1.3(d) and the description of affine
root systems in Section 1.4. (b) is a particular case of Proposition 1.3(a),

(b). () 1

Consider the (surjective) projection map m: bhfg— b%, and put
Cu=1AEDBE| (A, a) >0 for 1 i/, and (4, 8) < 1}. Then, identifying h*
with b using (,), we have 77'(C,) = C N b¥;. Since af(w)omr=mo w for
all w € W, we deduce from Proposition 1.9 that Caf is a fundamental domain
for W,;= af(W) on bh%; more precisely, using W = W X T we obtain:

PROPOSITION 1.10 (a) Any point of b is W-equivalent mod M to a
unique point of C,;.
(b) The stabilizer of any point of C,, under the action of W on b¥/M
is generated by its intersection with {re,r, ,....r,}

s Mg,
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Remark. The volume of the simplex C,¢ is (/! vol(QY) [Tic;a?)~ ", and
the volume of a fundamental domain for af(T) on b is vol(M). Since C, is a
fundamental domain for af(W¥) on b#, a comparison yields

|W|=|W/T|=111P/M|]] a;.

iel
1.7. Realizations of Affine Lie Aigebras

(A) Let p be a complex reductive Lie algebra, i.e., a direct sum of a
semisimple and an abelian Lie algebra. Consider the “loop algebra”

ﬁ = C[ts t_l] ®Cp9
a complex Lie algebra with bracket |, | _ given by
[("®at"®b] =t"""® |a,b].

Let B be a non-degenerate p-invariant symmetric bilinear form on p, and
extend B to such a form on p by

B(t"®a, t"® b)=94,. _,B(a,b).
We define a Lie algebra
Pp=P B Ccy @ Cd,

by the following commutation relations:

. dx
[pB’CO]_O’ [doax]—tW9

% 2] = [%y] . + B([do, x],y) co

for x,y€p. Then B extends from P to a P,-invariant non-degenerate
symmetric bilinear form on p, by

B(x,c,)=B(x,d,)=0 for x€Bp,
B(cy, cy) =0 =B(d,,d,), B(c,,dy) = 1.

Let ¢ be a finite-order automorphism of p preserving B. Fix a positive
integer N such that ¢” =1 and set ¢ = exp(27i/N). Let p= (D, p, be the
corresponding Z/NZ-gradation, where p, = {x € p| g(x) = &°x}. We extend ¢
to an automorphism of p,, preserving B and the subspace p, by

ey ¢y, dy— dg,

t"®ar (e7')" ®o(a)
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Let pg(o, N) and P(o, N) denote the subalgebras of P, and P, respectively,
fixed by this automorphism. Then: P(O,N)= @D ;2 ® Psmodns
ps(0, N) =p(0,N) ® Cc,® Cd,; B restricts to a non-degenerate form on
Py(o, N) and on p(g, N).

(B) Now we explain how the construction above gives explicit
realizations of all affine Lie algebras (see [14, 17} or the book [50] for
details). In the construction above, let p be a simple Lie algebra of type X,
and let o be a finite-order automorphism of p. Let b be a Cartan subalgebra
of the fixed point set p” of . Then the centralizer b, of hJ in p is a Cartan
subalgebra of p. Put

l,=dimb,, h,=—1+1[,"dimp.

Fix a set of positive roots of p with respect to b, let p, be half their sum and
let 6, be the highest root. We normalize the invariant form B by

B(8,,6,) =2 and set
g,= 1+ B(p,, 6,).

Let k be the least positive integer such that ¢* is an inner automorphism of p
(k=1,2 or 3). Then we have:

PROPOSITION 1.11. Let A be the affine matrix of type X\. Then

(a) There exists an isomorphism F: g{A) ~ 9 (0, N) such that:
(i) F(c) = Nc,, F(b)y =87 + Ce, + Cd,,
[dy, Fle;)] = s;F(ey), [do, F(f)) = —s:F(/3)

Jfor some non-negative integers s;, 0 < i< [, satisfying the relation

!
kN a;s;=N.

=

o

(ii) k(h,h')=B(F(h), F(h')) for h,h’ € g(4).

(b) Define yE b* by
a)=ks;/N, 1<i<L

Then F(t(d)) = N~ 'ka,d,, where tis defined by (1.6) and F is as in (a).

(c) Let h and g be the Coxeter number and the dual Coxeter number,
respectively, of 9(A). Then: g, =g; hl,=khl; hy=h if k=1, and h,=g if
k+1.
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(d) Letp' =3 ez, o Then (k/2g)|5'|* = (1/24) dim p.
() Letp=133 qex, o Then

(Gg(h, + 1) 15 = (6 + DI~ 1,).

Moreover, the following “very strange” formula holds:

N-1

1 ! . -
|P gy|2= dlmp INT > i(N—i) dim p,.
i=1

Proof. The “very strange” formula of (e) is just Proposition 4.12 (by the
existence of F below). In a different form, it is proved in [17] for “rational”
g; the same proof, using Lemma 3.20, applies to any 0. We give a simpler
proof in Section 4.3. The rest of (c¢), (d) and (e) may be checked case-by-case
or deduced from the “very strange” formula. We omit this here.

We now proceed to construct F. For x € g’(4), write ¥ for x + Cc €
9'(4)/Cc. In [15], an isomorphism F from g’(4)/Cc onto p(g,N) is
constructed, such that F(k;) € b3 for all i € I and such that for some non-
negative integers s;, i € I, with k };, a;s; = N, we have [d,, F(e)] =s,F(e)
and [dy, F(f})] = —s,F(f).

By formula (4.12.2) in Section IV (which is a consequence of (e)), we
have

Y a(h) =2kg|h|’

acAremodkZs

for all h € hy:=> ;c; Ch;. On the other hand, it is well-known that
tr(ad, k)’ = 2g,B(h, h)
for all 4 € p. Since g = g, by (c), a comparison shows that

B(F(h), F(h')) = k(h, h')
for all A, k' € b,.

Let m:g'(4)— 9’(4)/Cc be the canonical map and let y be as in (b).
Define a linear map F: g(4)— P,(0, N) by requiring that F coincides with
Fomonn, and on n_, that F(t(d)) = N~'ka,d,, and that F(h,) = F(h,) +
3ks;|h;|* ¢, for i €L Using the definition of g(4) by generators and
relations, it is easy to see that F is a homomorphism. Since F(c) = Nc, by an

easy computation, F is an isomorphism, and it is easy to check that (a) and
(b) hold. 1

Remark. 1t is not difficult to show that the Coxeter number of 4’ is
(14 k' ~")h, — h. This forces g € k'Z, and hence gQ" — Q. Applied to 4,
this gives 10 = Q.
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1.8. Appendix 1: On Asymptotics of Root Multiplicities

Here we prove the following:

ProPOSITION 1.12. Let g(A) be a Kac-Moody algebra with a
symmetrizable Cartan matrix A, let (,) be a standard form on b*, and let
a=>,ka, be a positive imaginary root of go(4). Set y(a)=
lim sup,_,, ,, n~ "' log mult(na). Then:

(@) w(a)=lim, ,  n~' log mult(na); y(a)=sup,s,n ' log mult(na)
if (a,a) < 0.

b)) w@)=0 if (a,a)=0, and .48 <w(a)<ht(a) loght(a) —
3 k; log k; if (a, @) < O (here O log O is interpreted as 0).

(€) w(na)=ny(a) for n>0; y(w(a)) =y(a) for we W.

@) vie+B)>v@) +vPB) ifapfat+BEAT

LEmMMA 1.13. Let L be a free abelian group on generators f,,...,f,, let

v =24Z B and let J=J, U .- UJ, be a disjoint union of non-empty
finite sets. Let a =P, a, be a free Lie algebra on generators e; (j € J)
graded by dege;=p, for jEJ;. For a=) " k,f; €L, set k=3 k; and

wola) =k log k — 2 k; log(k;/|J;])-

Then one has for all « € L \{0}

lim n~" log(1l + dim a,,,) = wy(a).

n-—-0

Proof. Since the universal enveloping algebra of a is the free associative
algebra on the ¢;, we have

—1
[1a e sme=(1-3 yet) .

Take the logarithm of both sides and match the coefficients of e, obtaining

T8

n~!dima,, Hk' HUI"’

1

Stirling’s formula completes the proof. [

At this point, we need the construction of the Lie algebra g’(4) associated
to a (possibly infinite) symmetric matrix 4 = (a;;); ;; over C (see [14, 20]
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or the book [50] for details). Let §(4) be the Lie algebra with generators ¢;,
fi» h; (i €1) and the following defining relations (i,j € I):
le;, [;] =0, [h,.,e.]=a e

[hi’f}] = _aijf;'s [ i 1] =

Let Q be a free abelian group on an indexed set IT = {a;};.,. Setting
deg e, = —deg f; = a; (i € I) defines a Q-gradation §(4)=®,§,. Let r be
the sum of all graded ideals of §(4) intersecting g, trivially. We set

8'(4)=8§(4)/t.

We have the induced Q-gradation g’(4)=@®,9,. Put 0, =3",., 7,0, Q;
for a € Q,\{0}, we write a > 0. Setting n, = @ ,, 8., defines the decom-
position g’(4)=n_® g, P n, (direct sum of vector spaces). The center of
8'(A4) lies in g,.

Now let g(4) be a Kat-Moody algebra with a symmetrizable Cartan
matrix, (, ) a standard form on g(4).

Lemma 1.14. Let L <4 satisfy

(i} e,f€L=(a,pf)<0,
(“) a’ﬂEL’a_BEA+3a—ﬁEL.
Let n} (resp. n[) be the subalgebra of o(4) generated by @, 8, (resp.

@, 8_,) Then n; is a free Lie algebra on a basis of the space n/ M
[ng,ngn

Proof. We may assume that L is finite. By induction on |L| we prove
simultaneously using |20, Corollary 1] that:

(@) For each a€L, there exist bases If={x{", .., x{%)} of
8..M [n],nf]* which are dual under (, ).

(b) Put I*= UQEL . Then I* generates nf. Moreover, we have:
[xfz‘)+ ’ x{{’ ]= 5aB i ®

(c) Put B= (b,.j),.,jE”, where b,;=(a,f) if i€1}, jEI;. Then
9, =1, @Y ,cr Ca®n; is isomorphic in the obvious way to a quotient of
g’'(B) by a central ideal.

(d) n; and n; are non-degenerately paired by (, ).

(¢) The statement of the lemma. 1

We recall some useful notions. For a=) k;a;€EQ, put suppa=
{i € Ik, +# 0}. We say that a subset J of I is connected if, whenever J is the
disjoint union of J, and J,, and a; =0 for all i€ J, and j € J,, then J, =@
or J,=@. It is easy to see that if @ € 4, then supp a is connected.
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LEMMA 1.15. If a € AP is non-isotropic and a(h;) <0 for all i € I, and
if BE A, is such that a > f, then mult o > mult §.

Proof. Using the argument of [19, Lemma 1.6], one shows that f =« or
else fB(h;) <O for some i € supp(e —f). In the second case, f+a, €4,
a>f+a, and mult(f + a;) > mult(f). The result follows by downward
induction on ht(8). 1

LEmMmA 1.16. If a,f, a + B € A™ and (B, ) <O, then (a,f) <O.

Proof. By Proposition 2.4(b), we may assume that f(h,) <0 (i € ), so
that (a, §) < 0. Suppose that (a, ) = 0. Since supp(a + §) is connected, we
deduce that supp(a) = supp(f). Choose w € W such that w(a)(h;,) <0 (i€ ).
Then as above, supp w(f)  supp w(a), so by Proposition 1.3(c) applied to
4Y, we obtain

supp f < supp w(f) < supp w(a) < supp a.

Hence supp(8) = supp(a), and since also (@, ) =0 and f(h,) <0 (i€ 1), we
have (8, ) =0, a contradiction. 1

Proof of Proposition 1.12. If (a,a)=0, then 1 multja<|I| for
j=1,2,.. (see Section 1.1(G)), so that (a) and (b) are clear. We now check
(a) and (b) for (@, a) < 0. For a positive integer m, let L = {ma}. Then using
Lemmas 1.13 and 1.14 we have

lim inf((mj)~"' log mult(mja)) > m~" log mult(ma).  (1.12.1)
J=+ o

But by Lemma 1.15,
mult((j + 1)a) > mult(ja) > 1 for j> 1
It is easy to dlduce from this that

lim inf(mj)~" log mult(mja) = lim inf j~' log mult(ja).
Jo+ oo J=+ 0

From this and (1.12.1) we deduce (a).

Since mult ¢ > 1 and mult 2¢ > 1, a computation using Lemmas 1.13 and
1.14 gives y(a) > .48. The rest of (b) follows from Lemma 1.13.

(c) is clear from (a).

Let a and g be as in (d). If a or f is isotropic, (d) follows from (b) and
Lemma 1.15. If a and § are proportional, (d) follows from (c). Otherwise, by
Lemma 1.16, Lemma 1.14 applies to L := {mht(f)a, m ht(a)f} for each
positive integer m. Apply Lemma 1.13 to n;/, with g, = mht(f)a,
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B, =mht(a), |J,|=mult §,, |J,j=mult B,, k, =hta, k,=ht B, y=k,, +
k,B, = m(ht a)(ht f)(a + B). Then we obtain

mht a)(ht B) (e + ) = w(y) 2 wo(y)
=ht(a + ) log ht(a + ) — (ht a) log ht a
— (ht8) loght 8
+ (ht @) log mult(m ht(f)a)
+ (ht 8) log mult(m ht(a)B).
We divide both sides by m(ht a)(ht ) and let m — o, obta‘ining @. B

Remarks. (a) If 4 is indecomposable, it follows from Proposition 1.12
that w extends uniquely to a concave function on the interior of the
imaginary cone Z such that y(ta) = tyw(a) for ¢t > 0.

(b) For a free Lie algebra a on N generators e,,...,e, of linearly
independent degrees a,...., oy, and a =)_; k;a; with all k; > 0, we have

dim a,, ~ C{a)n~W+D/2gmee@ a5 - oo,

where C(a)= (2r)" ™2 (3, k;)""*T];k7"> This and other evidence
suggests the following conjecture:

Under the hypotheses of Proposition 1.12, provided that 4 is indecom-
posable and a lies in the interior of the imaginary cone Z, there exists
C(a) > 0 such that

mult(na) ~ C(a) n =M1+ 2ere@ a5 p s o0,

II. HiIGHEST WEIGHT REPRESENTATIONS

In Section II we describe the structure of the weight system of an
irreducible highest weight representation with dominant integral highest
weight of an affine Lie algebra and present the character formula obtained in
[16]. Then we use the decomposition of the Weyl group to express the
character of such a representation as a finite sum of classical theta functions
with coefficients called string functions [18, 22]. This gives us the theta
function identity (2.18), which is the basic fact for the theory of string
functions which we develop in Section IV.

2.1. Basic Facts about Irreducible Highest Weight Modules over Kac-
Moody Algebras

(A) Let g=g(4) be a Kaci-Moody algebra. Recall the decomposition

607/53/2-3
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g=n_>@b®n, (Section 1.1(C)). Then for any A € h*, there exists an
irreducible g(4)-module L(A), unique up to isomorphism, satisfying:

There exists a non-zero vector v, € L(4) such that
n,(v,)=0 and h(v,)=A(h)v, for all hE Y. (L1)

L(A) is called the irreducible highest weight module with highest weight A
[16].

We shall sometimes describe A by its labels A(h;), i € I. If A, A’ have the
same labels, they may differ only off }'; Ch;; however, then L(A) and L(A")
are isomorphic as (irreducible) g’(4 )-modules, and the actions of elements of
g(4) on them differ only by scalar operators. Note that

dimL{A4)=1 if and only if A(h))=0foralli€l
One has the weight space decomposition of L(A) with respect to b:
LA)= @ L(A);,

Aebp*
where L(A), = {v € L(A)| h(v) = A(h)v for all & € b}.
(B) Consider the formal expansion

[T a—e)y™e="3 K@e? @1)

a€el Bey
defining a function K on b* called the partition function. As (1 —e~*)"' =
l+e®+e 24 ...,K(f) is the number of partitions of § into a sum of
positive roots, where each root is counted with its multiplicity. Since v, is a
cyclic vector for the n_-module L(A) (i.e., no proper n_-submodule of L(A)
contains v,), we find that

dim L(A), < K(4 - 1) for AEbh*. (2.2)

In particular, L(A), =Cv, and dim L(4), is finite for all A€ b*. If
L(A), #0, then A is called a weight of L(A) of multiplicity dim L(A),; we
write mult ,(4) := dim L(A),. We denote by P(A) the set of weights of L(A).
It follows from the irreducibility of L(A) that if A€ P(A)\{4}, then
e, (L(A);)+# 0 for some i €1 and hence 4 + a; € P(A) for some { € I.

As v, is a cyclic vector for the n_-module L(A4), we have

PA)cA—Q,.

(C) For A € b*, define a function e* on b by e*(h) = ¢***. We define the
character ch; 4, of L(A) to be the function

ki chy g,y (h) = Y mult,(A) e*™
Aeb
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defined on the set, which we denote by Y,, of all 2 € b such that the series
converges absolutely.

LEMMA 2.3. Let A € b*. Then:

(a) Y, is convex and contains the set of all h €Y satisfying the
Sfollowing two conditions:
(i) Rea;(h)>0forallicl,
(i) Ygea, (multa)|e | < co.
(b) Y,o{h€b|Reayh)>log|l| foralli€l}.
(c) If ¢ is an affine Lie algebra, then

Y,o{hEBh|Reayh) >0 for allic€l}.

Proof. The convexity is clear from the convexity of |e*|. From (2.2) we
obtain, for h €Y,

S mult,\(l)|e’”")l<|e’“")| 2 K(ﬂ)|e_mh)|-
Aebh* BeQ .

But (2.1) implies, for A satisfying (i):
2 K(ﬂ) Ie—B(h)l = I—[ (1 _ 'e—a(h)')——multa.

BeQ, a€d

This product converges if & satisfies (ii), which proves (a). (b) follows from
(a) by the easy estimate mult @ < |I|"“. Finally, (c) follows from (a) since
for an affine Lie algebra root multiplicities are bounded by |7|. |

We remark that using the convexity of [e?|, the absolute convergence is
uniform on compact subsets of the interior of Y,, and hence ch,,, is
holomorphic on the interior of Y.

(D) We call A € b* an integral weight if A(h,) is integral for all i € I; an
integral weight A is called dominant if A(h;) >0 for all i € 1, and regular
dominant if A(h;) > O for all i € I. Let P (respectively, P,, P, ) be the sets
of integral (respectively, dominant integral, regular dominant integral)
weights. Note that P > Q and that any coset of P mod Q is W-invariant. Fix
p € b* such that p(h;)=1 for all i€ Note that P, , =p+ P_.

PrROPOSITION 2.4. Let AE P, and let A, u € P(A) be weights of the
8(4)-module L(A).
(a) Let a€d™. If A(a¥) <0, then for any non-zero x € g,, the map
—Ae¥) 1(4), - L(A), ) is an isomorphism.
(b) Let w€& W. Then there exist w € Aut g and wE€ GL(L(A)) such
that Ww(h) =, Wiy =w, and W(x(v)) = W(x)(W(v)) for all x € g and v € L(A);

X
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in particular, W(8,) = 8, Jor all a €H*, and W(L(A),) = L(A),,. We

may take ¥, (resp. ¥;) to be (expe;) (exp —f;) (expe;), regarded as an

operator on g (resp. L(A)). Moreover, A" = —W(P ) and P(A) < W(P ).
(c) 4 lies in the convex hull of W(A).

(d) Suppose that A is symmetrizable and (,) is a standard form on
8(4). Then:

1) (4, u) < |42, with equality if and only if A=pu € W(A).
(i) |A+p* <4 +p|?, with equality if and only if A =A.

(e) The set of asymptotic rays for the set —P(A) is contained in the
imaginary cone Z.

Proof. The proof of (a)-(d) requires some minor modifications of that
for the classical finite-dimensional case. For (a) and (b) see [14] or the book
[50].

(c) is proved by induction on ht(4 —1). If A =4, there is nothing to
prove. If A # A, choose i € I such that 4 + a; € P(4), and let u € P(A) be
such that g =4 + sa;, s > 1, u + a; € P(A). Then 4 (and hence also r,(u)) lies
in the convex hull of W(A) by the inductive assumption. But 4 lies in the
interval [, r(z)] and hence 4 also lies in the convex hull of W(A).

Since both P(A) and (,) are W-invariant, we can assume by (b) that
A€ P, in the proof of d(i). But f:=A4—-A€Q, and B, ;=4 ~u€Q,, so:
A, Ay — (A u)=(B, A4)+ (f,,4) >0. If we have equality, then (4,f)=
(4, 8,)=0.But A€P, , Q. ,(4,8)=0and A —F€E P(A) imply f=0.
Hence, A = 4 and so (4, §,) = 0. By the same argument, 8, = 0, proving d(i).
For d(ii), we have

(A +pA+p)=A2)+2(4p)+ (p.p)
<A, 4)+ 204, p) + (P, p)
= +p,A+p) -2, p) <A +p, 4+ p),

and the equality holds only if §=0.
Since P(A) = (), ew W4 — @), (¢) follows from Proposition 1.3(f). &

Now we can prove an important result about the region of convergence of
chypay-

PROPOSITION 2.5. Let A€ P, and let Y, be the region of absolute
convergence of ch,,,. Then:
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(a) Y, is a convex W-invariant set, which for any y € Y contains ty
for sufficiently large tE R .

(b) Y 2V :=Interior{h€YH|Y ,ca, (multa)|e™*™|< w0}
(c) If g is an affine Lie algebra and dim L(A) # 1, then

Y, = Y(={h € b|Re 6(h) > O}).

Proof. First, we prove (b). Set C'={h€ h|Rea,(h)> 0 for all i€}
Then by Lemma 2.3(a), Y’ N C’' < Y,. It is clear that Y’ is convex and W-
invariant. It follows from Lemma 2.3(a) and Proposition 2.4(b) that the
same is true for Y,. Hence it remains only to show that the convex hull of
W(Y' N C') contains Y’. Indeed, obviously, ¥’ — Y. Since the union of the
“walls,” say R := {h € h|Re a(h) =0 for some a € 4™}, is nowhere dense in
b, and since Y’ is open, Y’ is contained in the convex hull of Y’\R =
W(Y' N C’). This proves (b).

Consider Y":={y€ Y|ty € Y, for sufficiently large t€ R }. Y" is W-
invariant and convex; it contains C’ by Lemma 2.3(b). An argument as in
the proof of (b) gives Y =Y, proving (a).

The inclusion Y, o Y in (c) follows from (b) by the structure of the root
system. The reverse inclusion follows from Proposition 2.11(a) below. [

Remark. Suppose that A is indecomposable and symmetrizable, and
A € P is such that A(h;) # O for some / € I. Then Y, is open and:

Yo=1heb | Y (multa)le*™|< oy,

a€A,

We prove this fact in Appendix 2 (Section 2.4).

(E) Assume that the Cartan matrix A of g is symmetrizable. Then one
knows the following character and denominator formulas [16]:

( D (det w) ew“”> chypy= > (det w)e*+?), (2.6)
wew weW
N o (detw)e?®@ =e° [] (1 —e )mite, (2.7)
wew a€l

Recall also the following multiplicity formula, which is a formal conse-
quence of the latter two formulas [16]:

mult,(A)= Y (det w) K(w(4 + p) — (A + p)). 2.8)

wew
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Remark. Formula (2.6) implies the following “star” formula (which
enables one to compute the multiplicities of weights inductively):

N (detwymult, (A +p—w(p))=0  if A€PUAN\{4}.
weWw
Indeed, we equate the coefficients of e *° and use the fact that w(d + p) #
A+ p for wE€ W, since (4 —w(d))+ (p —w(p)) >0, and p=w(p)=>w=1.
(F) We recall (in a modified version) a generalization of the Weyl
complete reducibility theorem to the case of Kat-Moody algebras [17,
Proposition 2.8].

PROPOSITION 2.9. Let ¢’ be the derived algebra of a Kac—Moody
algebra g with symmetrizable Cartan matrix. Let V be a g'-module
satisfying:

(i) Ifv €V, then n* (v)= (0) for some k > 0.
(i) Ifv€Vandi€l, then fX(v) =0 for some k > 0.

Then V is isomorphic, as a §'-module, to a direct sum of irreducible g’-
modules L(A) with dominant integral highest weights A.

Proof. is a corrected and modified version of that in [17]. Recall the
algebra gradation U(g’') = ®;co U(9')s, with e; € U(g’),, and f; € U(g')_,,
Since [ is finite, (i) implies:

If veV, then Un,)zv=(0) for all but a finite
number of € Q, . (2.9.1)

For A€b’*, put V,={v € Vih(v)=A(h) for all hEY'}. For i€, ¢,
and f; act locally-nilpotently on ¥ by (i) and (ii), so that
dim U(Cf; + Ch; + Ce;)v < oo for all v € ¥ by Lemma 2.9.14 below. Since [
is finite and Cf; + Ch; + Ce; = s,(C), a standard argument proves:

V= @ V,. (2.9.2)
Aep*
If A€b’*, vEV,, v+£0 and i€, then A(h,)E Z, and
moreover, e; **?(v) # 0 if A(h;) < 0. (2.9.3)

Our objective is to prove (2.9.13) below. Let (, ) be a standard form on g,
and let v: h—>bh* be the vector space isomorphism induced by (,). For
BE Q and A€ b'*, put f= |, and F(B,4) =A(v~'(8)) + 3B + 2p)(» ™' (B))-
Put V" = {v € V|n, (v) = (0)}. We will need:

Ifiey'* veV,,icland ev)+0, then e/(v)#0
and F(na;, A) > O for some positive integer n. 2.9.4)
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If e @ \{0}, A€b'*, V,NV™+#(0) and V,_zN
Ve £ (0), then F(—f,1) < 0. (2.9.5)
The statement (2.9.4) follows from (2.9.3) by taking n =1 if A(#;) > 0 and
n=—A(h;) if A(h;) < 0. If 1 and § are as in (2.9.5), then A(v~'(8)) >0 and
(A=B)(v~'(8)) >0 by (2.9.3), and p(» "'(8)) > O since § € Q. \{0}, proving
(2.9.5). We now deduce:

If A€y'*, vEV, and v & V"™, then there exists
B € Q such that U(g’),v N V" + (0) and F(B, 1) # 0. (2.9.6)

If Be€Q,\{0}, Aep'*, veEV,NV+ and
Un_)_zv N V"t # (0), then F(—f,1)#0. (2.9.7)

By (2.9.1), the statement (2.9.6) follows by repeated application of (2.9.4),
using the identity F(8,4) + F(6’,A + B) = F(8 + ', ). The statement (2.9.7)
is immediate from (2.9.5).

For a €4, choose bases {e’} of g, and {e } of g_,, dual under (,).

Following [16], we define the “partial Casimir operator” 2, on V by
Q4w)= Y Y e (el )
aed, i

R, is well-defined by (2.9.1), and clearly commutes with §’ on V. For a € C,
put

Vi={v€ V|(R,—al,)v=0 for some k > 0}.

We have, since V is U(g')yfinite by (2.9.1) and (2.9.2), and C is
algebraically closed:

V=(® V%  Q,andb’ commute on V. (2.9.8)

aeC

We will need:

If ¥’ is a g’-submodule of V, v € ¥V and n,(v) < V7,

then v € V' + V°. (2.9.9)
IfB€EQ, A€ * and a € C, then U(g’),(V, NV <
ViegM Vet (2.9.10)

Indeed, let V' and v be as in (2.9.9), and suppose v & V'. By (2.9.8),
choose a non-zero polynomial p such that p(2,)v=0. Since 2,(v)€
U@')n,(v)c V' and hence Qyv)€e V' for r=1,2,.., v& V' forces
p(0)=0. Write p(X)=X"g(X), where r>1 and g(0)+# 0. Then g(0O)v =
(g(0)v — g(2,)()) + q(2,)(v) € V' + V°, proving (2.9.9).
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As in [16, 17], for x =e; or f; we have on V: xQ2, — Q,x = [x,e_, e, | It
is easy to deduce from this that, for § € Q and u € U(g’),, we have on V-

uo — Qou=u(v='(f) + 38+ 20)v " 'BNL)-

Statement (2.9.10) follows.
We can now deduce:

ye=po, (2.9.11)

n_Un_)Wc @ ve (2.9.12)
a+0

V=r=@n_Un_ V™. (2.9.13)

By (2.9.9) for V' = (0), V™ < V. Using this, (2.9.6) and (2.9.10) imply
that V,N¥°<c V™ for all A€h'*. Using (2.9.2) and (2.9.8), (2.9.11)
follows. By (2.9.7), (2.9.10) and (2.9.11), Un_)_z(F™“ N V,) S @, V*
for all € 0,\{0} and 1 € h'*. Using (2.9.2), the statement (2.9.12) follows.
By (2.9.11) and (2.9.12), V™ Mn_Un_)¥™ = (0). Using (2.9.1), (2.9.9)
applied to V' =U(g")V°® gives V=U(g')V’. Hence, by (2.9.11), V=
U W™ =Unm_)YUW® +n )V =Un_)V"=V"™ 4+ n_Un_) V™. This
proves (2.9.13).

Finally, (2.9.13) and Lemma 2.9.16 below show that, if A&p'*,
vEV™NV,,v+£0, and if A € h* satisfies A(h;) = A(h,;), i € I, then U(g' v
is isomorphic to the irreducible g’-module L(A). Hence, by (2.9.2), V is
isomorphic as a g’-module to a direct sum of modules L{A); these A are
dominant integral by (2.9.3). 1

LEMMA 2.9.14. Let a be a Lie algebra over a field F of characteristic 0,
and let V be an a-module. Then the span of {a€a|forallb€aandvEV,
(ad a)* b= 0 and a*(v) =0 for some k > 0} is a subalgebra of «.

Proof. 1If a, b lie in the set in question, then so does (exp (ad ta))(b) for
allteF. 1

LEmmA 2.9.15. Let a= @ ,.;0, be a 7-graded Lie algebra over an
arbitrary field, and put a, = @ -, 9,,. Let Mod} be the category of all o-
modules V. satisfying V=V*®@a U@ V', where V' :=
{veV]a, (v)=(0)}, and all a-module homomorphisms. Let Mod, be the
category of all ay-modules and all ay,-module homomorphisms. Define
functors R: Mod, > Mod, and L: Mod, —Mod; as follows. R(V)=V",
R(Yw)=/S(v). If V is an a,-module, regard V as an (a4 + a . )-module with
trivial o  -action, form the a-module M(V) = U(a) ®y(q,+ o, V> the submodule
IVy={meMWV)| Ul)mca_(M))}, and the quotient module L(V)=
MW/ KV). For m& M(V), write m for m+ I(V)E L(V). Define L(f) by:
L u®v)=u®/f(v). Then:
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(@) t: LR~1and°: I~ RL are natural equivalences, where, for V an
object of Mod} and V° an object of Mod‘1 s tyit LR(V)-"V and 0,
V® —~RL(V®) are defined by t,(u® v) = u(v) and H)=1®v.

(b) @ is the coproduct in Mod} and Mod, , and L and R preserve
coproducts.

(c) If V is an object of Mod [, then V* is an essential o -submodule
of V. If V is an irreducible a-module, then L(V) is an irreducible a-module.

The proof, which is not difficult, is left to the reader. -B

Below, we prove the special case of the lemma which is used in the proof
of Proposition 2.9:

LEMMA 2.9.16. Keep the assumptions and notations of Lemma 2.9.15,
and let V be an a-module satisfying V=V* ®a_U(a_)V*. Then:

(a) V is isomorphic to L(V'*).
(b) V is an irreducible a-module if V* is an irreducible a,-module.

Proof. Since V=U()V'*, we have:
U, oNVt £ (0) if veVandv+£0. (2.9.17)

(b) follows from (2.9.17) and ¥V = U(a)V'*.

To prove (a), let y: M(V*)->V be the surjective a-module
homomorphism defined by w(u ® v)=u(v). We must show that Ker y =
IV*). If vel(V'), then Ula)y(v)=y(U@)®))=wle_(M(V"))=
a_(wMV ) =a_(V), so that (U@)y(@)NV*)<=(a_(V)NV*)=(0).
Hence, by (2.9.17), w(v) =0, proving that I(V¥*) < Ker y. Now let U(a) =
@pez Ua), be the Z-gradation of U(a) induced by a= @,.,q,, and
suppose that v =v, + v, + --- + v, € Ker y, where v, € U(a)_,(1 ® V*). We
have U(a)v,=Ula)vc(1® V*)NKery=(0), and hence U, =
ek U@0g + Tt U@), 0 ca_(M(V*) + 0), so that v, € I(V*).
Hence, by an inductive argument, v € I(V'*), proving (a). §

Remarks. The proof of Proposition 2.9 also shows:
(1) The partial Casimir operator 2, is diagonalizable on V, and its
eigenvalues are positive rational.
(2) With the additional assumption that V is b-diagonalizable,
Proposition 2.9 also holds for g.
(3) Proposition 2.9 holds over any field of characteristic zero.

(4) With the hypotheses (ii), (2.9.1) and (2.9.2), Proposition 2.9 holds
for arbitrary index sets I.
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(5) Let I be a set, A =1(a;); ;; a matrix over a field, g’(4) the
associated Lie algebra (see Section 1.8). Then by Lemma 2.9.16, if V is a
g’ (4)-module satisfying (2.9.2) and (2.9.13), V is isomorphic to a direct sum
of modules L(A). Suppose, moreover, that A is real symmetric. Then the
same conclusion follows from (2.9.1), (2.9.2), (2.9.4) and (2.9.5), where
F(3 k,a;,A) in (2.9.4) and (2.9.5) means

SkiAth) + Y gkiki+ Day + 1 Y kikjay, (2.9.18)

s

i i i#j

Remark. In addition to Proposition 2.4, one has the following
description of P(4) for A € P,. We call A € P A-non-degenerate if either
A=A or else A < 4 and for any connected component S of supp(4 —A4) one
has

SNi{i|Ah)#0} +D.

Then P(A4)= W - {1 € P, |4 is A-non-degenerate}. Furthermore, A € P(1) <
w(d) is A-non-degenerate for all w€ W<« 4 — 1 € Q and 1 € convex hull of
W(A). This is a generalization of Proposition 2.12 (a), (b) below; its proof is
similar to that of Lemma 1.6 from [19]. It follows that Proposition 2.12(c)
holds for arbitrary Ka¢—Moody algebras as well. (See [50] for details.)

(G) Let Q¥ act on b by h;- h=~h + 2nih;. Then we have an action of
W =W Q"onb.

PROPOSITION 2.10. The ch,,,, A € P, separate the orbits of W on
Y i=(Vsep, Y Le, given h W €Y', Wh)=W(h') if and only if
chy sy (B) =chy s (h") for all A€ P,

Proof. Let h, i € Y’ be such that chy 4,(h) = chy4,(h") for all 4 € P,
we have to show that W(h) = W{(h') (the other implication is obvious). First
we show that

chy, sy (nh) =ch 4 (nh')  foral AE€P, and n=1,2,..2.10.1)
For that, set
Fi(h) = ch g 4(R), Gy(h) = chy ,,(kh).

(Here AXL(A) is the kth exterior power of L(A).)
Then it follows from the Newton identities for power sums that

QlF,,.., F,|=Q|G,,..., G,]. (2.10.2)
This implies (2.10.1).
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Since Y’ — Y, we may assume that Re a,(h) > 0 and Re a;(h') > O for all
i € I. Note that 4, := {a € 4| Re a(h) =0} is a finite root system; let Q, be
the lattice spanned by 4,, @y, = Q,M Q.. Then the sum

xa= > mult,(4—a)e ®

a€Qoy

is finite and hence y,(rh) is an almost periodic function of r € R. We have

lim (e~A™ chy ,,(nh) — x,(nh)) =0. (2.10.3)

n—++00
Similarly, for 2’ we define y},, etc., and have

lim (e """ ch, ,,(nh') — x4\(nh'))=0. (2.10.39)
n—+ o
It follows from (2.10.1)—(2.10.3’), and from the fact that y,(nh) and x}(nh’)

are non-zero almost periodic functions, that for all 4 € P, we have:
Re A(h)=Re A(h'). Hence ith—h')€ Y ; Rh;, Qo = 04, , and

W multA(A _ a) eilm(/\—a)(h)
€00
= ¥ mult,(4 —a)emA-Dw, (210.4)

a€Qo,

But (2.10.4) is an equality of irreducible characters at two elements of a
compact group. Now it remains to apply two facts about connected compact
Lie groups: the irreducible characters separate the conjugacy classes, and a
conjugacy class intersects a maximal torus in an orbit of the Weyl group. 1

2.2. Modules L(A) over Affine Lie Algebras

Now let g =g(4) be an affine Lie algebra, L(A4) an irreducible highest
weight g-module.

We recall that the center of g is spanned by ¢ =Y, a/h;, where the a;’
are positive integers. ¢ operates on L(A) by the scalar operator A(c)l. In
particular, A(c) = A(c) for all A € P(A). The number

A(e)= 3 a/A(h)
iel
is called the level of A, or of the module L(A) [22}.
Define p € h* by p(h;)= 1, i €I, and p(d) = 0. The level of p is the dual
Coxeter number g. Note that [p|*=|p|* and f =1, 5, @
Define p’' € h* by (p’,a¥)=1 for all a € IT’, and p’(d) = 0. We shall see
that p’(c)=g.
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Define p¥ € h* by (p*, @)= 1, i € 1, and p*(d) = 0,0 that p"(c) = h. Note
that o’ =gifk’=1,and g’ =p'if k' # 1.

Let A € P_, ie., the labels A(h,),..., A(h;) are non-negative integers. Then
the level of 4 is zero if and only if A(h;) =0 for all i € J, that is, if and only
if L(A) is one-dimensional. From now on, we assume that 4 € P, and that
A has a positive level m.

Proposition 2.4(a) describes the strings P(4) M (4 + Za) for a real root a.
Now we consider the case of an imaginary root a.

ProposITION 2.11. Let A€P,, A(c)>0, and A E P(A); let a be a
positive imaginary root (=sd, s > 0). Then:

(a) The set of all t€Z such that A—ta € P(A) is an interval
[—p, +0), where p >0, and t+— mult, (A — ta) is a non-decreasing function
on this interval.

(b) Ifx€a_,, x+0, then x: L(A) - L(A) is an injection.
Proof. Fix x€gq_,, x+#0, and choose y € g, such that [x,y]=c (cf.

Section 1.1(G) and recall that J is identified with c, via (,)). Suppose that
v € L(A), is such that v # 0 but x(v) = 0. Then by induction on n we obtain

xy"(v)=A()my" '(v) for n>1.

Indeed: xy"(v) = [x,»]»" ')+ yxp" ') = " (V) + yA(c)(n—1)
Y~ }v)=A(c)ny" '(v). Hence, y"(v)# 0 and so L(A);,,, #0 for n>1,
which is impossible. This proves (b). (a) follows from (b). [

The proof of (a) and (b) of the following proposition is now essentially the
same as in the finite-dimensional theory (cf. [3]).

ProposITION 2.12. Let A€ P,, A(c)=m > 0. Then:

(a) PA)Y=W{AeP, |42l
(b) The following conditions on A are equivalent:
(i) AeP);
(i) A—w@)>0forall we W,
(i) A—A€ Q and A lies in the convex hull of W(A).
(c) If A—A"€Q and A’ lies in the convex hull of W(L), then
mult,(4") > mult,(4).2
(d) If A€EP(A), then |A*<|A)?, ie, P(A) is contained in the
paraboloid {4 € h* | [A]* +2a; 'mA(d) < |4 1> Alc)=m}; equality holds if

It seems that this result, whose proof is valid for an arbitrary Kac—Moody algebra, is new
even in the finite-dimensional case.
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and only if A € W(A). Furthermore, |\ + p|* < |4 + p|*; equality holds if and
only if A= A.

Proof. The inclusion < in (a) follows from Proposition 2.4(b). In order
to check the other inclusion, we prove by induction on hta that if uc P,
a € Q, are such that 4 + o € P(A), then u € P(A). For a € Z4, this is clear
by Proposition 2.11(a). If a=>k;a,& Z4, then (a,a) >0 and therefore
there exists /€ I such that k; >0 and (@, a;) > 0. But then (#+a,2,)>0
and so, by Proposition 2.4(a)(i), # + (@ — a,} € P(A4). Applying the inductive
assumption, we get u € P(A). This completes the proof of (a).

Now we prove (b). The implication (ii) = (i) follows from (a) by taking
4 € W(4) with minimal ht(4 —u), so that u€ P_. For the implication
(iii) = (ii) remark that 4 —w(4)>0 for all we W. A A from the convex
hull of W(A) can be written in the form A =3, ., c,w(A4), where c,, are
non-negative real numbers such that all but a finite number of them are 0
and Y'c,=1. Hence, for each w,EW we have A4-w,(l)=
e A —wow(d)), so that A—wyA)>0. Hence, (iii)= (ii). The
implication (i) = (iii) follows from Proposition 2.4(c).

For (c) we can assume that A € P_ . Then by the equivalence of (i) and
(iii} in (b) applied to L{A), ' € P(A). We prove (¢) by induction on
ht(A — A*). If A’ = A, there is nothing to prove. Otherwise, 1’ + ; € P(1) for
some i€ 1. Let s >0 be such that u :=4' +sa; € P(A) but g+ a; € P(1).
Since, by (b), u lies in the convex hull of W(4), we can apply the inductive
assumption: mult,(4) < mult, (). Since A’ lies in the interval [u, r(u)],
mult, (¢) < mult,(4’) by Proposition 2.4(a), proving (c).

(d) follows from Proposition 2.4(d). 1

Denote by P, P, , P, , the orthogonal projections on b* of P, P,, P_ ,,
respectively. These are the integral, dominant integral, and regular dominant
integral weights for the finite root system A. Similarly, using the map @ of
Section 1.5, we define P’, P’, etc.

In the following proposition we collect some technical facts which will be
needed later.

PROPOSITION 2.13. (a) P'={A€b*|(A,@)EZ for all aEM}; P=
{A€b*|(A,a)EZ for all a € M'}.

(b) Letu€b*. Then: u € P’ if and only if u(c) € Z and iEP';u€P
if and only if u(c) €Z and g€ P.

(c) Letye M,y €M’ Then
(p,y)eEZ, a,|y* €2z, kly'|* €2z.

Proof. (a) and (b) follow from QV=M’+ 2 and Q'V=M +Z4. To
prove (c), note that: (M, M’)c Z since M < Q and M' = Q¥;a,6¥=0€ M’
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and k#¥=G€M; M (resp. M') is spanned over Z by W(8") (resp.
w@y). 1

2.3. String Functions and Classical Theta Functions

Let g=g(4) be an affine Lie algebra. Fix 4 € P, of positive level
m = A(c).

A weight 1 € P(A) of the g-module L(A) such that A + J & P(A) is called
a maximal weight of L(A).®> Denote by max(A) the set of all maximal
weights of L(A). It is clear that max(4) is a W-invariant set and hence, by
Proposition 2.12(a), each maximal weight is W-equivalent to a (unique)
dominant maximal weight. On the other hand, it follows from Proposition
2.11(a) that for any u € P(A) there exists a unique 4 € max(4) and a unique
non-negative integer # such that g =1 — nd.

PrOPOSITION 2.14. Let A€ P, be a weight of level m. Then A4
defines a bijection from max(A)N P, onto mCyeM (A + Q). In particular,
the set of dominant maximal weights of L(A) is finite.

Proof. Straightforward using Propositions 2.11 and 2.12. |

For A € max(A) introduce the generating function:

[18

b} = mult , (A — nd) e~ "°.

n=0

This series converges absolutely on Y since it is majorized by |e ™| Y, o)
(mult u)|e*|, which converges on Y by Proposition 2.5(c). Since
W,NT={1} for A € P(A), and since b}, = b} for w € W, we have

— ApA ° HAYLA
chyy= Y  ebi= N N eWpl (2.15)
Aemax(A) Aemax(A) teT
AmodT

We proceed to rewrite character formulas (2.6) and (2.15) in terms of
theta functions. For A € b* such that A(c) > 0, set

_ 2
0/1 —e (1A12/2A(c))8 S et(/{). (2.16)
teT

Similarly, we define @} by replacing T by T".
Using (1.7), we obtain for A(c) = m:

O,=em0 N T WhmItmy (2.16.1)
yeM+m—12

? Note a discrepancy with [17, p. 128]—we do not require that z be dominant.
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which is a classical theta function (see Sections III and IV for details). It is
clear that this series converges absolutely on Y and that @, depends only on
4 mod mM + Cé.

Introduce the following number:

_la+pl® 1ol
2m+g) 2

A

For a weight 1 € P(A) introduce the number

_ AP

Sa (/1) =8y Im

called the characteristic of A. It is easy to see that 5,(4) is a rational number.
It will be “responsible” for the leading term in the g-expansion of a modular
form.

For A € max(A), set

¢} i=e N mult, (1 —nd)e ",
nz0

As we have seen, this series converges absolutely to a holomorphic function
on Y. Furthermore, if 1 € §* is such that A —u € Cd for some g € max(4),
then ¢ is uniquely determined (by Proposition 2.11(a)), and we set ¢ =c5;
if (A + C8) N max(4) = @, we set ¢4 = 0. The function ¢4 is called the string
function of A € h*. Note that

chay=ch for we W, Aep*
Since W = W x T, using (1.6) we deduce that
Chyempras =C3  for AED*, wEW,yEM,a€C. (2.17)

Note also that ¢} depends only on 4 mod Cé.
Using W= W X T, we combine (2.6) and (2.15) to obtain:

e—sAJ ChL H= ZWGW (det W) @w(/\+p) — A9 CQ @_A,' (218)
( ZweW (det W) @W(p) A€P T(c;c-;_rnM+ Ccs
c)=m

We use this important identity in Section IV to study and compute the
string functions.

2.4. Appendix 2: On the Region of Convergence of chy,,

Let g(4) be a Kac—Moody algebra with symmetrizable Cartan matrix 4,
let (,) be a standard form on g(4), and let A€ P, . For a€ 4, we set
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NP =@®2 044 8 =1@®Ca@n®. One knows [14] that if a € 47,
then g‘® ~ s,(C) and the module L(A) restricted to ¢'* is a direct sum of
finite-dimensional irreducible submodules. Furthermore, g‘® is an infinite-
dimensional Heisenberg algebra if (a, @) = 0; and n'®’ are free Lie algebras if
(a,a) <0 (by Lemma 1.14). In this appendix we study the restriction of
L(A4) to g for @ € A" and deduce an explicit description of the region of
convergence of ch,,,. The results are stated in the following two
propositions.

PROPOSITION 2.19. Let a €4 and A€ P_; introduce the following
two subspaces of L(A):

LMP= @ LA, LAOP= @ L.
A:(A,a)=0 A:(A,a)>0

(a) One has a direct sum of ¢'*-modules:
L(A)=L(4) ® L(A)}. (2.19.1)

(b) L) ={x€L{4)]g'(x)=0}

() The UmM“)-module L(A)® is free on a basis of
v € L) n®() =0}.

(d) The o'*-module L(A) is completely reducible.

PrOPOSITION 2.20. Suppose that A is indecomposable and that the g(A)-
module L(A), where A € P, is not 1-dimensional. Let Y, be the region of
absolute convergence of ch; ,,. Then Y, is open and

Y, =

heph | N (multa)|e *™| < oof.

a€ld

Now let B = (b)), j¢; be an (in general infinite) symmetric matrix over C,
and let g’(B) be the associated Lie algebra (see Section 1.8). We have the
triangular decomposition g’'B)=n_@g,Pn,, where
My = @acg,\0) 8 (B)sa

LEMMA 2.21. Suppose that all entries of B are non-positive real. Let V
be a o' (B)-module satisfying the following conditions:
() V=Dzeq Vasie,Vis g,semisimple;
(i) ifv €V, then Un,)zv =0 for all but a finite number of BE Q, ;
(iii) if V,#0, then A(h;) >0 for allic I

Then the module V is isomorphic to a direct sum of irreducible ¢'(B)-
modules L(A), which are free U(n_)-modules on one generator v € L(A),.
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Proof. By Remark (5) following Proposition 2.9, we must verify
conditions (2.9.4) and (2.9.5) for the g'(B)-module V. By (iii), (2.9.4) holds
with n=1. The definition (2.9.18) shows that if §€ Q,\{0} and V, #0,
then F(—f,1) <0 by (iii) and the conditions on B; this verifies (2.9.5).
Hence, V is a direct sum of modules L(A). Since the corresponding Verma
modules are indecomposable and satisfy (i), (ii) and (iii), they are irreducible
and hence coincide with the L(4). 1

Proof of Proposition 2.19. Since 4" < — W(P,) by Proposition 2.4(b),
we may assume that a(h;) <0 for all i. -

Write @ =}, ¢;a;, and put I' = {i € I'| ¢; # 0}. Let A’ = (a;;); j,;  be the
corresponding generalized Cartan matrix, so that we may regard g{4’) as a
subalgebra of g(4). (a) and (b) now follow from Proposition 2.9 applied to
the g(4')-module L(A).

In order to prove (c) and (d), note that g'® is isomorphic to a quotient by
a central ideal of the Lie algebra ¢'(B), where B is an (in general infinite)
matrix whose entries are non-positive real numbers. This is clear when
(o, @) = O because, by Proposition 1.11, g‘*’ is an infinite Heisenberg algebra
and hence is a quotient of g’(B), B=0, by a central ideal; when (o, ) <0,
we apply Lemma 1.14. Now we can apply Lemma 2.21 to the g‘*’-module
L)@, 1

We are grateful to P. Slodowy for calling our attention to the following
fact.

LemMmA 2.20.1. Let A € P, . Then the region of absolute convergence of
Wa = ew (det w)e” A2 js Y.

Proof. If hE€Y satisfies Rea,(h) >0 for all i€ 1, then e “*y, is
majorized at # by the convergent series

N oexp—> k;Reay(h);

kel

here we use Proposition 1.3(a), (b), (c). Since the region of absolute
convergence of y, is convex and W-invariant, we deduce that it contains Y.
On the other hand, suppose that A€ bh\Y. Then 4,:={a€
4% |Re a(h) < 0} is infinite by Proposition 1.3(d), (e), and for any a € 4,,
|eratA+oNhY| > A+ | Hence y, does not converge at . I

Proof of Proposition 2.20. Put

Y'=lhep| Y (multa)|e *M|< .

-
a€d

By Proposition 2.5, it suffices to show that Y’ is open and that ¥, Cc Y'.

607/53/2-4
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Put B, =[]seam (1— e~®)™!e By (2.7) and Lemma 2.20.1, and by the
extension theorem for holomorphic functions across sets of codimension two,
B, extends to a holomorphic function on Y. For A € Interior (X), consider
the meromorphic function f(¢) :=B,(th)"'. By a standard property of
Dirichlet series with positive coefficients [39, Chapter VI, Proposition 7], the
set {ER|the Y’} of convergence of the series obtained by multiplying out
[Tacaim (1 + 71" 4 =@ 4 ..ymelte which represents f(¢), is an open
segment (¢, + o0 ). Since Y’ is convex, and since for any &’ € Y, there exists a
t' >0 such that '/’ €Y’ by the argument proving Proposition 2.5, this
shows that Y’ M by is open in By, so that Y’ = (¥Y' M bg) + Hgis openin b,

We now show that Y, < Y'. If 4 is of finite type, there is nothing to
prove. If 4 is of affine type, this is shown by Proposition 2.5(c). Otherwise,
by [19, Proposition 1.3], there exists a € 4™ such that suppa=1/ and
a(h;) <0 for all i€ 1. But then u:=A —a lies in P(4) by Proposition
2.19(c). Moreover, by Proposition 2.19(c) and Proposition 2.4(a), for any
non-zero v € L(A), the map y:n_— L(A) defined by w(y)=y(v) is an
injection. This shows that Y, cY’. 1

Remark. By Lemma 2.20.1 and by the character formula (2.6), for any
A € P the function ch, ,, extends to a meromorphic function on Y. Let 4
be indecomposable and not of affine or finite type. By the proof of
Proposition 2.20 and by Proposition 1.12(b), for any & € ¥ N there exists
a >0 such that for every 4 € P, with dim L(4)+# 1, the meromorphic
extension of ch, 4, has a pole at th. The existence of such an “immovable”
pole was first shown for the rank two hyperbolic case by A. Meurman.

Remark. (1) For an indecomposable symmetrizable Cartan matrix which
is not of finite or affine type, let X° and Z° be the interiors of the dual
convex cones X mod ¢ and Z, and define continuous W-invariant functions
®: X° = (0,+0) and ¥: Z°— (0, + ) as follows:

@(h)=min{t > 0| B, (t~'h) =0},
where B, is holomorphic on Y and satisfies

B, [[ @—e)=Y (detw)e"®~*;

aecA"? weW

Y@= pin g5

Then for a€A™NZe, ¥Y(a)  coincides  with w(a)
(=sup,s, n” 'log mult na =lim, , , n~'log mult na) introduced in
Proposition 1.12, ¥ is of class C', and

o= min -
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Then the following conditions on & € X° are equivalent:
(a) The zero of B,(th) at t = ®(h)~" is simple;
(b) @ is real-analytic in a neighborhood of 4;

) ¥ is real-analytic in a neighborhood of
Z,={a€Z°| ¥(a)Ph)=a(h)=1};

d) (a,a)fBh)>2(B,a)alh) for all a,fE€ Z,;

(e) Z, consists of a single element.

If the Cartan matrix is of hyperbolic type, it is "easy to see that
8 —2((8, a)/(a, a))a € —Z° for all a, € Z°, verifying condition (d), so that
@ and ¥ are real-analytic, and condition (a) holds for all & € X"
(2) Consider the Cartan matrix (2 ') of hyperbolic type, put
|ma, + na,|* =m? —4mn + n* and, for a € 4™", put

R(a) = (—|al’)""* y(a).
Then one can show that for ¢ € 4",
9255989 --- =R(a, + 2a,) < R(a) < R(a, + a,) =.9256000 -- -,

so that R(a) is almost constant!
The results stated in this remark are due to the second author.

We note the following useful corollary of Propositions 2.19(c) and 2.4(a).

CoroLLARY 2.20.2. Let AEP, and A€ P(A). Fix a non-zero vector
v € L(A), and set .

= @ g_,-

acA,
{A,a)>0

Define a map y:n_— L(A) by w(p) =y(v). Then y is injective on n* .

2.5. Appendix 3: On the Segal Operators

The material of this section has no apparent relevance to the rest of the
paper. Nevertheless, we decided to place it here because of the unexpected
mysterious coincidence of a constant in the cocycle below (formula (2.26))
on the one hand and a constant in the asymptotics of weight multiplicities
(Theorem B in Section 4.7) on the other hand.

Let p be a finite-dimensional complex simple Lie algebra. We keep the
notations of Section 1.7. Let {u,} be a basis of p and let {u’} be the dual
basis with respect to the invariant symmetric bilinear form B.
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LEMMA 2.22. (a) The element Y ;u,® u' of p ® p is independent of the
choice of the basis {u;}, is symmetric and is killed by p.

(b) ¥ (ad u)(ad u') = 2I,

Progf. (a) is obvious. (b) follows from the standard fact that the Casimir
element )°, u,u’ acts by the scalar B(6, + py, 6, + o) — B(py, o) =28, in
the adjoint representation, along with g, = g from Proposition 1.11(c). I

Let N be a positive integer, let ¢ be an automorphism of the Lie algebra p
such that ¢¥ =1, and let p= @, p, be the corresponding 7/NZ-gradation.
Set d,=dim p,, s € Z/NZ, and choose bases u, ..., U, , and u'**,..., u** of
p, and p_,, respectively, dual under B. We shall assume that u;, _,=u"",
which is possible due to the symmetry of B.

Let § = py(0, N) be the associated affine Lie algebra (cf. Section 1.7), '
its derived algebra. We shall write x(n) for "®x€p’. Recall
that{ y(m), z(n)] = | y, z](m + n) + mB(y,z)J,, _,c, and ¢ = Nc,.

Define the following elements of the universal enveloping algebra U(p’) of
p' forn,re 7.

dy
Sn(r) = S ui.—r(_r) ui,r(nN + r)’

iz
N

Ty(r)=Y Su(r+J)
i=1

Fix mn€Z and x€E€p,. For r&Z define the following auxiliary
elements of U(p'):

R
~

F(ry= N u; _(=1)[u; o x](nN + m + 1),

[

]

2
T
| 1=

F(r+j)s

—~
200
= —

o
Il
11

[ui,—r’x](m - r) ui,r(nN + r)’

'}7'.

[ =

Iry= > H({r +))

~
il
—

We need the following technical lemma.

LEMMA 2.23. For all r € Z we have:

@@ T,(r)=T,(—(n+1)N—r—1)=30,, ) (r+j)d, )N "c.
(b) [T,(r), x(m)] = G(r) + I(r) — 6,mx(nN + m) N 'c,

where 5r = Z;v:l (5m,r+j + 57nN—m.r+j)‘
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() Gry+I(r+m)=0.
d) I(r)=G(—(n+ )N —r—1)—2gx(nN + m) if m# —nN.
Proof. We have:

d,
S”(r) - S"(_nN_ I‘) = Z [ui.—r(_r)9 ui,r(nN + r)]
i=1
d,
= _5"-0rd"N_lc + Z [ui,—r’ ui,r](nN)'
i=1
Substituting i=N+ 1 —; in the definition of 7,(—(n+ 1)N—r— 1) and

using the equation above, we obtain

N

T,(r)—T(—(n+ DN—r—1)=3" S, (r+i)— S, (—nN —r —1i)
i=1
dyyi
= Z Z [uj.—r—i’uj,r+i](nN)

i=

—-
~.
[l
-

N
— b0 (2 (r+i)d,+,-) N le.

i=1

The first sum is zero by the skew-symmetry of the bracket, proving (a).
To prove (b), write

d,
[S,(r), x(m)] = Z ([u;, - (=) x(m)] u; ,(nN + 1)

+uy,_(=r)[u; (0N + 1), x(m)])
= H(r) + F(f) - (5r,m + 5r,—nN—m) mx(nN + m) N~'e

by the definition of the bracket in p. A summation now proves (b).

To prove (c), note that F(r) + H(r + m) is the image, under the linear map
from p_,®p,,, to UP’') defined by y@zioy(—r)z(ntN+m+r), of
Z?;l Ui, r ® [ui,r’ x] + Z‘iir;lm [ui,-r-—nn x] ® Uirtms which vanishes by an
application of the Z/NZ-grading to Lemma 2.22(a). A summation now
proves (c).

To prove (d), suppose m + — nN, and write

d,

Fr) = HEnN —r)= 3" [t (=), [ty X|(N + m +7)]

Il
T8 T

~.
I
-

(47, -7 [t4i,p» X]](nN + m).

Using Lemma 2.22(b), a summation proves (d). 1
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Now let V' be a §’-module such that for any v € V, there exists n, such
that x(n)(v) =0 whenever n>n, and x € p,. Any module L(A) clearly
satisfies this condition. For n € Z, define an operator T, on V by

T,=23 T,(r)+ Y T,(r—(n+ N).

rz0 r>o0

This operator is well-defined on V since each v € V is killed by all but a
finite number of summands.

Remark. By Lemma 2.23(a),

T,=S T,(r) if n#0.

)
rel

If, in addition, p, is semisimple, we have

T,=N > S,

reZ

In the case 6 =1, N = 1, the operators T, were originally introduced in this
form by G. Segal (unpublished). We mention also that this kind of
construction is popular in the dual string theory (cf. [7]).

Now we can prove the main lemma.

Lemma 2.24. [T,,x(m)]=—2(g + ¢) mx(nN + m).

Proof. First, suppose that m # —nN, so that we can use Lemma 2.23(d).
Using Lemma 2.23(a) and (b), we have

[T, x(m)] = X [T(r), x(m)]

reZz

= (G(r)+I(r)— d,mx(nN + m) N~ 'c)
rel

=Y (G(r) + I(r)) — 2mx(nN + m)c.
reZ

To evaluate the sum, first suppose m > 0. Then for 4 + B > 2m, Lemma
2.23(c) and (d) gives

Y GOI= Y I+ Y G
r=—4d r=-—4 r=B-m+1
=N G+ DN —r— 1) = 2gx(aN + m))
+ i G(r).

r=B-—m+1
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Since lim, ,, ., G(r) = 0, we obtain

Y GO +Ir)= lim 3 (GO +I0)

rel

= —2mgx(nN + m).

A similar argument gives the same result for m < 0, proving the lemma in
case m # —nN.

If m=—nN, we may assume x=[y,z], where yE€p,, zEp,_, and
i # 0, —nN (since these elements span p,,). Then x(m) € [y(i), z(m — i)] + Ce,
and a calculation of

[T, x(m)] = [T,, [p(0), z2(m — )]
using the Jacobi identity proves the lemma in this case too. |
We next calculate [T, T,,]. Using Lemma 2.24, we have

[Trn Sm(r)] = 2(g+ c)(rSm+n(r— nN) - (r+ mN) Sm+n(r))'

A formal calculation using this gives, for # > 0,

[T,,, ¥ Tm(s>]=2(g+c)1v(n—m) ST,
s>r s>r
r—1

+2(g+c) D (2s+ 1 +nN—r—N[s;Nr]) T i n(S)-

s=r—nN
The definition of T, now gives

T =28 +ONE=m) (T Toa+ S To)

s>0 sz2—(m+1)N
+2(g+c) D (2s+l+nN—N[—])Tm+,,(s)
s=—nN N

-(m+1N—-1

+2g+c) (2s+1+nN—N[%]) T, .(5)

s=—(m+n+1)N

Reparametrize the third sum by t=—(m+n+ 1)N—-s—1, and apply
Lemma 2.23(a) to its summands. It then becomes

—(m+1)N-1

(—(m +1N—2t—1=N [_tj; L ]) Tpon(t) — 8, _LN7'c,

t=—(m+n+1)N
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where
-1 N

L= ¥ <2s+1+nN—N[%]) S +)des;

A
§s=—nN ji=1

Using the fact that d, depends only on r mod N, we obtain

dim p n vN , ;
L:—Z]V3 (— I - ( N_ dl))
PR el PR f)

Substituting the expression above for the third sum and combining the four
sums, we obtain (using a similar argument for n < 0):

LemMma 2.25.
[Tm Tn’] = _2(g + C) N(i’l’ - n) Tn+n’ + én.—n’4N2Kn(g + C)C’

where

dimp , , A .

= n*—n)— Y iN=pd;. 1
12 ( 2N2 j‘=—(‘) ( J

K,

Note that by Proposition 1.11(d) and (e), we have for y defined by

Proposition 1.11(b):

k 1
K,=—|p'*n(n*=2)+—|pg—gy|* n (2.26)
L ip e n -2+ 15— 8

Finally, we include the Lie algebra #’ as an ideal in a larger Lie algebra
P., where a € C, as follows:
=P+ > Cd,

et
neZ

o>

[d;c]=0, JEUI;

[d;, x(n)] = N~ 'nx(n + Nj);
nn €L4Z.

[dn’ dn'] = (n, - n) dn+n' + aan’,—nKnc’

Note that d; operates on § as N~ 't"/*'(d/dt).
Now we can state the result of the calculations above as follows:

Assume that ¢ operates on V as multiplication by a

ProrosITION 2.27.
Then the representation of B’ on V

scalar m+ —g; set a=(m +g)7 L
extends to a representation of p, on V by

di— D;:=(-2Nm+g)~'T; jez. 1
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Remark. In the case k=N = 1, a version of Proposition 2.27 was stated
in an unpublished manuscript of G. Segal; unfortunately, his calculation
contained an error. A more explicit version of Proposition 2.27 is established
in [7] and [23] for all level 1 modules L(4) of 4{", D{", E{", and B{".

III. CrassicaL THETA FUNCTIONS AND MODULAR FORMS

In Section III we present the necessary background on theta functions and
modular forms (cf. the books |5, 12, 24, 26, 33, 50]).

3.1. Transformation Properties of Theta Functions

Let Uy be an I-dimensional real vector space, {(,) a positive-definite
symmetric bilinear form on Upg. Introduce the Heisenberg group Ngp= Ug X
Ug X R, with multiplication

(@B, 0, B )= (a+a B+t +1 +3[{a’, B) — (&, B')]).
It is useful to know for computations that
(a8, 0)(a’, B', '), B, )" (@, B/, ') = (0,0, {a’, B) — (&, B")).

Let #, ={t=x+iy|x,y ER,y >0} be the Poincaré upper half-plane,
and let SL(2, R) act on -#, by

(a b) _ar+b
c d) T a+d

Introduce the metaplectic group

Mp2.R)= la=( ))estam,

Jj: %, - C holomorphic, j(r)’ = ct + d|,

with multiplication (4,/)A4’,j)= (44',j"), where j"(r) =j(A'1)j (t).
Let Mp(2, R) act on N by automorphisms

(8 2)J)- @po=(@a+b.caratn,

and form the semidirect product Gp=Mp(2, R) X Ng, with gng”™'=g-n

for g€ Mp(2, R), n € Np,.
Let U=Ugr®gC, and extend {, ) to a symmetric C-bilinear form on U.
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Let G, act on
Yi=4# XUXC
by analytic maps:
a b\ . ar+b z c (z,z))
’ (nz )= \—7, S+ = 5
((C d)J) @20 (cr+d cr+d +2cr+d

(a’ﬁs to) : (f’ Zs t) = (Tsz —a+ ‘L'ﬂ,t~— <ﬂ’z> - %T</3,l3> + %<as ﬂ> + t0)~

This action is well-known in the theory of theta functions. We will often
write 4 - (7, 2z, t) for (4,7) - (1, z, t). Note that

@0,0)- (r,z, )= (1,2 —a, t);
0,,0) (r,z. 1) = (1,2 + 1B, 1 — (B, ) — 37(6, B)),
which is nothing else but the action (1.6); and
0,0,¢) - (r,z, ) = (1,2, t + 1).
Now we define a right action of the group Gy on functions on Y by
Sun @z,0)=j@) 7" fA - (z2.0))
Sz, =f(n-(1,2,1)

Fix a lattice L spanning Up, such that (y,y’'>E Z for y,y' € L, Let L* :=
{yE Uy | {(y,ay&€ Z for all a € L} be the dual lattice, so that L= L* .
Let

Ny={(a,B,t) ENg|la,BE L, t + e, B)E Z}.

This is a subgroup of N < Gg. Denote by G, the normalizer of Nz in Gg. It
is easy to see that

or-|((2 ) wsoce

bd{y, v) = 2{a, y) mod 2Z, ac(y,y) = 2{8,y> mod 2Z for all yE L;.

(‘; §>ESL(2,Z);

Now we introduce the space ﬁzl of all holomorphic functions f on the
complex manifold Y such that

fl,=fforalln€N;, and  flgon=e "florallt€R.

It is clear that the space 7~’h, is G Finvariant.
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Remark. One has the following geometric interpretation of the space ﬁll
of functions on the complex manifold Y. Consider the maps Y -/ #, X U X
C—*#, XU defined by f(r,z,8)=(t,z,e ™), n(t,z,¢)=(1,z). The
action of Gy on Y induces actions of Gy on #, X UX C and #, X U by
analytic maps such that f and = are equivariant. Moreover, Z = {(0,0, 1) €
Ng|t € Z} acts trivially on #, X UX C and #, X U, and N, := N,/Z acts
freely on -#, X U. We regard 7 in the obvious way as the bundle projection
of a holomorphic line bundle. Then N, acts by bundle morphisms, so that we
obtain a holomorphic line bundle ¥: (#, X U X C) mod N Z—»” #,. XU
mod N,. Note that the fibers U/(L + tL) of the map (,z) mod N, 1 are
abelian varieties, so that we may regard & as a bundle over a family of
abelian varieties. Let_0:-#, X UXC - (#, X UXC) mod N, be the
canonical map. Then Th, is the pullback to Y under o o f of the space of
holomorphic sections of the line bundle &~' dual to &, regarded as
functions on the total space of & which are linear on the fibers. Hence, Th
is canonically identified with the space of holomorphic sections of the line
bundle &' over the family of abelian varieties U/(L + 7L), T€#,, in a
way consistent with the action of G;.

Define an N-invariant measure dn = da dfi dt on the homogeneous space
N;\Ng, where n = (a, §,t) € Ng. Then d(gng ") =dn for g € G,.
For f,f’ € Th,, define the pairing (f,f"):#, - C by

AL =] (160,010, 0) dr.
NZWR

ProposITION 3.1. Let f€ Th,, g=(4,))EMp(2,R), nE€ N, gne€ G,.
Then £y € Thy and |f1,,|1? () = i)~ | 71 (Ax), where ||f|]* stands for
(£

Proof. fl,, € fh, since gn normalizes N, and centralizes (0,0, ¢). For
n’ € N,\Np and n”=(gn)n'n(gn)~', one has dn” =dn’ by previous
remarks, so that:

”f|gn||2 (T) = f W Kflgnn')(f, 0, O)|2 dn’
Nz\NR

zJ’ |(f lave)(z, 0, 0)|> dn”
NzZWR

=[  1j©) (/1) A, 0, 0) dn”
NZI\NR
=i 171 o). B
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Now we define the Riemann theta function:
O, z, ) =e~ 2" Y exp[mit(y, y) — 2mi(y, 2)].
yel
This series converges absolutely on Y to a holomorphic function. It is easy
to check that @ € Th,. For u € U, set
Q;Lt =0" 0, —u.0>
so that
OL(t,z,t)=e 2" N explmit(y,y) — 2mi(y, z)].

yeEL+u

O~ is called a classical theta function of degree 1 (with characteristic ). It is
clear that @ depends only on 4 mod L. For g, u’ € L*, we have @ € Th,

and:
@i l(u’,0,0) = (exp 2ni{u, u')) @ﬁ,
@;Lt |(0.u'.0) = @ﬁ—u"

(3.2)

Forre#, ,set Y. ={t} xUXCc?Y.

ProposITION 3.3. (a) For u,u' €L*,
(@, 0L Y1) =vol(L) 8, , 1+ (2TmT) "2,

In particular, the functions @ﬁ, 4 € L* mod L, are linearly independent on
Y, for each t€ A, .

(b) For any non-zero t, € iR, , the functions O%, y € L* mod L, are
linearly independent on {1y} X L* X {0} < Y.

Proof. Proposition 3.1 and (3.2) show that (@%, @5 )() =
01 snrsn 105]* (r). We compute:

16" @=[ 1646 —a+ b 4B+ Hah)+ 0 @0

‘J,UP/L J.UP/L

- (JU ., da)fu |lexp mit(B, B)|? dB = vol(L)(2 Im 7) =/,

2

Y explnit(y — B,y — B) + 2nia, y))| dadf

yeL

This proves (a). In order to prove (b), note that for z&€ L* and p € L*,

@ﬁ(.[m z, 0) — i) Y* em‘(y.y)-ro_ (331)

p—

yel +u,
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It is clear that the sum in (3.3.1) is positive for 7, € iR, . (b) now follows
from the fact that the characters of the group L*/L are linearly
independent. 1

The following result goes back to Jacobi.

ProposITION 3.4. For u € L*, one has the following transformation law:

1
eL (—_,'z‘,t-{- (Z,Z>) :IL*/Ll-l/Z (_l-,[)l/l
TT 2t

[’}

X N [exp—2miu,u')] O%.(z, 2, 1)

u’'el*modL

Proof. This follows from the Poisson summation formula (see, e.g.,

39). 1

Let Th,cfhl be the C-span of the linearly independent set
{@Lu€L* mod L}.

ProrosiTioN 3.5. The space Th, is invariant under G,. Furthermore,
the matrix of any g € G, with respect to the basis {0%|p€ L* modL} of
Th, is unitary.

Proof. It suffices to prove the first statement, since the second follows
from it by Propositions 3.1 and 3.3.

By (3.2), Th, is invariant under G,NNg. Therefore, if
&=, J)n€ Gy, k=1,2, and the A, generate SL(2, Z), it suffices to
show that Th, is invariant under the g,. For 4, = (} '), Proposition 3.4
shows this. For 4,=(4 1), j,=1, n,=(a,0,0), where a € Uy satisfies
& y)=2a, y) mod 27 for all yE L,

0. |,, = lexp niu, 1 + 2a)) O

shows it. The proposition follows since the matrices A, and 4, generate the
group SL(2,7). 1

In order to obtain a more general transformation law for theta functions,
we need two further results.

PROPOSITION 3.6. Suppose that (y,y) € 2Z for all y € L. Then:

iy _ p2nil/8
N e = 28 I XL

yeL* modL

This result of Milgram is proved in [30].
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Let n be a positive integer. Taking L = Z, with bilinear form (m, m') =
4nmm’, Proposition 3.6 gives
\/; — i/t A enimz/étn.

melmod2ni
m=nmod2Z

Hence, \/n € Q(e?*/*") for all non-zero n€ Z, and /n € Q(e*"") if
n=1 mod4Z.

For relatively prime integers » and k with k£ odd or n =1 mod 4Z, we now
define the extended Jacobi symbol (%)= +1. If n=0, put ()=l If
n+0, define an automorphism o, of the field F = (J, Q(e’*""), where N
runs over all positive integers relatively prime to k, by g,(e*™/V) = eV,
Since \/n € F, we may define the extended Jacobi symbol by:

ot/ = () Vi

LEMMA 3.7. Suppose that (y,y) € 2Z for all yE L. If |L*/L| is odd,
then the rank | of L is even, and

(=1)"*|L*/L) =1 mod 4Z.

Proof. Put N=|L*/L|, so that NL* c L, and hence N(y, y) € Z for all
y € L*. Then e***/8\/N € Q(e**") by Proposition 3.6. Choose ¢ = +1 such
that &N=1mod4Z. Then +/eN € Q(e* V). Hence, ee e
QE™™)N Qe*®) = Q, so that e =e>"*. |

The following proposition gives a transformation law for theta functions
which is sufficient for our purpose.

ProposiTION 3.8. Let A=(%5)€SL(2,Z), (4,/)EMp(2,R). Let
Ay, By € U satisfy

bd{p, B) = 2{a,,f) mod 2Z  forall BEL,
ac{a, a) = 2{a, §,> mod 2Z forall a€ L* such that ca € L.

(Such a, and B, always exist.) Fix t,€ R and set g = (A,/)(@,y, B4, 1), 5O
that g € G 4. Then there exists v(g) € C such that:

@ 0"=uv(g) X (expmilcd{a,a)+2Aa, ca,+dby)]) O,

a€el*
ca modL

()i) (@)=L + cL*)/L|~" v(g~") =v(g);
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(i) ifblyl*€2Z forall yeL,c|y|? €2Z forall yE L*, and a,=
Bo=0, t, =0, then

v(g)= (M%EZL—I) Jfor even |,

c|L*/L|

v(g)j@) = ( ~ ) e @=Der 4 dY*  for odd I.

Proof. By Proposition 3.5, we may write O |, =", ;. noar S (1) O%. Let
a € L*. Formula (3.2) shows that if n = (a, 0, 0), then @" |, = O, so that
(0" ) lg-1ngy = @" |, Using (3.2), this gives

S+ ca) = (exp ni[cd{a, a) + 2d{a, u) + 2{a, ca, + dB,)]) f(u). (3.8.1)

If, in addition, ca €L, then L+u=L +u+ca gives f(u+ ca)=f(u).
Therefore, f(1) = 0 unless one has mod 27:

0=cd{a, a) + 2d{a, u) + 2{a, ca, + dB,)
=cd{a, a) + 2d{a, u) + bd{ca, ca) + ac{da, da)
=2d{a, ).

Therefore, f(u)=0 wunless aE€L* and ca€L (or, equivalently,
a€ (L +cL*)*) imply that d{e,u)E Z. Therefore, f(z)=0 unless
de€L +cL* But also, f(g)=0 unless cu €cL*. Since ¢ and d are
relatively prime, we find that f(u) =0 unless u € L + cL*,

On the other hand, we obtain from (3.8.1):

Sf(ca) = (exp ni[cd{a, a) + 2{a, cay + dBy)])f(0).

Setting v(g) =/(0), we obtain (a).

(b)(i) now follows from Proposition 3.5.

It is easy to check (b)(ii) for ¢ = 0. Assuming ¢ # 0, we now compute v(g)
in general in terms of Gauss sums. Note that:

v(g)= 1mliﬂoo (0" )z, 0,0). (3.8.2)

Putting

1

1 d
b= eray T @b =5 o b
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one computes directly that:

(0" )5, 0,0)=j(z)~ e~
X 2 eniac*'(u.u)e~2niC‘1(u,Bo)
uel modcL

X 2 eni/l(y—cao—dﬂo-Y*Cao‘dﬁ())_ (383)

yeEu +clL
Using Proposition 3.4, one obtains

v e’lil(}'—Cﬂ!g—dﬂo,}'*—Caq—d[}o)

—
yEM+CL

- |L*/L‘_1/2 (l'/CZA)I/Z 2 e—nic*ZA—l(y.y)e—ZniC‘l(y,u7ca0—d150). (384)

yel*

Combining (3.8.2)-(3.8.4), we obtain

j(z.)l‘ ,(L + cL *)/L!l/z eznito U(g)
= (¢t + d)"'* (—i sign ¢)"? e™ic™Boscao+t dbo)

X|L/LAcL*)~12 N gmieiwan—280 (38 5)

p—

nel mod(L Mel*)

In the situation of (b)(ii), the last sum may be evaluated by using
Proposition 3.6:

v griacTium) — g (prritsignal/s | [T jor K1), (3.8.6)

ueL ‘r?)d cL*
For odd a, (3.8.5)(3.8.6) yield

¢! |L*/L|>.

j(T)I v(g) — (CT + d)I/Z e,27ri(a—1)1/8 ( -

For even a, Lemma 3.7 shows that / is even and (—1)"*|L*/L|= 1 mod 4Z,

so that (3.8.5}(3.8.6) now yield
(=" |L*/L]| )

a

oe)=

Applying these formulas to find v(g~'), and using v(g) ' =v(g~') from
(b)(i), we obtain (b)(ii). N

COROLLARY 3.9. Let g € G, be as in Proposition 3.8, and let u € L*,
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Then

L, =v(g) D (expmi[cd{a,a)+ 2bc{a, i)

e
a€cl*
ca modL

+ ab(y, .u> + 2<A“9 aao + bﬂ0> + 2<a’ cay + dﬂ0>]) @£u+ca'

Proof. Set n=(0,—u,0), write O%L| =(0"],)|,=(O",)|e-ms and
compute using Proposition 3.8 and (3.2). 1§

3.2. The Ring of Theta Functions

For any m € Z, denote by ﬁtm the space of holomorphic functions fon Y
such that

flo=floralln€N, and  flgo,=e ™fforall t € R.

Remark. The space T~‘hm is the space of holomorphic sections of the line
bundle & ~™, where & is the line bundle constructed in Section 3.1.

Let Th =@ pez ﬁzm. This is, clearly, a Z-graded algebra over the ring
O(H#. )= Th, of all holomorphic functions of 7 € #, . Th is called the ring
of theta functions.

For 4 € U and a positive integer m, set

OL (T z,)=e” ™ N exp(nimi(y, y) — 2mim(y, z)).
yeL+m—lu
O, . is called a classical theta function of degree m (and characteristic p).
Then @f‘,m depends only on g mod mL, and for u, u’ € L*, one has
e . € Th, and

L _ plaim—Yu.u'y L

O lim-1u,0,00 = 0% s (3.10)
L — ML

@u,m |(0.M‘lu’,0) - @u—u’,m'

Remark also that taking L' =L and {, )’ =m{, ), we have

Oy (1, 2,0) = O, (7, 2, ). (3.11)

LEMMA 3.12. Let tE€#,. For me€Z, let Th, be the space of

holomorphic functions f on Y, which are Njinvariant and satisfy
Slw.0.0 =€ ™™f for all t € R. Then:

(a) Thy=C.
(b) Th;,=(0)for m<O.
(©) {9% mly}uer modme is @ C-basis of Thy, for m > 0.

607/53/2-5
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Proof. 1If f&€ Thg, then f is independent of ¢, is holomorphic, and is
periodic in z with respect to L +tL. Since U/L +tL is compact, f is
constant. This proves (a).

Now suppose m € Z, m # 0, f € Thy,. Using f1g.0.0 =€ "™, flia.0.00 =S
for @ € L, and f holomorphic, write

f(f, z, [) — e—2nimt Z a('})) e—2m’(y,z)'
yeL*
Using fl.5.0) =S for BE L, we find that a(y)e "™ '**? depends only on
y mod mL.

If m is negative and f+ 0, this shows that the |a(y)| increase without
bound, a contradiction (since Fourier coefficients must tend to 0). This
proves (b). If m is positive, it shows that f is in the C-span of {@ , |, |
4 € L* mod mL}. These functions are linearly independent by Proposition
3.3(a) and (3.11), which proves (c). 1

ProposiTiON 3.13. The ring Th of theta functions is a free module over
@A, ) with basis {Of ,|mEZ, m>0,u€ L* modmL}U {1}.

Proof. This is immediate from Lemma 3.12. 1

By Proposition 3.13, we may expand O% , @ . as a linear combination

of the @%. . . ... The coefficients are given by:

ProposITION 3.14. Let u,,u, €L*, m;,my€ Z, m;,m, > 0. Then

I L _ L
@ul,m, @uz,mz - ZyeL mod(m+mz)L d}'@u|+uz+m1 Ky +my?
where
L
d,=0 (7,0,0).

Mo —myp o+ mymyy,mymy(m + my)

Progf. Write

O, (T2, 1) = e Pt N exp(mim; ' t(myy; + s myy; + 1)

YeL
—2mi{m;y; + Uy, 2)).

Reparametrize the resulting sum for @5, @L = by y=y —7,,

Y =myy, + m,y,, and write the sum as 3 ., 3. o (my 4 moyr » ODtaINIng
N @

pra— u1+uz+mly.m1+mz(ra
yeL

z, 1)

X exp (zfr—%(y+m{'yl —m3 Wy, y+mi 'y, _mz_lﬂ2>)-
m, +m,

1

This gives the desired result. [l
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Let m be a positive integer. Denote by Th,, the C-span of the functions
@f.,m, 4 € L* mod mL. Using (3.11), we deduce from Propositions 3.4, 3.5,
3.8, and Corollary 3.9:

ProposITION 3.15. Let u € L*. Then
1 z (z z)) .
I M2 N g% —/2 ¢ ;2
@“,m( r’r’H— 2 |L*/mL| (—it)

X .Y exp[—2mim~ ', u')] 0%, (7,2,1).

n'eL* modmL

PROPOSITION 3.16. The group G, preserves the space Th,,. The matrix
of any g € G with respect to the basis {Of , |u € L* mod mL} of Th,, is
unitary.

ProposITION 3.17. Let A= (¢ })ESL(2,2), (4,j)EMp(2,R), and
choose a,, B, € Ug satisfying

mbd(B, ) = 2m(a,, ) mod 2Z whenever BEL; (3.17.1)

mac{a, a) = 2m{a, f,) mod 2Z whenever ca € L and ma € L*.
(3.17.2)

Fix t,€ R and set g=(A,j) a,, B, t,). Then there exists v(m, g) € C such
that:

(a) Forallu€L*,

05 lg=v(m, g) N (exp i|lm ™~ 'cd{a, a)

S
a€l*
ca modmL

+2m bl u) + m~ ablu, u) + 2u, acy + bf,)
+ 2((1, caO + dﬂ0>]) @2u+ca,m'

(b)) |v(m, &) =|(mL + cL*)/mL|~"?, and v(m,g~")=v(m, g);

(i) ifmblyPE2WforallyeL,m |y €2Z for all yE L*, and
aqa=0,=0,t,=0, then

v(m, g) = (ﬂdl—%) Sfor even I;
em |L*/L|

v(m, 8) j(z)' = ( ) e d-Di%er 4 d)?  for odd .

d
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Remark. Define a “Laplacian” D operating on holomorphic functions on
Y as follows. Let u,,..., 4, be an orthonormal basis of Uy, and let

66 K [a\?
D=2——+Y (—}).
8tat+,ﬁ;—1<6ui>

Then for n € Ngand 4 = ((¢ 3),/) € Mp(2, R), we have
(DF)|,=D(F|,),  (DF)| = (ct +d)* D(F|,).

Moreover, Th,,= {F € ﬁtm | DF = 0} for m # 0. This “explains” why Th,, is
invariant under G;, and allows one to prove most of the results of Section
3.1 without appeal to the explicit expressions for the @ . The details may be
found in [50].

3.3. Some Facts about Modular Forms

In this section, we summarize information on modular forms which is
either used in the sequel or makes it more intelligible.
Recall the action of the group SL(2, R) on the Poincaré upper half-plane

A
(a b)r_ar+b
c d)  ct+d’

For N€ Z, N > 0, define subgroups I'y(N) and I'(N) of SL(2, Z) by:

T(N) = (‘; b)eSL(Z,Z)[CEO (modN)E,

d

V)= 3(‘; 3>€SL(2,Z)|bECEO,aEdEI (modN)E.

Then I'y(N) and I'(N) are of finite index in I'(1) = SL(2, Z).

Fix a subgroup I' of finite index in I'(1), a function y:I'— C with
|x(4)=1 for all A €T, and a real number k. Then a function f: #, - C is
called a modular form of weight k and multiplier system y for I if:

(i) fis holomorphic on o#, ;
(ii) if4=(2 L)€ and t EH,, then f(47) = x(4)(ct + d)* f(2).

We sometimes suppress the mention of one or more of I, y and k&, and
speak of “modular forms,” etc.

Set T=(; ). Then since I' is of finite index in I'(1), T" € I" for some
positive integer r. Suppose f satisfies (i) and (ii) above, and let C € R satisfy
x(T)=e™C. Set F(e™™/")=e C/f(r), Then F is a well-defined
holomorphic function on the punctured disk 0 <|z| < 1. Hence, F has a
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Laurent expansion F(z)=},.;a,z" converging absolutely for 0 < |z| < I.
Therefore, we have the “Fourier expansion” or “q-expansion”

f(‘C)= Z aneZni(n+C)1:/r — 2 anq(n+C)/r for TE%, qzezm‘r.

nelZ nel
We call f meromorphic at ico if a, = 0 for n sufficiently small, kolomorphic
at ioco if a,#0 implies n+ C >0, vanishing at ico if a,# 0 implies
n+ C > 0. If £ is holomorphic at /oo, we say that the value of fat ico is 4 _,
(interpreted as 0 if C & Z). We say that f vanishes to order m at ico if a,+ 0
implies (n + C)/r > m. .
A cusp of I is an orbit of ' on QU {ico} under the action
2 bYr = (ar + b)/(ct + d), where a/0 is interpreted as ico fora € Q, a # 0.
Then since I'(1) acts transitively on Q U {ico}, the set of cusps of I is finite.
Sometimes we speak of the cusp a € QU {ioo} of I'; this means the orbit of
a under 1.

Let f satisfy (i) and (ii), and consider a cusp a of I". Let B = (¢ )€ (1)
be such that B(ico) = a. Then f(7) := (ct + d) ¥ f(Bt) is a modular form of
weight k and some multiplier system y, for B~ 'I'B. We say that f is
meromorphic, holomorphic, or wvanishes at a if f, is meromorphic,
holomorphic, or vanishes at ico.

A modular form of weight k& and multiplier system y for I' is called a
meromorphic modular form, a holomorphic modular form, or a cusp form if
it is meromorphic, holomorphic, or vanishes at all cusps of I". If f(z) is a
modular form of weight £ and if (¢ 5)€ GL(2,Q), ad —bc > 0, then
fo(t) = (ct + d) ¥ ((at + b)/(ct + d)) is a modular form of weight k.
Moreover, f, is meromorphic, holomorphic or a cusp form if fis.

We shall use the following facts in the sequel.

(a) SL(2,Z)is generated by ({ 1) and (3 ')

(b) TIy(2)is generated by (g 1), (3 9), and (' %)

(c) If pis prime, then I'y(p) has two cusps, 0 and ico.
(d) A holomorphic modular form of weight 0 is constant.
(e) Let

”(T) — e2nir/24 I—I (1 _ e27rint)’ T e% ,
nz1

be the Dedekind #-function. It is a cusp form of weight 1/2 and some
multiplier system x, for SL(2,Z). We have x,((§ 1))=e""%,
X1 o)) =em 8

(f) Let U, ), etc., be as in Sections 3.1 and 3.2. For a,f€ U,

T1E#,, and F a function on #, X U X C, define a function F(e, f;-) on
#, by:
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F(a5 ﬂ; t) = (F |(a,B.0))(T’ 0, 0)

= F(t, —a + 18, —3(B, —a + 18)). (3.18)
Let A = (% 1), (4,/) € Mp(2, R). Then
F(aa + b, ca + dB; A1) = j(1)' (F |45 )a, B85 7). (3.19)

It follows that if F is a classical theta function and a,f € QL, then
F(a, ;1) is a holomorphic modular form of weight I/2 for some I'(N) (see
Proposition 3.17).

In particular, the ‘“structure constants” d
holomorphic modular forms.

, in Proposition 3.14 are

(g) We will also need the following fact.

LemMma 3.20. Let d,,d,.... be a periodic sequence of real numbers with
period N, such that d;=dy_; for j=1,.,N—1; set d=3"_,d;. Then
SO =¢"TI2, (1 — ¢, where q = e’ is a modular form if and only if

aN 1 % .
= IV NN —))d, (3.20.1)
Jj=1

Proof. We use the Jacobi triple product identity (which is nothing else
but formula (2.7) for g of type 4{"):

n (1 _ ujvj)(l — ujvj“)(l _ uj—luj) -\ (—l)j u(l/z)j(j+1)U(1/2)j(j—1).
i>1 jez

In this identity we let u =g", v = ¢"~", obtaining

q(Zr-N)Z/SN ﬂ (1 _ qu)(l _ qu—(N“r))(l _ qu—r)
izl
=\ (_1)] q(N/Z)(j+(2r—N)/2N)7_ (3.20.2)

jel

By (f), the left-hand side is a modular form if r € Z. An easy computation
now shows that for b given by formula (3.20.1) the function f(r) can be
represented as a finite product of real powers of functions of the form
(3.20.2) with » € Z and a real power of n(N7), and hence is a modular form.
Conversely, if f(r) is a modular form for some b, then ¢ is a modular form,
where a is the difference between b and the right-hand side of (3.20.1); it
follows that a =0. I
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IV. THE THEORY OF STRING FUNCTIONS

Section IV is the heart of the paper. Using the transformation properties of
theta functions, we establish transformation laws for the numerator and
denominator of the character formula and for the string functions. This,
together with the fact that a string function multiplied by a “standard”
modular form is a cusp form (which is also proved here), allows one in prin-
ciple to compute any string function. We do this in a number of interesting
cases, including “most” of the representations of level 1. Furthermore, using
a Tauberian theorem, we deduce from the transformation law the asymptotic
behaviour of the multiplicities of the weights. At the end of Section IV we
indicate how one can apply our technique to the general restriction problem.

4.1. Theta Functions and Affine Lie Algebras

Let g = g(4) be an affine Lie algebra, b its Cartan subalgebra, a,,..., a, the
simple roots. Recall the space h* = Ca, + -+ + Ca; and the positive-definite
symmetric bilinear form (,) on b= Ra, + --- + Ra, (see Section 1.3).
Recall the lattices M <M’ in bh¥% (see Section 1.6) and note that by
Proposition 2.13, M* =P' > M' and M'* = P> M. Here and further on,
given a lattice L < b, L* denotes the dual lattice with respect to the
symmetric bilinear form (, ).

Introduce coordinates on Y= {h € b|Re d(h) > 0} as follows. Let #, :=
{x+iy|x, yER, y >0} be the upper half-plane. For 1 € #,, z € h* and
te C, define h = (1, z, t) € h by requiring that for all 1 € h*,

A(h) = =27i(d, T4y + z + £9).

This allows us to identify ¥ with the domain .#, X h* X C. Then we are in
the situation of Section III with Up=b%, L =M, {, )=, ), and shall freely
use related notions from that section.

We observe, in particular, that for A € h* such that m := A(c) is a positive
integer, the functions @, and @) (defined by (2.16)) are in the above coor-
dinates nothing else but classical theta functions of degree m and charac-
teristic A (we use (2.16.1)):

0,=0%,; 0,=6%,.

(Here @Y, is defined as in Section 3.2.) Note that @} =3, .7 moar @iy =

ZyeM'modM @f{i-my,m' — —

Recall the Weyl groups W=W X T and W’ = WX T’, and the groups
Ng < Gg, which act on Y (see Sections 1.6 and 3.1). We relate these actions.
Recall that for a € b,

t(t,2,)=(0,a,0) - (7,2, ¢). 4.1)
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We identify 7 and 7" with subgroups of Ny G using (4.1). Let W act by
automorphisms on G, by

w-g=g for g€ Mp(2, R),
w- (a, B, t)= (w(a), w(pB), t) for (a,B,t) € Ng.

This defines a group WX Gp, and we identify W and W’ with subgroups of
W X Gg using (4.1). Noting that W acts on Y by w - (1, z,£) = (7, w(2), t),
we have an action of W X G on Y. Moreover, setting

(Sl)@z)=fw-(5,2,1) for wEW,

the right action of G on functions on Y extends to one of WX Gg. We
extend det: W — {1} to a homomorphism det: W X Np— {+1} by requiring
that det n = 1 for n € Np,.

Let QY act on Y by A+ h + 27ia, a € QY. It is easy to check that this
coincides with the action of {(a,0,t) E Ng|a € M’', t € Z} on Y, so that we
can identify QY with a subgroup of N.

In the sequel, we shall use the subgroups T=Tx QY, T'=T"x Q"
W=wxQ", and W =W xQ'' of the group WKXNg (cf.
Section 2.1(G)). Note that

[={(a, B ) ENglaEM',BEM, 1+ }(a,f) E L},
={(@B,)ENgla EM,FEM', t + 3(a. B) E Z},
W=WxT,W=WxT.
We now_define and study certain spaces of theta functions on Y. Recall
the space Th of theta functions of degree m on Y defined in Section 3.2 and

the space _ Th spanned over by the oY ., u € M* mod mM.
Then W and W' preserve Th and Th . Put

Th® = {f € Th,,|f|,=ffor all ue T}.

Note that ThY)={f€ Th,|fla.00=/S for all a€M'}. In particular,
Th? = Th,, in the most interesting case k = 1.
Furthermore, put

Th} ={ f€ Th,| fl,=f for all we€ W},
Th, = {f€ Th,| f, = (det w)f for all w€E€ W}.
These are the subspaces of W-invariants and -anti-invariants of the action of

the group W on the space ThY,. Similarly we define the spaces Th!?, Th.*
and Th,,~, by taking 7' and W' in place of 7-and w.
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__Replacing Th, by Th above, we have similar notions Th fh* fh"’

h’i Since the actions of W and W' on Th commute with multlphcatlon
by elements of the ring 2(#,) of holomorphlc functions of r€ 4,
Lemma 3.12 yields:

PROPOSITION 4.2. Let m be a positive integer. Then f& O+ fO def nes
an isomorphism O(#,)®c Th,, ~ Th,, of O(H#_)-modules, and of W- and
W'-modules. Moreover, for any T E% and any non-zero f€ Th,,, the
restriction of f to Y, = {t} X h* X C is non-zero.

We next give bases for ThZ, etc.

Note that @, |,=0,,_,,, for all we€ W. For A € b* such that A(c) > 0,
put (cf. (2.16))

— o~ UAIY2A(eNS W),
A, =e D (det w)e®™;
wew

- 2
Ajl1 —e (1A12/2A(c))8 Z (det W) ew(.l);

wew’
_ 2 _ 2
S,{ —e (JA1%/2A(e))8 E“- e*; S)’. = (1A12/2A(c)) 8 2 e,
ueEW(A) new'(A)

Recall that the function 4 ,(up to a “non-essential” factor) appears in the
character formula (2.6). The “non-essential” factor is introduced in order to

express 4, as a finite alternating sum of classical theta functions. We fix a
positive integer m.

ProposiTioN 4.3. (a) Let A, A’ € b*, with A(c)=1"'(c) > 0.
(i) ©,=0,.ifand only if TX) = T(1') mod Cé;
(i) S,=S, ifand only if W(1)= W(L') mod CJ;
Sy=IW,|™" Z_@wm; Si=|wil™! g >, G-

weW weW

(iii) A,=01iand only if (A, a)=0 for some a €A™, A, =£A,. if
and only if W(A)=W(A')mod Cé or else A, =A,. = 0;

A=) (detw)O,,,= > (detw)@,,);
weW weWwmod T

Ai= 3 (detw)O,= >  (detw)0,,,.
weW weW ' modT

(b) {@,|AEP' mod T mod C8, A(c)=m}={O¥ | uE M* mod mM}
is a basis for Th,, (resp. Th,,) over C (resp. 7(#,)).
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(c) {@AMEPmod T mod C4,A(c)=m} = {O¥, |u € P mod mM} is
a basis for ThS, (resp. T Th? m) over C (resp. O(H#, ))

d) {S.|AE€P, modCoA(c)=m} is a basis for Thy (resp.Thy)
over C (resp. O(#,)).

() {4,/A€P,,  modCd,A(c)=m} is a basis for Th, (resp. ﬁt,;)
over C (resp. (A )).

(f) IfA€P, and A(c) > 0, then e **°ch, ) = A, ,/A,.

(&) {4, /A,|AEP, modCé,A(c)=m} is a basis of ﬁl; over
OH#,). Th™ is a free Th*-module on one generator A,.

Proof. The conditions for @, =0,. and S, =8,, are clear from the
definitions. The conditions for 4, =0 and A, =4+A4,, are clear from
Proposition 1.9 and the definition of 4. The formulas for 4, and S, follow
from definition (2.16). (Similarly, the formulas for 4} and S} are clear.)
This proves (a).

(b) is immediate from Propositions 2.13 and 3.13, and &, = @%m.
(c)now follows from formula (3.10) and Proposition2.13. By
Proposition 1.9, P, is a fundamental domain for W on {i1€P]|
A(c) > 0} U CJ. This and (c) imply (d). Similarly, the non-zero elements of
{A;|A€P,_modCS, Alc)=m} form a basis of Th,, which by (a)
implies (e). (f) is another form of (2.18).

By (e) and (f), F/A,, is holomorphic for any F € Th_ . 1t follows that Th™
is a free Th*-module on one generator 4,. (g) now follows from (e) and the
fact that A+— A + p defines a bijection from P, onto P, ,. |

Note that corresponding to (c), (d), (e), (g) we also have bases for
Th.?, etc.

Remark. As in Section 3.1, we have a geometric interpretation of the
spaces Th° of functions on Y, and of the representation of W= W/T on
Th?,,, for which Thi are the subspaces of invariant and anti-invariant
functions. Namely, replacing N, by T in the Remark in Section 3.1, we
obtain a holomorphic line bundle & over the family of abelian varieties
b*/(M' + M), T € #,. Moreover, 7~'h°m is identified with the space of all
holomorphic sections of the mth tensor power ¥ ~™ of the line bundle & ~!
dual to &, in a way consistent with the obvious action of W on .
Similarly, one may realize fh,’,,o as the space of all holomorphic sections of a
line bundle over the family of abelian varieties H*/(M +tM'), 1 €7, .
(Using (¢ ~5) € SL(2, 7), one sees that the line bundles for fh?,, and fh;,f’
are actually isomorphic.)

Let G, denote the intersection of the normalizer of Win W X Gg with
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Gg; let Ny=NgM G, and I'=Mp(2, R) N G,. Then it is easy to check that
No={(@p,0)ENg|a € Q*, € Q'*} and

=

(% z)’f)EMP(Z"R)‘(Z ") esie.n),

c

c=0modk'Z,ac=bd=0moda,”Z

Note that Q' =Q if k' =1, 0'=0" if k#1 and 0'=0 + Q" in all
cases. It is easy to check that G, = G,, and

Go=I X N, unless a,=2.

Note also that I'=Mp(2,Z) if k= 1.
Put S=((° 1), "HeG,.

PROPOSITION 4.4. Fix a positive integer m. Then

_ (a) Th, and Th}, are invariant under G, the group G, commutes with
W on Th), and the matrix of any g€ G, with respect to the basis
{OY . |u € M* mod mM} of Th,, is unitary.

(b} S preserves Th,, and its matrix with respect to the basis
{O¥ . |u € M* mod mM} of Th,, is unitary. Moreover, S commutes with W
and exchanges Th?, and Th:?.

Progf. A computation verifies that G, < G, so that by Proposition 3.16,
G, preserves Th, and is unitary with respect to the given basis. Clearly,
gwg~'w '€ T for all g€ G, and wE W, so that G, preserves Th® and
commutes with W on it. This proves (a). Similarly, S € G, commutes with

W, and STS-'=S-'TS=7", which along with Proposition 3.16
proves (b). |

The action of § on Th,, is given explicitly by Proposition 3.15. For B =
(¢ 5, )er, the action of B on Th,, may be computed as follows. Choose
BEDH* such that mac|a|?=2(a,f) mod2Z whenever ca €M and
ma € M*. Then g :=B(0, m~'8,0) is as in Proposition 3.17 (as one checks
using the formula above for I', k’M’ < M and Proposition 2.13(c)), so that
the action of g on Th,, is given by Proposition 3.17. Note that (o, f) € Z
whenever a € M’, since then ca € M, a € M* and ac|a|* € 2Z (as one
checks using Proposition 2.13(c) and the formula above for I'). Hence,
BE P=M'* c M*, so that the action of (0, m~'4,0) on Th, is given by
formula (3.10). The result of these calculations is given by Proposition 4.5(a)
and (c) below.
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PROPOSITION 4.5. Let m be a positive integer and let u € M* = P' > P.

(@) Let B=((* %),j)ET Choose BEP such that mac|al’ =
2(a, #) mod 2Z whenever ca € M and ma € M*. Let ¢ = v(m, B(0, m~'$,0))
be the complex number defined in Proposition 3.17. Then:

O s=¢ Y (expmim '[(bu+ da,au + ca + 28)
cat:nc;))gmM

- (:u’ (Z)]) @Zlu+ca+ﬁ,m'

(b) Choose a € b* such that.}y‘2 = 2(a, y) mod 2Z for all y & M. Then
OY (t+ 1,z —a,t)=emm ullrilcigh (7 7 1),

1 z (z,z))
oM (- Z 2
© “‘"’( ottty

— |M*/mM| _1/2(—if)[/2

X N [exp —2mim ™~ '(u, u')] O, (1, 2, ).

w'eM* mod mM

(d) Let A€ P, A(c)=m. Then:

1 ,
A/l <—79£9t+(z—2)>

T 2t

= |M*/mM| =" (—ir)"?

X N (
A'EP’;?mod Cé
A{cy=m

X A4.(1, 2, 1)

Y (det w) exp —27im “Tw(d), Z'))

wew

Proof. After the preceding discussion, only (d) deserves comment. To
prove it, note that

1 z (z,z)) _
A |——,- _—t /
l( — o+~ €Th,

by Proposition 4.4(b). On the other hand, (c) gives

(z,2)
27

i
A/I <__T_,§,t+ >:|M*/mM|vl/2(_iz.)l/2

X ST (det wexp —2mim T (w(d),u)] @ (z,z,1).  (4.5.1)
wew
neEM* mod mM
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Since A3, =Y ew moar (det w) O%1., ,, if A7(c) = m, and since the 4}, with

A'(c)=m form a basis of Th,~ by Proposition 4.3(e) applied to the adjacent
root system, one writes

Iz (z,z))
A __9—’t e
’1( T T + 27

as a linear combination of the A}.(t, z, t), picking out the coefficient of
A}, 2,1) as that of O, (z,z,t) in (4.5.1). B

4.2. Transformation Properties of the Denominator A,
Since we are interested mainly in the functions (cf. Proposition 4.3(f))
e *"ch, ,y=A4, /4,

we want more precise information on the transformation properties of A4 o
Define a holomorphic function F(r) on -#, by

F(z') — ezni(lﬁlz/Zg)r l_[ (1 _ eZHI(a,Ao)r)mu)ta.
acd K,

Using the results of Section 1.4, it is easy to express F in terms of the #-
function. The result is given in Table F.

TABLE F
Type X F(7)
X}l) n(r)l(h+l)
T 21

A(ﬁ) N (7) ’7(1.)1(21—3) 7](2‘[)2,
A(ﬁ)_, rl(r)(l—l)(21+l) ’7(2.[)21+1
D;i)l n(.[)2l+l ”(21)(1-1)(21+1)
EQ n(e)* n(2e)*
Dy n(e)" n(3r)’

Introduce the following notations:
D:=1+24,] (=dim g);
for 4 € P, of level m, set

_ . w(a, A +p)
b(A) :=|P/(m + g)M|~'/? 2 _—
(A) :=|P/( gM| ale_al‘; sin mt g
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for A € P, , set
e (det w) eWA+20)

Xi(exp y) = Z 7 (det W) e(W(p’),y) (}’ € b*)

ProOPOSITION 4.6.
(a) AD(T, 2z, [) = e—(IEIZ/Zg)Bep I—[ (1 _ e—a)multa

[:1-7: 9%
—12
p _
Izgl T_(p’z)_gt)

=exp 27 (

X H (1 __eZn'i(a,Z-%-tAo))multa.

a€d,

(b) For any B=(B,,j)€ET, there exists a complex number v,(B)
such that
A,lz=v,(B)4, and F(B,1)=v,(B)j(r)" F(z).

1 ,
(c) 4, (—7,§,t+ (22:))=|M'/M|—1/2(—1')'K+'(—ic)’”A;,,(z,z, 0).

(d) Let A€ P, be of level m. Then:

R

A+p
= b(A) N x5 (exp (—27zi —)) Ay ., /AT, 2, t).
A’ePﬁodC& d m+g Ao ?

Alcy=m

(¢) For € Q* and B€ Q'*, we have
A, I(a,0.0) = (_l)m,zﬁ) A,
A4, |(0,13,0) = (_1)(3'251) A4,.

Proof. (a) is immediate from formula (2.7), the definition of 4, and the
fact that | p|* =|p|>. We next prove:

Th; =CA, and  Th,” =C4).. (4.6.1)
Let g" =p’(c). Then by Proposition 4.3(e), Th, =CA, and Th,” =CA4,,

and moreover, Th, =(0) for m < g and Th;, = (0) for m < g’. But by
Proposition 4.4(b), dim Th,, = dim Th/~ for all m. Hence,

g =258
proving (4.6.1).
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Let B=(B,,j)ETI. By (4.6.1) and Proposition4.4(a), 4, |, =v,(B)A
for some v,(B) € C. But (a) implies that

I

F(r)= lzi_rg <Ap(r, z, 0)/ H (—27i(a, z))) )

a€lk,
z regular

from which one deduces F(B,7)=v,(B)j(r)? F(r). This proves (b).
To prove (c), note that by (4.6.1) and Proposition 4.5(d) we have

1 2z (z,2)\ _ . g
Ap (—-T,;,t+T)—C( l'C) Ap,(f,z,t),

where

c=|M*/gM|~""* N (det w) exp(-2nig ™' (w(P), "))

weW

= |M*/gM |~ ] (~2isinng™" (@, 7))

aed’,
by the Weyl denominator formula. Therefore, i'3+!c > 0 due to:

0< (@A) <Ac) forall a€d, andA€P,,.  (4.6.2)

(Since 6 is the highest root of 4’,, we have 0<(a,4)<(6,4)=
A(c) — A(hy) < A(c).) Finally, since the matrix of S with respect to the basis
{O) |1 € M* mod gM} of Th, is unitary (by Proposition 4.4(b)), we have

el =|W/T|/|W'/T|=|M'/M|"".

Hence, ¢ = (—i)'5+' |M’/M|~'"*, proving (c).

Finally, (d) is easily derived from (c) and Proposition 4.5(d). The first
formula of (e) is clear. The second formula follows from (c) and the first
formula for the adjacent root system using 4, |0 5.0y =4, |sz.0.00s-1- 1

Remark. Proposition 4.6(a) is another form of the Macdonald identities
[29]. Proposition 4.6(c) for k=1 is due to Looijenga [27].

4.3. Specializations of A, and the “Very Strange” Formula

For y, z € b%, we define the associated “specialization” F ,.:(T) of A, as
follows. Let

47" ={a € 4| (e, 4, +2)=0and (a, y) € Z},
D, ,=1+|4""|
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Note that A4*° is the set of all roots a such that
exp 2ni(a, T(A, +z)— y)=1 for all r€#,. Clearly, 4°° is a (finite)
reduced root system, and

A =a €A |GEA, orid,}
is a set of positive roots. Motivated by the definition (3.18), we set

F,.(t)= ( [] 1—e )" ') (r, 1z — % (z,tz — y)) . 4.7)

aeAy

Using Proposition 4.6(a), we obtain

— H=8 ) N&F| ,ri(y,20—g2) ,mig— ' o—gzlt
v (T) = (1)1 727N e e

X l_[ (1 _eZni(a.r(Ao+z)Ay))multa. (48)
acA A2

(The power of —1 is due to the fact that 4%° need not lie in 4,.) In
particular, F, , is holomorphic on -#, and F, ,(r)# 0 for all 1 €#, . Note
that Fy o(7) is the function F(r) from Section 4.2. Similarly, we define F; (),
taking A/, in place of 4, and 4" in place of 4°7.

Let Wy < W be the Weyl group of A%*%, and let p>i= ZQEM a. Then
we have

F,.)=|w>|7' ¥ (detw)( 11 M)

= wess (P75 0)

W @M 2w (oY ~g2) nig = W) —gz|2 4.9)

This formula is essentially a special case of Proposition 4.34(d)(ii) in
Section 4.9 (the proof is the same).
We can now prove:

ProrosiTiON 4.10. (a) For B=((¢ ), /)ET with c=0mod kZ, one
has:

atr+ b

) =0 @)@ F )

Fay+bz,cy+dz (

(b) F, (—1/r)y=K(=D)? tWDPyF! _ (1), where K=1ifk=1, K=
|M' /M|~ '/Zl—laew@/lal) ik #1, and K=T,es llal’) if a=2,
where § = {aGAy‘|a+(a VIO E A}
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(¢) Ify,€Q* and z, € Q'*, then:

F (T) — (_1)(y0‘25)+(z0,25’)

Y+ Y0,2+29
nig((¥,20) —(¥p:2)+ (¥0,20))
X e 0 0 020 Fy,z(r)‘

(d) Ify, z€X(_, Qa,, then F, (1) is a holomorphic modular form of
weight 3D, , for I'(N), where N is the least positive integer divisible by k
such that y, zE N~'Q'*.

Proof. For y’ — y and z’ - z and generic y’, z', we have

A (t,1z' —y', =5z 1z’ — y"))
[Taew(=2mi(a, 72" —2) = (y' = y)))

Let B = (B,, j) € Mp(2, R), By= (9 ). Then the transformation law (3.19)
gives, setting y, =ay + bz, z,=cy + dz,

F, (1) =lim

(4.10.1)

J@) P F, | (By7)
(Ap |H)(T’ 12’ — y” -—-%(Z', 1z’ — yl))

= ewon C2ni@ 1 — ) = (7 — ) 10D
If B €I, then (4.10.2) and Proposition 4.6(b) give
J@)PonFy L (BoT)
— lim v,(B)A, (1, 12" — y', —3(z’, 12" — y')) 4.10.3)

T Macwp (“20i(a 1@ —2)— (7 )

Moreover, it is easy to check that if, in addition, ¢ € kZ, then at+— a —
(0, z,)d defines a bijection of 4°%* onto 4%*:. Hence, in this case we may
replace 4%* by 4%* and D, , by D, . in (4.10.3). (a) now follows from a
comparison of (4.10.1) and (4.10.3).

The proof of (b) is similar, using Proposition 4.6(c) in place of
Proposition 4.6(b), and using the facts that @ +— a’, where a’ € 4’ and o’ or
a'v equals @ + (@, y)d, defines a bijection of 4%* onto 4>, and that X in
(b) is |M'/M|™"? []acar: (@/&). (Note that a’ =a + (a, y)d if k=1, and
aV=a+ (e if k' #1)

To prove (c), note that:

Ay+yc,z+zo — tzo(Ay,z)_

To see this, one only needs to show that ¢, , preserves A4; but this follows from
Proposition 4.6(e) and the product decomposition of 4, (cf. the proof of
Proposition 4.27(a)). Now (c) follows by Proposition 4.6(e).

Except for the assertion about behavior at cusps, (d) is clear from (a), (c),

607/53/2-6
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and Q'* < Q*. Since each F, ,(r) is holomorphic at the cusp ico by (4.9),
we may show as in the proof of Theorem A(4) in Section 4.4 that F, (r) is
holomorphic at all cusps. This proves (d). B

Remark. Some especially interesting specializations of A, are suggested
by the results of Section 4.8. Besides F o(r) = F(r), we also have

F_; iz 0(0)= (—i)3+1| P/gM|V? S PURES
teT

if k=1, then
Fo,nsn-1zM0) =n((h + )~"r),
F_hiny5v0(0) = (=02 (B + DY n((h + D))
These, together with (4.8) and (4.9), give nice identities. The first identity is
(in an equivalent form) given by Macdonald [29, (8.16)] in the case when

|a]* =2 for all a € 4, while the others are his specializations @ and ¥. The
identities of Proposition 4.30(d) also have beautiful specializations,

Using Proposition 4.6(d), the same proof as that of Proposition 4.10 gives

ProPosITION 4.11. For A€P, of level mand y, z € !\ _| Qa,, define:
1
®; (1) = (r, 12—y, — (2,12 — y))-
4, 2
Then @} , is a modular form of weight O with the transformation law:

b (- r)=by ¥ x'x([exp(—zm,fi’;)] 011, (0),

¢A
A’€P/ mod C
Allcy=m

where b(A) and y%. are as in Section 4.2.

Remark. Proposition 4.11 is related to the “Monstrous game” |4, 18].
Roughly speaking, it shows that the linear span of the “Thompson series”
corresponding to certain gradations of modules of level m and ail elements of
given period from the Cartan subgroup is invariant with respect to SL(2, 7).

A nice application of Proposition 4.10 is the “very strange” formula (cf.
Proposition 1.11(e}). We recall this formula in a slightly different form.

PROPOSITION 4.12. Let §=(s,,..,5;) be a non-zero sequence of non-
negative integers and let §(A) = ®,;.; 9,(5) be the Z-gradation of the affine
Lie algebra g(A) defined by dege,= —deg f;=s;, degh=0. Set N=
kY i_oa;s;, b;=dim g,(38), and b=Y"_, b;. Define z € b* by

(z,a;)=ks,/N (i= 1., D).
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Then
b 1 At
L (N —1)b;. 4.12.1
Ip gl =5 — o7 ];J(N J) b; 4.12.1)
Proof. Note that (z+A4,,a;)=ks,/N for i=0,.,l. Hence, setting
g, = e /N we obtain
Fou(e) =g 055 [T (1 - g}y,
j>1

Note also that the sequence b;, j > 1, is periodic with period N, and b; = by _;
for 0 <j < N, by the structure of the root system 4. Now (4.12.1) follows by
Lemma 3.20, since F, ,(t) is a modular form by Proposition 4.10(d). 1§

As a corollary to the “very strange” formula, we have for z € h*:

2kgz = Y (z,a)a, (4.12.2)
acA®mod kZ3

%hz= N (z,aV)a (4.12.3)
acd™mod k28

To prove (4.12.2), rewrite (4.12.1) as

1
: R
2kg|p S VT J

0<a<kd

mult(a)(a, z + A )(kd — a, z + A,).
(4.12.4)

Equating the terms quadratic in z proves (4.12.2). Equation (4.12.3) is just
(4.12.2) for 4".

Now we deduce from the “very strange” formula an important inequality.
Let J be the set of all j € I such that j = 6(0) for some automorphism ¢ of
the Dynkin diagram.

ProPOSITION 4.13. Let z € C,;. Then:

|6 —gz|* <P (4.13.1)

Moreover, equality holds if and only if z=A; ; for some jE€ J.

_Progf. Equality holds in the stated cases since, by Proposition 4.27(b),
W, W acts simply-transitively on {5 — gA;|j € J}.

Put A=A,+2z so that (A,a)>0 for al a€4d,. Put
S={a€ 4™ mod kZd' |kd > 0}. Using the descriptions of 4 and 4’ in
Sections 1.4 and 1.5, formula (4.12.4) gives a,g '(p|*—|p —gz|*) =
Y aes (@, A4) (6 — @, A). Moreover, k@ >0 and k(6 —a@) >0 forall e € S, so
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that the summands on the right-hand side are non-negative, proving (4.13.1).
If equality holds in (4.13.1), then these summands all vanish, which forces
z € Q'*; hence, by Proposition 4.27(b), z =4, for some j€J. |

Now it is easy to deduce an estimate for the characteristic s,(4) of a
weight A of the module L{A4) (see Section 2.3).

PROPOSITION 4.14. Let A € P, be of positive level m and let A € P(A).
Then
s(x)>—l”—<i—~—1 ) (4.14.1)
RO . mrz/ .14.
Moreover, equality holds if and only if A € mA;+ Cé for some j€J and
w(d) = A for some w € W,

Proof. Since (mp —gA)(c)=0 and hence |mp —gA|* =|mp —gA |, we
have

25,A)=m (A=A — (g7 ' —(m+g) ) |g—gm 'A["

Proposition 4.14 now follows from Proposition 2.12(d) and (4.13.1). 1§

4.4. Transformation Properties of the String Functions

Recall the string functions ¢4 defined in Section 2.3 for 4 € P such that
m = A(c)> 0 and 1 € max(4) by

cf = e N mult, (A — né) e
n>0

This is a holomorphic function of ¢ € 4, .

Technically, instead of using string functions, it is often more convenient
to deal with the functions c(4,u, m) (4, u € h*, m a positive integer), called
virtual string functions, defined as follows.

Forwe W, A€ P_, A(c)=m and v € max(4), set

c(w(d +p), 7, m) := (det w) c2.

Put ¢(4,u, m)=0 if it is not already defined. It is easy to see that c(4, u, m)
is well-defined for all 4, u € h*. Note that c(4, 4, m)=0 unless A € P and
UEL—f+QcP

Furthermore, since t(A +p)=A+p+ (m+ g)y and £{v) =7V +my for
v € P(A), the function c(A,u, m) depends only on Amod (m + g)M and
u mod mM.
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Note that for w, w’ € W:

c(w(d), w'(u), m) = (det w) c(4, 4, m).

Similarly, we define ¢’(A,u, m) for the adjacent affine Lie algebra; this
function depends only on A mod(m + g) M’ and u mod mM’ (we use the fact
that p’(c) =p(c) = g by (4.6.1)).

Now we can rewrite the theta function identity (2.18) as follows:

AP N (det w) Oay i = D c(A,u, m) O (4.15)
weW weM* mod mM

for any A € P=M'* and any positive integer m.

To verify (4.15), put A’ =1 + (m + g)4,, so that by Propositions 1.9 and
2.13, there exists a unique A"€ W(A')NP_. If A"€P, ., then by
Proposition 2.13, (4.15) is just (2.18) for A =A4"—p. Otherwise, all
c(A, 1, m) are O by definition, and since r,(A"”) = A" for some i € I, the sum
on the left-hand side of (4.15) is te~M1#2m*e = (det wye* " =0.
This verifies (4.15).

Similarly, for the adjacent root system we get

)" X (et w) Oy mis= S C'opm) O, (4.16)
wew weM* mod mM’

for any A € P’ = M* and any positive integer m.

By Lemma 3.12, the string functions are characterized as functions of t
satisfying the theta function identity (4.15). This immediately implies that
the string functions are modular forms [18]. Indeed, as we already
mentioned, the string functions are holomorphic on#, . Furthermore, by
Proposition 3.3(b),

det(@ m(T’ Vs 0));4 veM* mod mM * 0

for generic 7. Hence, (4.15) gives us a non-degenerate system of linear
equations with indeterminates being the string functions, whose coefficients
are modular forms. Therefore the string functions are modular forms of
weight —1/. In this section we show that, moreover, the string functions are
meromorphic modular forms, and we derive their transformation properties
and estimate the orders of their poles at cusps.

First, we introduce some notations. _

For m+#0, B=((% }),/)€EMp(22,R) and «a, u, BEDH*
Sf(B;a,u; B; m) = exp mm”‘[(aﬂ + ca + 2B, bu + da) — (4, a)].

Let N be the least positive integer such that N |y|> € 2Z for all yE M*. N
is found in the following Table N.
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TABLE N

Type X® ! N

AN odd 20+ 1)
even I+1

BV, DV AP | odd 8

=2 mod 4 4

41! 2

ci, E{", DY, 4

Egl), G(zl)a D‘(‘S) 3

Fftl)’A(ZzI)’ E(62) 2

EY 1

Recall the group I« Mp(2, R) introduced in Section 4.1.
Now we are in a position to prove our first main result.

THEOREM A. Let g be an affine Lie algebra. Let m be a positive integer
and let y, y' € P. Then the virtual string functions have the following
transformation properties.

(1) @) ¢ uutsms =) = |M¥/m + ) 7|

X |M*fmM' |~V (M M|V 2 (i)
X Ay

veM* mod(m+ )M’
v'eM* mod mM’

(exp 2mi[—(m+g) ™" (u,v)

+m7 )] e (v, v, ms o).
(b) Ifa,=1, then
c(u, ', m; T+ 1) = (exp 7i[(m + )" |u|?
—m~ WP —g 7 A1) elu, u', m ).
If a,=2, then

c(u, ', m; T+ 1) = (exp mif(m + g) ' [ul> ~m~ ' |* — g~ |A]*
+|u—u =) e(u,p', m; 7).
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(2) Let B=((2 %), j))ET, and choose B, B” € P satisfying
(m+ g)ac|a|* = 2(a, f) mod 27 if caEM,(m+ gla € M*,
med |a|* = 2(a, f”) mod 27 if ca € M, ma € M*.
Set p’ = —af”,
¢ = |exp —nim~'ab| " |*]

X v(m + g B(0,(m + g)~' B,0)) v(mm, B~Y0, m~'g",0)).

Then

(ar+b) ( , ar+b)
F clu,u',m;

ct+d ct+d
=¢lcr+d)3 ¥ Y fBiausfim+ g)
aeM* a'eM*

ca mod(m+g)M ca’ mod mM

Xf(Bya',u's B'sm)F(t) clau + ca + B, au’ +ca’ + B/, m; 7).

() If (2 DET(NmYNT(N(m+g)) and b=0mod a,, then:
2 72
F(ar+b)c(,#,,m;ar+b>=£expmb( |u _|ﬂ|>

ct+d ct+d m+g m
X (et 4+ d)'3+ F(t) e(au, au’, m; 1),
where
1 if lis even,
£ =
(5"-('"‘1&) if 1is odd.

4) If a,=1 (resp. =2), then F(r)clu,u',myt) (resp.
n(T)HY e(u, u’, my 1)) is a cusp form of weight |4, | (resp. 321 + 1)) for
T(Nm)N T (N(m + g)) with trivial multiplier system (resp. multiplier system
&)

(5) The linear span of all string functions for all highest weight
modules L(A), AE P, of level m is invariant under the projective right
action of I'y(k’) defined by

at+b)

((a )f) @) =(er+ )mf( ct+d

c
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Proof. Put ¢'=v(m+g,B(O,(m+g) '8,0)), ¢'=v(m,B~"(0,m '4",0)).
To prove (2) we apply Bo B~ ' =1 to the left-hand side of identity (4.15)
and use Propositions 4.5(a) and 4.6(b). Using the fact that W commutes
with B, we obtain, for u € P:

v C(/l, ﬂ’a m) @zl'.m

—

u’'eM* mod mM

= (A;l 2 (det w) @[:vl(u),m+8> '

weW B B!

=v,(B)'¢'[jeB7']T" N fBiamBim+g)
aeM?
camod{m+ M

X (Ap_l 2-_ (dEt W) @[v‘vl(au+ca+l3).m+g)

weW B!

Now we expand the resulting expression using (4.15) again, obtaining

v,(B) 'e'ljo BT Y fBie,usPim A g)
ca mgde(nrfwg)M

X ( Y clautcatpBu’,m) @‘L’ff,m)

u'eM* mod mM

B!

We apply Proposition 4.5(a) to expand @Y, |, . in this expression
obtaining

v,(B) e’e"(jo BT Y fBia,usBim+ g)
camgde(ﬁdn+g)M

x Y (c(au + ca +P,u",m)o B~

s
w"”eM* mod mM

X Z f(B_l;a",y";ﬂ”;m) @}t;lu”—ca”+li”.m'

a’eM*
ca' mod mM

We replace, in the last expression, the summation

pas—
a’eM*
ca ' 'mod mM
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by the summation

|M*/(mM + cM*)|~!

a"eM* mod mM

Finally, we reparametrize the resulting sums by a’, #' € M* mod mM,
where a’ =aa” —bu” and u’'=—ca” +du” + B”, and use the fact that
fB~ Y a",u";B";m)= [exp —nim~'ab|B"|*| f(B;a',u';f'sm). Then we
obtain the equation

> cwu myey,

u'eM* mod mM
=ev,(B)~'[jo BT [M*/(mM + cM*)|"!
X > fBaufim+g)

aeEM*
ca mod(m+ gIM

X Y fBduifim)
a’,u'eM* mod mM

X [clau +ca + B, au’ +ca’ +f',m)o B} O, .

We match the coefficients of @ff,,m, 4' € P, on both sides, as permitted by
Proposition 4.2, and note that the summand depends only on ca’ mod mM.
We obtain

clu,u',my=ev,(B)"'[jo B~

a,a’eM”
Camod(pen+g)M
ca’ mod mM

X [c(au +ca + B, au’ +ca’ +p',m)o B~}

We muitiply both sides by F, and then compose them with B. Recalling
that by Proposition 4.6(b),

atr+b _ 0 \D
F () = 0,®0" FO),
we obtain (2).
To prove (3), choose f=pf"=0 (which satisfy the hypothesis of
(2)), so that by Proposition3.17(b), e=v(m+ g, B)v(m, B ')=
v(m + g, B) v(m, B) is as given in (3). This proves (3).
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The proof of (1a) is similar to that of (2). We expand the left-hand side of
identity (4.15) using Propositions 4.5(c) and 4.6(c), obtaining, for u € P:

> c(u,p',myt) @Y, (1, 2,1)

u'eM* mod mM

= {5 | M*/(m + g) M|~

X 3 exp|—2mi(m + g) ™' (1, "))

u'eM*mod(m+g)M’

X (A;,‘l > (detw) @’L‘(’u,),,,,”) (S ' (r,z,0)).

wew

We expand the right-hand side using identity (4.16), obtaining

i3 M*f(m + g) M| ~V? D exp[—27i(m + g) ' (u, 1))
w'eM* mod(m+g)M’
1
x ¥ ¢ (y’,/.t”,m; ——) OY, (S7' - (1,2,1)).

u' eM* mod mM T

We transform this expression using Proposition 4.5(c), obtaining

5 M*/(m+ g) M|~ V> D exp[—27i(m + g)'(u,u")]
w' eM*mod(m+g)M’
1
x X (#’,u", m;——) (=) | M /mM| =72
un'’eM* modmM 7

X D exp[2mim ™~ (u", 1" )] O, (1, 2, 1).

-
u'eM*mod mM

Here we used that @Y, (7, —z,1)= 0¥ (1, z, 1).
We match the coefficients of @"‘f,,,,,, 4’ € P, to obtain

1
4 (:uhu M — T)
= |M*/(m + g) M|~ |M*/mM’ |~ | M M| 15 (i)~

X 3 exp2mil—(m+ )" () +m i, )]
veM* mod(m+g)M’
v'eM* mod mM'

X c'(vy vy m; 7).

This proves (la). The proof of (1b) is similar, using (4.15) and
Proposition 4.5(b).

We now prove (5). If a,=2, (5) is immediate from (1) since (; }) and
{ o) generate SL(2, Z). If a, = 1, (5) follows from (2).
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Finally, we prove (4). By (3), w(r) := F(t) c(, 4', m; 7) is a modular form
of weight |4, | for I'" .= I'(Nm) N\ I'(N(m + g)) and multiplier system & given
in (3). To compute e(4) for 4 = (2 }) €I, one uses standard properties of
the Jacobi symbol. If gy= 1, then 2|/ or 4| N by inspection of Table N;
these imply that e(4)= 1. If a, =2, then one finds that ¢(4)= (). Put
6(r) =3, €™"". Then O(z) = n(z/2) "2 n(z)’ n(2r)~? by (3.20.2), so that
()Y =F(1)6(r)) if a,=2. By Proposition 3.8b(ii), 6(A7)=
(DD (cr + d)'*0(z) if a,=2. This suffices to prove (4), except for the
assertion about behavior at the cusps.

Let H(t)=F(1) if ap=1, H(t)=n()*"*" if ay=2. Then H(z) is a
modular form for I'y(k’). Since H(r) vanishes to order | #|*/2g at the cusp
ioc of Iy(k'), wy(t) == H(t) c(u, 4’, m; T) vanishes at the cusp ico of I by
Proposition 4.14. Similarly, (1a) and Proposition 4.14 applied to the adjacent
root system show that w,(r) vanishes at the cusp O of I'". If k¥’ =1 (resp.
k' # 1), then the set of cusps of I'y(k’) is {ioo} (resp. {ico, 0}); therefore,
every cusp of I lies in the I'j(k')-orbit of ico or of 0. This along with (5)
proves (4). 1

Remark. 1t is also possible to prove (1) and (2) of Theorem A by using
Proposition 3.3(a).

4.5. The Matrix of String Functions

Given a posmve integer m, let P™ = {1 € P, modCd|A(c)=m}. The
string functions ¢} (4,4 € P{™) are charactenzed as elements of ﬂ(éfﬂ)
such that for 4 € P{™, we have

At+p— Z cjl‘sl'

Aepm

A;'A

Thus we may regard (ea, Aepm @S the matrix of the &(#)-linear

isomorphism from Th,,, +g onto T h+ defined by F— A4 'F.
Introduce the function

G(T) — ebriRr 1_[ (1 _ eZninr)mult n§, (417)
nzl1

where R =|p]*/2g(h+ 1) if k=1 and R =|p|*/2g(g+ 1) if k+ 1. Using
Proposition 1.11(a), (c), (e), we deduce that

G()=n(r)' if k=1,
]

GO =[]n (%]aiﬁ) if k'#1.
i=1

Explicitly, we have the following Table G.
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TABLE G
Type X G(r)
XV or 457 n(z)!
A n(x)' =" n(21)
D, n(z) n(27)' !
EY n(r)? n(2t)?
DY n(r) n(3r)

Let G'(T) — eZniR'r 1—[”>1 (1 _ eZnint/k')muIt’né’, where R’ = | p—/ |2/2g(h + 1)
if k=1and R' =|p'|*/2g(g + 1) if k# 1.

Remarks. (1) R’ =n/24k if g is of type X'
(2) F@&)=G@)"" if k=1 and F(r)= G(@)**' if k' # 1.

ProOPOSITION 4.18 [36]. For any positive integer m, det(cjl‘)mlE,,,(im=
G179,

Proof. Put b=|P{"|, and let H(r) be the determinant in question. For
TEL,, {AA+g|y,}Aep‘;"’ is linearly independent by Propositions 4.2 and
4.3(e), so that H(r) # 0. For any B € I'j(k’), there exist (B, j) € Mp(2,R)
and g € G, (B, j)Ng. Hence, by Proposition 4.4(a), H(r) is a modular
form of weight — 1b! for I'y(k'). Since G(r) is a modular form of weight 3/
for I'y(k’) by inspection, we conclude that 4(z) := G(r)® H(r) is a modular
form of weight O for I'y(k’). We must show that A(r) = 1.

Put H'(r)=(detc;*), 1epwm. By Proposition 4.4(b), H(—1/7)=
C't~WDbH'(r) for some C'€C, and by inspection, G(—1/7)=
|M' /M|~ (—it) P! G'(1), so that for some C € C,

4 (D)= corer o

Put S=3S(m g)=) sepmSs(A). Since s5,(A4)<s,(4) for all 1€
max(AN\W(A), H(t) is of the form g1+, .,c,q9"), so that H(z) vanishes
to order S at the cusp ioo of I'j(k’). Similarly, H'(z) vanishes to order S’ :=
k'='S(m,g,,) at the cusp ico of I'(k’), since the isomorphism @ of
Section 1.5 taking the adjacent root system A’ to the root system of the
adjacent affine Lie algebra g,, multiplies lengths by k’''?. Hence, A(r)
vanishes to order bR + S at the cusp ico and to order bR’ + S’ at the cusp O
of I'y(k’).

If g,q; is isomorphic to g, then S =&’S’ and R = k'R’, so that bR 4 § =
k'(bR’ 4+ §'). Since ioo and O are the only cusps of Iy(k’) by (c) of
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Section 3.3, this shows that either 4(z) or 4(r)~! is a holomorphic modular
form of weight 0, so that A(r) is constant by (d) of Section 3.3. From the
expansion A(r) =¢®**5(1 + Y ,.,a,4"), we now conclude that A(r)=1,
and that b~'S = —R. If @,q; is nOt isomorphic to g, then g is of type AP or
D®,, and one checks directly that 5~'S = —R, so that again 4(1)=1. 1§

Since 5~'S = —R, from the proof, we have:

COROLLARY 4.19. Put hy=h if k=1 and h,=g if k# 1. Then, for any
positive integer m,

=12
P(m) -t ¥ s.(A :—M-——_
I + I A:_‘P(:’) A( ) 2g(hp+ 1)

Remark. In the limit as m — co, Corollary 4.19 asserts that the average
value of the square of the distance from u € b to W(p) is (h,+ 1)7'|p %

We now consider the matrix (d%),. Aepim inverse to the matrix (c4), 1c pim
of string functions. It is the matrix of the isomorphism F— A F from Th
onto Th,,,, defined by:

A
A,S,= Y did,,,.

{m)
AeP]

For A € P, with A(¢) =m > 0, write

A
4,0,= ¥ a0,
AePmod Cdmod T
Ale)=m+g
with a} € #(#,), and match coefficients of e~ >****) to obtain

2 Wio) (/28— | K12
a;l\ = E (det W) ql—f(—lﬁl /2m+ [w(p) 12/28—1K12/2(m + 8)

teT
weW

t(A) +w(p) =X
— A _ mom+g)/28} 1 m+g)~1A—m-1e(A) |2
= Z‘Ts(A () q 2]
te

Wt 2 -I5A) —m—11]2
— Z e(t(A) _A)q(m(mﬂg)/ g)[(m+g)~1t(A) —m—11] ,
teT

where ¢(u) = det w if u = w(p), and e(u) =0 if u & W(p). Clearly, we have
for A, A € P{:

A __ w(d)
d - Z aA+p
weW/TW

- 2 8(/T+/7—,17) q(m(m+g)/2s)|(7f+a/(m+g)—E/mlz. (4.20)

MEW(A)
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Fix § € M*. Then by the product formula for 4,, we have for each 4 € P

with A(c)=m > 0:
2xim - 1B, A
Y € BA+p
AePmod CSmod T
A(cy=m

— enim-1(13,7\')‘1(1;(m+Az)/ZM)Ig“E—(rn+g)-‘(x+ﬁ)l2

X n (1 __eZnim—l(a,i3+r(A+p)))mu]tn. (420])

a€l
Similarly, for each A € P with A(c) =m > 0, we have

—2ni(m+¢)~UB,A+p) A
2 e Ahr+o
A+pePmod Comod T
(A+p)cy=m+g

- e—zni(m+g)“(ll,7\+Dq(mg/2(mJrg))lg“Efm-Ull2

% n (1 ;ehz‘(m—g}*‘(a.ﬁ%»rl))multa. (4'202)

[- 17 9%

These formulas show that the d} are closely related to specializations of 4.
If we take § =0 in (4.20.1), we obtain for 4 € P:

A _ Le(m+g)/2m)|g-1p—(m+g)~ WA +p)|2
Z dy=4

)
Aepm

% ]—[ (1 _qm-l(a,/\+a))multa. (4203)

ael,

If max(4) = W(A), then d} =3, pmd} and c} = (d})7", so that (4.20.3)
gives many of the results of the next section.

Finally, we show that d%" is often given by a product. Suppose that
M = Q, which is the case if k# 1, or if k=1 and all @ € 4 have the same
length. Suppose that A € P, A(c) =m > 0, and that 4 € M, which is the case
if d7*0# 0. Finally, suppose that the greatest common divisor of m and gis
1. Choose a, b € Z with a(m + g) + bg = 1. Then

T(A +p) N W(p) = alm + &) W(p) + bg(d +p) + g(m + g)M
= (m+ &) W(p) +bg(d + ),
and we obtain, since e(au) = e(ap)e(y) for all 4 € P:

d7ho=¢(ap) 3 (det w) gmem TR/ NET W) himt ) ~HE+ A2
wew

— 7Y q{metm+g)/ g~ 1o+b(m+g)~1(A+p)?
=¢(ap) q

X H (1 _qm(a.(m+8)Ao—b(x+ﬂ-)))multa.

ael,
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The results of this section are due to the second author. A detailed
account of these and some other results will appear in [36].

4.6. Explicit Computation of String Functions

Recall that each A€ P, is labelled by a vector of integers
(A(hy)yer A(h))), sO that A =ag'A(d)d + X1_o A(h;) A;, where the A; are
fundamental weights, and A has level lev(d)=Y"!_,a/A(h;) (see
Section 2.2). If A(h;) = Ny, A(h;) = n;, we often write ¢’ for c4.

EXAaMPLE 1. Suppose that M = Q, that is, that k # 1 or else k =1 and 4
has only one root length. Then Proposition 4.27(b) in Section 4.8 shows that
{AEP, |A(c)=1}={A4;|j€J} +Cé and that the A, (JE€J) are
incongruent modulo Q + C4. Therefore, all non-zero string functions ¢} for
A€ P, of level 1 are equal to ¢(7) := cﬁg(r), which has level 1 since a, = 1.
It follows from Proposition 4.18 that

c(r)=G()™".
In other words, for A € P of level 1 we have ([17], [18])

N multy(4 —nd)g" =[] (1—g/)~™"°,
n>0 j21

As a result, by (2.18), ch, 4, can be written as follows:
Ao+ y—(1/2)| 928

~(1/2)1A|25 _ ZyeMJrXe
€ chy 4= L. (1 — e IBymuii

if lev(4)=1.

In particular, in the case k =1 (i.e., for g of type 4", D{", or E{") we have

yeM

>y
which is proved in [17, p. 131] by a more complicated method. Note also

that these formulas are used in [7] for an explicit construction of the “basic”
representation L(A,).

ExampLE 2. Let g be of type B!V, I > 3, with simple roots numbered as
in
™~ T a
[o l O—— s 03 ——OQ——>0 ,
ag a; aj a1 7]

Then all A € P, mod Cé of level 1 are 4,, 4,, and 4,; the maximal weights
of the corresponding L(A) are W-conjugates of either A, or 4, —J when
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A =4,, or A, when A = A,. Hence, the non-zero string functions ¢/ of level

one are

A1 pA0 pAL pAo WA
Chy=Cal, cal=cp%, chl.

The initial powers of g in the expansions of the ¢, i.e., the characteristics
5,(4) of A, are

241 R S U

C,Ax. . . - Al 54 .

Av TR 0 A T g

Set A(r)=n(r)""'n(2t)"'c4i(r). Then A(r+1)=A(r), and using
call—t~ ) = (i) 272 (ch — cAl)(r) from Theorem A(l), we find
A(=t™ ) =A(—(r +2)7"), so that

dGa)o o (2a)=(6 1)

Since these generate 1,(2),

4 (ar+b

cr+d>=A(T) if (i z>er0(2).

From the leading terms above, one checks that A(r) is holomorphic at the
cusps ico and 0 of I'\(2). Hence A(r) = constant. The constant is 1 since
mult, (4,) = 1. Therefore,

Aty = n(z) 71 n(20).

Replacing 7 by —1/7 in this formula and using #(— 1/7) = (—it)"?*n(), we
obtain
i) —ehi) =@ """ n(z/2).

Replacing 7 by 7+ 1 in this formula, we obtain
eq @)+ epi®) = n(z/2) "  n(xy*~ n(2e) N

These three equations determine all string functions of level 1 for B{".
We can now deduce from (2.18) simple expressions for the characters of
two B{"-modules:
Z 6€A,+y—(l/Z)lylzé—(y.Af)B
= )’e - - 5
L(Ap nj>1 (1 “e—ja)[(l _e—(21—1)8)

3 getet DI
Y@

ch

Chyag + Chra,—a/2ys = [T5, A —e P21 —e )72 (1 — e~ 7)
J
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ExampLE 3. Let g be of type A", For m, n € Z, define:

— 2
e(m, n) = exp 2ni ﬁ—gL for n even,
)
&(m, n) = exp 2mi for n odd.
Then the following formulas hold:
level 1: cld=n()"",
level 2: el =n() " nQ2r),
level 3: i=n@)2¢ [] (-4
n#££1(5)
level 4: 3 =n(x)"n(61r) " n(121)%; civ—edd=n(2r)",
level 5: Pl = (=1 n(z) "} Z e(m, n) q(7m2+sn2)/sso
m=r(5)
n=2p+2(7)

Tm2+5n2=4(16)
(here p+g=r+s5s=5 and p=r mod 2),
level 6: el =n(r)~* n(2t) n(3r) n(6r) ="' n(121),
cSl + clS =n(r)” *n(2r) ’7(6'5')2 n(12r)~ 1

oh _c15=’7(7)—l’

level 7: cil=n(r) 3 g¥® n (1—-gm ] a-¢",

n=0,+1(7) n#+1(7)

3 2xim/6 (m2+21n2)/4
ca=n( Y ey :

m#n(2)
level 8: ce3=n(r)"* n(2r) n(107),
cez 026—’7(7) 1’7(27)1 110 n (l_qM)’
n#£1(5)
level 9: e —cie=n()" g V¥ I1 (1—¢m7"
n=+4,+5(11)

X l_l (1 _an)—l,

n=+1,+3(11)

090 + 2"36 — ’7(1) 3 A e(m, n) q(llm1+n2)/l76,

Ll
n=2(11)
11m24+ n2=4(16)

607/53/2-7
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level 10: el =n(r) "> n(2t) n(5t) ' n(107)?%,
i=n@7¢” [1 (1-¢" [[ (-¢")
n#£+1(5) n#£+2(5)
e —Cl=n@) " nQ20)g " [ (1-¢*)7",
n=+1(5)
esi—205=n0(r)0 1 Y (S1)mTmiglmiemang,
mn=7(10)

10,0 8,2 6,4 . 4.6 2,8 _ 0,10
€100 — Cro00 T €100 — Cralo T C1alo — Crolo

— n(r)A3% S (__1)(m—n)/2 q(2m1+ 3n2)/240'
mn=1(10)

The method of proof is essentially that of Example 2. We use the transfor-
mation law for string functions under SL(2, Z), together with the calculation
of the first few terms in the g-expansions of the string functions using
Theorem ID from Section V. These computations and the fact that a modular
form vanishing at the cusps to sufficiently high order is zero allow us to
verify our formulas. The formulas were suggested by computations using g-
expansions.

From these formulas and Theorem A we deduce the following additional
ones which, together with knowledge of the fractional parts of the s,(1) and
the equality ¢/} = ch¥, due to the outer automorphism of 4, , determine the
string functions for the levels 1, 2, 3, 4, 5, and 6. One may do the same for
levels 7, 8, 9 and 10, but we omit the result for brevity.

level 2: c30 — ¢33 = n(x) "> n(z/2),
level 3: 30 =n(r)~2 g*"*° H (1 —g*),
n#32(5)

B—el=n® " [] (1-¢"),

n#¥+1(5)
cha~cn=n@ ¢ [ (1—g¢"),
n#52(5)
level 4: e+ el =n@/2)7,
c30 — 2632 + o5 + 2¢45 ~ 2¢37 = (1)~ n(z/6)~ n(x/12)?,
level 6: e35 — es1=n(t/3) n(27/3) "} n(x) = n(47/3) n(2v),

¢5i — 2033 + iy =n(21/3)* n(e) =" n(42/3)™" n(20),
i+ el et - el +cld + cli— ci~cl]

=n(t) ™" 1(z/2) n(c/6)* n(z/12)~".
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ExaMPLE 4. Let g be of type A". We determine the ¢4 for A with
lev(4)=1,2,3:
level 1: cioe =1(r) 7%,
level 2: co=n(®) " nQ2)¢"* [ (A-g¢™),

n#+1(mod5)

con=n@)"*n20)¢"* [[ (A-g")

n#+2(mod5)

o —con=nm " n/2)g" [[ (1-¢"),

n#+ 1 (mod5)

o= Coo2 =) n(x/2) g™ [ (1—-¢"),
n#£+2(mod 5)

level 3: ¢300 — Cago = (1) ' n(31) 7,
ehio +can + ctor = n(z) " a(z/3)7",
i = 1(z)~° n(2t)’ n(3)* n(6r) ",
e300 — 3eiit + 2e536 + et — ¢i00 = n(x) = n(z/2)’ n(z/3)* n(z/6)~".

ExaMPLE 5. Let g be of type 43, with simple roots numbered as in

o <=o.
ap o
Then we have
level I: cw=n()""
level 2: cx=n@nQRoyn@) g [ (1—¢*),

n#+1(mod5)

ew=mt) 2 nQ)n@n) " ¢ ] (1—q*),

n #+ 2 (mod 5)

i+l =n@) 0@/~ ¢ [T (1—-g"),

n#+1(mod5)

coi + o =n@ 2 n@/2)n@/H ¢ [ (1-g"),

n#+2(mods$)

level 3: ciy=2n(r) " n(67)~" n(121)?,
cio +2¢i} —clo — 2¢ii = n(r) "* n(z/6) ' n(z/12)".
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Together with the initial powers s,(4) of g, these determine the ¢4 for A of
levels 1, 2, 3.

EXAMPLE 6. Let g be of type GV, with simple roots numbered as in

] a) @
) o,

Then the ¢4 for lev(4) =1 are determined by:

=m0 ] (g™

n#+ 1 {(mod$)

=10 @™ ] (-g™),

n#+2 (modS5)

chi-chi=n0 a0 T =)

n#+1 (mods)

ch—ck=n@7" [ 1-g").
n#+2(mod$)

ExAaMPLE 7. Let g be of type F'", with simple roots numbered as in

[e} Q O————0 o,
22 [ s a3 ay

Then the ¢4 for lev(4) =1 are determined by:

A=)t n(20) g T] (1 —g™),

n#4+ 1 ¢mod 5)

cAit=n(@ " n20)g"* |  A-qg™),
n#12(mods)

cho—cho=n(0) " n@/2)g”* ]  (1-g")

n¥+1(modS5)

cAi—cii=n@ " n@2)g’* 1 (1-q¢").

n#+2 (mod3)

We now outline some methods of computing string functions (and
therefore also characters).

(1) One may use explicit constructions of representations. For instance,
Example 2 may be verified by using spin representations (cf. [23,47]). In
this connection, one may consider the restriction of a highest weight module
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to a subalgebra (see, e.g., [23, Section 3c|, which is related to the idea of
“dual pairs”).

Conversely, the results and methods of this paper (which rely on the
character formula) may be applied to representation theory. For example,
formula (4.20.3) verifies a conjecture from [48, p. 97]. Another example is
the following result of the second author.

THEOREM [49]. Let g be an affine Lie algebra, and let A € P, satisfy
A@)=1. Put I*={i€ll|a|* <|al’}, Q*=Z6+ Y cxZa; g*=
® seo# 8o Put T" = W*N T, where W* is the subgroup of W generated by
{r.la € 4N Q*}). Then we have the following decomposition of L(A) into
irreducible g*-submodules:

LA)= @ «(LMA4),

teTmod T#
where (L*(A4)) = @,co# LA)yr1a)-

If M = Q, so that I* = @, the Theorem is essentially Example 1, which was
first verified in [17], [18]. Examples 2, 6 and 7 are essentially the cases B}",
Gi" and F{" of the Theorem. As in [7], it should be possible to construct
the modules L(A) of level one by using the Theorem.

The proof of the Theorem uses the asymptotics of weight multiplicities
(Proposition 4.21).

(2) One may specialize the character formula. For example, if 4 € P,
and max(4)= W(4), then cAS,4,=4,,,, and ¢} may be computed by
using the “principal” specialization (cf. Section 4.7) as in [17].

(3) One may use the “star” formula of Section 2.1(E) (cf. [6]). This
amounts to regarding the matrix C of string functions of given level as the
inverse of the matrix D, as in Section 4.5. For example, Examples 1, 2, 6 and
7 may be verified using Proposition 4.18 and formula (4.20.3). This seems to
be a good approach to the string functions of level one for C{".

(4) One may use the partition function X, as in the proof of Theorem D.

(5) One may use the theory of theta functions and modular forms, as in
Section IV. All of the examples above may be verified using this last
approach.

4.7. Asymptotics of Weight Multiplicities

We shall determine the leading term in the Fourier expansion of
t/2¢4(—1/1r) at t=ico. Using a Tauberian theorem, this will yield an
asymptotic formula for the weight multiplicities mult,(4 —nd) of the g-
module L(A) as #— +00.
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We shall employ the important specialization:
—2nitp = (gt, 10, 0).
ProposiTION 4.21. Let A€ bh* satisfy m:=A(c)> 0. Then we have,
uniformly for Imt - +00:
it

. 1/2
S AR Yz ] -1/2 [ .
@) 0.~ )~ M (=)

i\ 12
() A,Qrit™'p)~|M'/M|™'? ( 11 ZSin(n(a,A)/m)) (%)
celd
X grism B,

af_ ] = g \" o sin((e, 4 +5)/(m+ g))
@ e (-5)w@ (R R T

X (__l-r)—l/l e—ni(g"—(MnLg)-l)lE’lzr,
if A€ P, and A € max(A4).

Proof. An easy calculation gives
0,Q2nit'p)=OM(r’, v'u, 17’ ({ g7 '51" — |ul?)),

1 1

where 7/ = —gmt~" and 4= g~'p — m~'A. Proposition 3.4 now gives (a).
To prove (b), put A, =eMI2Méq — 5 _ (detw)e” ™, so that we
have the identity: A,(aA)=4,(a4). Applying this with A=p and
a = 2nit™!, we obtain
)

— =2 /T
A Qmic='p)=A, (_m,-n,_r_lA’_%m_l (‘,g_; _‘

m

Applying Proposition 4.6(c), we obtain from this:
—it\'"?
A, Qrit™p) = | M /M| (~i) B! (—m—)
— 1
X AL (m“r, —m“A,—Tmr‘1 lg“p‘lz).

(b) follows from this and the product expansion of 4;..
To prove (c), note that by Proposition 2.12 (or by a little thought), there
exists p € Z, such that 4 — pd lies in the convex hull of W(4). Then for all
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n€Z,,A—nd lies in the convex hull of W(A —nd) and A — (n + p)d lies
in the convex hull of W(4 — nd), so that by Proposition 2.12(c),

mult, (4 — nd) < mult,(A — nd) < mult,(4 — (n + p)d).
This implies, since multiplicities are positive, that
c4@2mit~'p)/eh(2mizp) ~ 1 4.21.1)

for t€iR,, Im7- +oo. Since ¢4(zr) and c4(r) are meromorphic modular
forms, we deduce by considering g-expansions that (4.21.1) holds uniformly
for Im 7 - +o0.

Recall that by (2.18),

-1 _— A
Aj'Ay = ¥ cto,.
ueEA+Q+CH

© mod mM + C5

Evaluate both sides of this equation at 2mir~'p asymptotically for
Im - +o0, using (a) and (b) and the fact that by (a) and (4.21.1), the
{Q/mM| summands of the right-hand side are asymptotic to ¢}@,. (c) now
follows because

vol 0 =|Q/M|~' | M*/M|2. 1
Remark. Proposition 4.14 may be proved using Proposition 4.21(c).
Now we need the following special case of a Tauberian theorem of

Ingham [43].

PROPOSITION 4.22. Let G:[0,+00)— R be a non-decreasing function.
Suppose that there exist ¢ >0, d€R and N >0 such that for s=0 + it
within each fixed angle |t| < ro, 0 < r < + 00, one has

[+ o]

J e “ dG(u) ~ cs~%eM*
0

uniformly for s —» 0. Then for u— +o0, one has

- — — 1/2
G(u)~%7z l/ZcN (1/2)(d+l/2)u(1/2)(d 1/2)eZ(Nu) ]

Now let A€P,, A(c)=m >0, A€ max(4). Define a function G:
{0, +o0)— R by G(0) =0, G(u) = mult, (A — [u]d) for u > 0.
Then Proposition 2.11 shows that G is non-decreasing. We have

@ i
—us _ —5Y pSa(A)s LA
Jo e “dGuy=(1—e"’)e 01(27[ s).
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Propositions 4.21(c) and 4.22 now combine to prove the following
asymptotic formula for the weight multiplicities of the g-module L(A):

THEOREM B. Ler g be an affine Lie algebra. Let A€ P, A(c)=m >0,
A € max(A). Set:

a=—|p =,
2 g(m+ g) _ (4.23)
b = vol(Q) ( g )’/2 I sin(7z(a‘,A +ﬁ)_/(m +8) .
mm+g)) gz, sin(n(e, p)/g)
Then for n— +o0, we have
mult (A — nd) ~ 2~ V2g/HU+ Dy —(1/OU+ 3 gniam /2, 4.24)

ExampLE. Let g be of type A", let A=(m—N)A,+ NA,EP_ be a
weight of positive level m, and let A = (m —n) A, + nA,. Then A € P(A) + Z6
if and only if n = N mod 27.

If n= N mod 27, then we have, as j - + 00,

sin(n((N + 1)/(m + 2))) 2mj \ '
2m+2)) exp (” (m) ) - (4.23)

mult, (1 — jé) ~

For m = 1, we recover the asymptotics of the classical partition function p:

P V(2/3)j

1
mult, (A, — j6) = p(j) ~
Ao — JO) = p(J) T

Remark. By Proposition 1.11(d), we have the following expression for
the constant a defined by (4.23):
dm

a :m, (426)

where d is the dimension of the simple Lie algebra of type X,, such that X{¥)
is the type of the affine Lie algebra 9. For example, if X = A4, D or E, then

d=(g+1)n,
and we obtain in this case:
n .
a= Sak if m=1.

On the other hand, Proposition 2.27 shows that, if 4 € h* is of level
m# —g and a is defined by (4.23), then the representation of g’ on L(A)
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gives rise to a projective representation of Der(g’) on L(A) in which the
derivations d,,, n € Z (cf. Section 2.5), map to operators D, satisfying

[Dn’Dn’] = (n’ - n) Dn+n’ + 5n’,—n2kan31L(A)'

(The second term on the right-hand side has been simplified by adding a
multiple of ; 4, to D,.)

So, the same constant a appears in a completely different situation! We do
not know an explanation of this coincidence.

4.8. Three Remarkable A, and Three Remarkable Elements of a Compact
Lie Group

Both Proposition 4.6(c) and the characterization (4.6.1) of CA, exploited
in its proof will be generalized in Proposition 4.30. For this we need
Proposition 4.27 below.

Recall from Section 4.1 the subgroup N, of N normalizing W, and put

To={t,[yEQ'*}.

Note that Ty = {(0,7,0)| (0, y,0) € Ny} contains T and is abelian. Moreover,
twt~'w=' € T for all t € T, and w € W, so that each coset of Q'* mod M is
W-invariant. We extend the action af of W on b* to the group T, W by
putting af(¢ Ju=p + yfor y € Q’ * and 4 € h*.

Recall the set J of all j € I such that j = ¢(0) for some automorphism ¢ of
the Dynkin diagram. We have (cf. [46]):

ProPOSITION 4.27. (a) The following conditions on y€Ebh* are
equivalent:

(1) 1,ET,.
2) 4,l,€CA4,.
(3) tfd)=4.

b) L Wo=T,W, Wi ={wEW,|w(d,)=4,}, Wo=WNT,W;.
Then: W,= W+b<W WiXTy; Wi=t, ;W] l,p, the set Q'*NC,;
coincides with A | jEJ}), and af(W*) acts Stmply-transnwely on it.

Proof. We first prove (a). (1) implies (2) by Proposition 4.4(a) and
(4.6.1). Assume (2). Then Proposition 4.6(a) shows that for any a € 4™,
there exist § € 4™ and a positive integer m such that for all 4 € b, a(h) = 2ni
implies f(¢,h) = 2nim. But then B=mt,a, and by a similar argument,
m't_BE A" for some positive integerm’. Hence mm'a € 4™. Since
4" NZa={a,—a} we must have mm’=1 and so m=1. Hence, t,a=
BE€ A™. This proves that (2) implies (3). Assume (3). Then (y,a,)0 =
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—tfa) € Q, 0K i</, so that (y,0,) € Z, 0< i< L Thus y € Q*. Since ¢,
also preserves 4", a s1m11ar argument shows that b E QV*. Hence, y € 0* ﬂ
QV*=(Q0 + Q_V)* = Q'*, proving that (3) implies (1). This proves (a).

To prove (b), note that W and T, are normal subgroups of W,. Since T =
WNT, and W=WNXT, we obtain W,=W KX T, Moreover, the
conjugation action of W, is trivial on T,/T. By (a), W, preserves 4 and
W(p), so that Wi ={we& W,|w(p)=p} and W,=WW. Since WnN
W{ = {1} by Lemma 1.2, we obtain W,= W, x W.

Define maps

We = CoeNQ'* =5 Ty/T-5 Wo - W
by
A(w,) = af(w,)0, B(y)=t_,T,
ce,D=w if weWnu,ITW;, DW)=t, ;w5
A maps W into C,,NQ'* since af(W{) preserves C,; and Q'*. B is an
injection since C,; is a fundamental domain for af(W). C is well-defined
since WNTWF = {1} and W,=TW§W. Since W NTy= {1} and W,

acts trivially on T,/T, C is an injective homomorphism. If w € W,, then
clearly D(w) p = p, and moreover, D(w) = ¢, W, where ¢, T, since

gr=p—w(Pp)=p—w(p)Ep—T,Wi(p)
=p—Tolp) = 80'*.

Hence, D(w) € W{. D is obviously an injective homomorphism.

If wy € W, write wy=1t,W, where t,€ T, and w € W. Using wy(p) = p,
one easily computes that DCBA(w,)= DCB(y)=DC(t_,T)=D(W)=w,.
Thus DCBA =1, so that since B, C, and D are injective, A, B, C, and D are
bijective.

Let S ={4;]j€ J To prove (b), it remains to show that ./ =
Q'* N Cy. Smce O0=A4,€5 N (Q’* M C,), since .7 is af(W )-stable and
since af(W) acts transmvely on Q'* N C,, it suffices to show that % <
Q'*NCy. If ag=2, then # = {0}, so we may assume that a, = 1 Ifjel,
then a; =a,= 1 and a —ao =1, so that a; —a since a;a; _a Y. Hence,
1fj#=0 ;,0)= (Aj,Z, 1a,a") a/=1, and ()= ( v) d;; for
1 i</ This shows that A €Q'*NC,,, so that we have shown fc
Q'* N C,;. This proves (b). |

We note a consequence of (a):

g0'*c@ and hQ'*cQ (4.28)
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Indeed, y€ Q'* implies 4 l, €C4, by (a), so that g+ gy= t}(p) €
t7(W(p)) =Wp)cp+ 0. Hence, Q’* c Q. Similar reasoning applied to
4" gives hQ'* = QV, proving (4.28).

Finally, we note a consequence of (b):

[J|=1P'/Q"|=|P/Q|. (4.29)

Remarks. (1) It follows from Proposition 4.27(b) that: W, acts simply-
transitively on {f — gA | j € J}; each coset of Q' * mod M intersects C,;in a
unique point; the abehan groups Q' */M, T,/T, W,, Wi and W /W are
canonically isomorphic.

(2) One can show that J={i € I|d — a;a; € 4}.

(3) One can check case-by-case that 0V +g0*=0NQ*if k' =1,
and Q + hQV* =0 N QO *if k# 1.

We can now turn to:

ProrosiTiON 4.30. (a) For A€ P__, the following conditions on A are
equivalent:

1) There exists a lattice L < Y% such that
R

HEA+L+Co|W,={1}}=W(@k)+Cé.

(2) A+ Cd contains a positive integral multiple of one of the
elements: p; kp¥; p+ A, for k+1 and j€J; p'+ A, for k=1 and jE J;
2(pY — Ay) for ay=2.

(b) Let A€ P,  have level m and let L' be a lattice satisfying
condition (1) of (a). Then:

CA = {FETh,| Fly00=e""0F  forallyeL'*}.

Define a lattice L as follows: L =nQ"* for A€ np + C8; L =nQ* for A€
np¥+Co; L=nM for A€n(p+A4,)+Cé or A€n(p'+4,)+Cé; L=
(Y exZa)* for A€ n(p¥ — Ay) + CO. Then A and L satisfy condition (1) of
(a). Let A=p" + mA,, let W* =W K {t,|y € L*}, and define a character ¢
of W by: e(wt,) = (det w) e~ 2D, Then the stabilizer of A in W* is trivial,

and:
1 z (z,z))
Ax ( it

= |L*/M|—l/2(_i)|K+|(_ir)I/2 e—(l/Zm)lAlztS 2 E(W) e" W,

wewl
(4.30.1)
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(c) Let X mandL be as in (b), and define ¢,: % + L - {(—1,0,1} by
e (u)y=detw if u=w@), wew,

ea(u)=0 if w&wa).
Then:

ex(u) = |L/mM|~ " ] 2sin Z%H)
aek’, m
In particular,

n(h, a
[] 2sin *. )
aeld’, m
(d)() Apv=e_“/2")|5\’lz5 enVHaeAJY(l_e—a)mu]tVa'
(ii) If k=1, then
Ay, g, = e~ WEEEDNEY1S 4o (H (l—e“’v)) T tho
ter

re
aEA+

=|L/mM|". (4.30.2)

(i) Ifk+1, then

~/204 )1 - <
Ayia,=e g (H (1—e “))f,_e ’,
ter

re
aEA+

For the proof we need the following:

Lemma 431 If A+Co=P, , N@A+Q+CJ), then A+ Cé contains
one of the elements: p; p+ A; for M= Q and jE€ J; kp" for DY}, and B}",
1>2; 2p for A\V.

Progf. Clearly, A€ P, but A + a &€ P, , whenever a is a dominant root
for a subdiagram of the Dynkin diagram. A computation using this proves
the lemma. 1

Proof of Proposition 4.30. To prove (a), we first show that (1) implies
(2). Assume (1); then we may take the lattice L in (1) to be
N wew Z(A —wl) = O and we may assume that /l is not divisible in P, ,, so
that the greatest common divisor of the n,:=A(k;), i€, isl. na; =

—r{d) € L for all i € I, so that since L is W invariant and § is a long root
ofA n,d€ L for all i € I. Hence, k0¥ =Y. 5 Zw(@) = L. We now assume
a,=1; the case g, =2 is treated similarly. Since L =3, .z L N Za, L is w-
invariant, and kQ" < L, we have L = Q or L = kQ". If L = (, then (2) holds
by Lemma 4.31. If L kQV, then for all i € I, a; is an indivisible element of
QY and (A, ¢))ay =A—r(A) EL =kQ", so that (A, ;) E kZ for all i€ L
Hence in this case /1 € kPY ., and (2) follows from Lemma 4.31 applied to
4Y. Thus (1) implies (2).
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We next verify (1) for the 4 listed in (2) and the corresponding lattices L
listed in (b), so that (2) implies (1), and moreover (1) holds for the A and L
in (b). It is easy to check that A +L + CJ is a W-invariant subset of
{u € Plu(c)=A(c)}. Moreover P_, is a fundamental domain for W on
{4 € Plu(c) >0, W, = {1}}. Hence, it suffices to check that (1 + L + Cé)N
P,,=A+Cd. For A=p, (WEP, |u(c)=gt=p+Cd verifies (1) If
M=Q and jEJ, then WEP, |u(c)=g+ 1, d€EF+A4;+M}=p+4;+
Cd by Proposition 4.27(b), verifying (1). The same argument applied to 4"
verifies (1) for A=kp" and A =p" + A,. The case 1 =2(p" — 4,) is left to
the reader.

The characterization of CA, in (b) is clear.

We next check that for 4, L, W*, and A as in (b), the stabilizer of 4 in
W* is_trivial. This is equivalent to the assertion that w€&€ W and
p' —w(p') € A(c)L* imply w = I, which we proceed to check. If A = np, then
A(c)L* = gM’, so that the assertion amounts to the fact that the stabilizer of
p' P, in W is trivial. If A =nkp", similar reasoning applied to 4
verifies the assertion. Suppose k# 1, jE€J, and A=n(p + 4;), so_that
AMe)L* =(g+ DM*. If p' —w(p’)E (g + 1)M*, then since p' —w(p')E
Q'=0"=M', and since (g+ 1)M*NM' =(g+1)M' by (4.28), we
obtain Ay +p' —w(d,+p')=p' —w(p’')E (g + 1)M’; since the stabilizer
of Ag+p' € P!, | in W’ is trivial, this forces w = I, verifying the assertion. If
k=1,j€J and A=n(p" + A,), similar reasoning applied to 4" verifies the
assertion. The remaining case is left to the reader.

Put 4’ =4, |5, and let ¢ be as in (b). Then the characterization of C4 in
(b), together with M’  L*, implies that

CA’ = {FE€ Th,,| F|, = e(w)F for all we W*}.

In particular, ¢ is a character of W2, Put

- 2
A" =¢ (1/2m)|A |28 S B(W) ew(A)'

we WA

Since A € P’ and mL* c M*, we have A" € Th,,, and it is easy to check
that 4" |, =¢e(w)A4” for all w€ W*. Hence A" = CA’ for some C € C. To
find C we proceed as in the proof of Proposition 4.6(c), using the fact that
the stabilizer of A4 in W* is trivial. We obtain |C|=|L*/M|"? and C~'=
(0" |M*/mM|™'? [ ez, 2sin(n(d, a)/m), so that by a comparison,
(4.30.1) holds, proving (b), and (4.30.2) holds. It is easy to check that the
function
vi> || (@ sinm(c)'(a, 7))

,
aeld’,

is W-anti-invariant and vanishes precisely on the “walls” (v,a}=0, a € 4.
Combining this with (4.30.2) and (1) for 4 and L proves (c).
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Finally, we prove (d). Part (d)(i) is just Proposition 4.6(a) applied to 4"
Part (d)(iii) is immediate from Proposition 4.6(a) and Example 1 of
Section 4.6. (Note that d(iii) holds whenever M = Q.) Part (d)(ii) is (d)(iii)
applied to4V. |1

Remark. There are similar product expansions of 4, for all A from
Proposition 4.30(a2).

Now we deduce a nice application to compact groups.

PROPOSITION 4.32. Let G be a connected simply-connected compact Lie
group with simple Lie algebra g, and let H be a Cartan subgroup of G with
Lie algebra V. We identify it and ib* using the Killing form ¢ of g. Let W be
the Weyl group, P < ih* the weight lattice, A — ib* the root system, 4, a set
of positive roots, 9 the highest root, p=13Y,ca & p¥=3 ,ca, (¢/d(a, a)),
h=1+ ¢(8,p") the Coxeter number of g, g = ¢(6, 6)".

Consider the following subgroups of H:

I, = {exp 4nik | 4 € P}, Iy,={a€H|(Ada)" =1},
I, ,={a€H|a"""=1}.

Define y, €1, y,€ Ty and yy €Ty, by
7, = exp 47ip, y, = exp 2nih " 'pY,
Vay1 =exp 2mi(h + 1)~ hpV.

These elements of H are regular (i.e., have centralizer H). Moreover, we
have:

(a) Each regular element of I', (resp. Iy or I ,) is W-conjugate to y,
(resp. y, Or Y4y 1)

(b) Let a be a regular element of H, I' the subgroup of H generated by
W(a). Suppose that W(a) is the set of regular elements of I. Then a is W-
conjugate to one of V,, Yy, Vpyy-

(c) Ifr=r,, r,orrl,, , and if a is a regular element of I, then:
det(I — Ad,,4(a)) =|T.

(d) For any irreducible representation n of G over C, tr n(y,), tr n(y,),
and tr n(y,,,) are 0, 1, or —1.

(e) The center of G is the set of all elements of G with maximal
distance from the conjugacy class of y, in G in the invariant metric induced

by —¢.
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(f) Let vol G be the volume of G under the invariant measure induced
by —9. Then:

(vol G)* = (8z*)4mC J(4nip), 4.32.1)

where J is the Jacobian® of exp: g » G.

Sketch of proof. Let X be the type of g, and let § be the affine Lie
algebra of type XV (cf. Section 1.7). Let Q¥ i be the coroot lattice, so
that 27iQ" = Ker(exp |;), and let Q* = {x €| a(x) € Z for all a € 4}. By
Propositions 1.10 and 4.27(b) applied to §, the cosets in P/iQY (resp.
Q*/hQ", Q*/(h+ 1) Q") with trivial stabilizer in W are those intersecting
W(p) (resp.  W(pY), W(pE“)+*+1)Q*%). Putting TI},,=
{a€ H|Ad(a)"*' = 1}, it follows that the regular elements of I'}, , are just
the elements of Center(G)W(exp 2ni(h+ 1)~ 'pY), and that the regular
elements of I', and I', are just the elements of W(y,) and W(y,), respectively.
Since a— (a"*',a~"*) defines the decomposition I'}, , = Center(G) X Iy, ;,
(a) is now clear.

Let a and I' be as in (b), and put L = (1/(27i))(exp |,) " '(I') cib. Let a =
exp 2nix, where x € L, so that the stabilizer in W of x+ Q" in L/QY is
trivial. Then x + A, satisfies condition (1) of Proposition 4.30(a) for §, so
that g is W-conjugate to y,, y, or an element y of Center(G)y,,,. In the
latter case, we have y,,, =y~ " € I. This proves (b).

For (c) we may assume by (a) that a is one of the elements y,, y,, or
Yn+1- Then (c) follows from (4.30.2). Part (d) follows from a comparison of
the formulas in Propositions 4.5(d) and 4.30(b). Part (e) is immediate from
Proposition 4.13.

To prove (f), let u; and u,, be the invariant measures on G and H with
total measure 1, inducing Euclidean measures 4y and uy on g and b; we
denote each of these measures by u. Denote by ¢’ the invariant measures on
G, H, g, and b induced by —¢. Then (c) implies

' (H) =u'(y/2miQ")

= (8n?)/DAmH | P (U2 _ (e WDAmMH T 2 gin dmg(a, p).  (4.32.2)

a€d,

Let F be a continuous real-valued class function on G such that
F(exp x)=e™™® for x € g near 0, and |F(g)| < 1for g€ G, g+ 1.
Then we have asymptotically as n - +o0:

J. F" du' ~'[ ennelx.x) d,u’(x) = p~ /D dimG (4.32'3)
G 8

* J(x) = det((1 — e ***)/ad x), so that J(47ip) = [ [, <4 (5in 274(p, @))/274(p, @).
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Moreover:

JGF" dy=|W|“LF” [] (1—e*)du

acA

“'lWl‘lf e otm TT (1 —ea™) du(h)
b

acA

It

2 (det W)J enmz)(h,h)e(p—wm(h) dﬂ(h)

wew ]

= ¥ (det w)e-(4nn)*1¢(o—Wp.n—Wp)J‘ "™ duy(h)
e b

wew
=J. PULLICRY) du(h) H (1 _e—(Znn)“nb(a,a))
b acd
~ p D EMGy (i V)~ n ¢(a, p) ,
acA 2n
so that by (4.32.3) we have
2n

w(G)y=u'H) ] (4.32.4)

a€d ¢(as ,D) ’
Combining (4.32.2) and (4.32.4), we obtain (4.32.1). 1

Remarks. (a) Propositions 4.32(a), (c), (d) for I', and I', were originally
proved in [25], and 4.32(d) for y,,, in [21] (note that g,, in [21] should be
replaced by its Ath power). Proposition 4.32(f) is given in another form in
[42]. Formula (4.32.4) is given in another form in [45].

{b) One can show that the lattices L of Proposition 4.30(b) are
characterized by: (i) L is a lattice in §%; (i) A + L + Cd is W-stable; (iii)
WeEA+L+Co|W,={1}}=W()+ Cd; (iv) L is maximal with respect to
(i), (ii) and (iii). Similarly, the groups I" of Proposition 4.32(c) are charac-
terized by: (i) I' is a subgroup of H; (ii) I' is W-stable; (iii) The regular
elements of I' form a single W-orbit; (iv) I" is maximal with respect to (i),
(ii) and (iii). This allows one to state Propositions 4.30(b, ¢) and 4.32(c, d)
without reference to cases. It would be interesting to prove them without
reference to cases.

4.9. Restriction of a Highest Weight Module to a Subalgebra

In this section, we describe the behavior of highest weight modules under
restriction and deduce that certain “generalized string functions” are
modular forms.
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Recall the definition in Section 1.1 of Kac-Moody algebras. We modify it
slightly as follows. Given a symmetrizable generalized Cartan matrix 4 =
(a;);.jer» We require of the triple (b, 17, IT") only that b is finite-dimensional,
that TV = {h;};, = b is linearly independent, that IT = {a,},., < b*, and that
afh)=ay; (i, jEI).

The Lie algebras thus defined are called generalized Kac~Moody algebras,
and also generalized affine Lie algebras if the Cartan matrix A4 is a direct
sum of affine Cartan matrices. This definition is convenient for certain
applications, where a homomorphism of semisimple Lie algebras does not
carry over to a homomorphism of the corresponding direct sums of affine
Lie algebras.

Most notions from Sections 1.1 and 2.1 carry over to this context without
difficulty. Moreover, we still have the character formula, the complete
reducibility and the separation of W-orbits by characters (Propositions 2.9
and 2.10). An important difference is that ¥ may be empty. We define a
standard form to be an invariant symmetric bilinear form ( , ) on g such
that: (h;, h;) is positive rational for all h,€ I1; (g,, 9;)=0if a, BEQ (=
free abelian group on /1) and a + f 0 (this condition is redundant if
Y + @).

Let g and g° be generalized Kac-~Moody algebras. We have notions of
Cartan subalgebra b, set of simple roots 71, “complexified” Tits cone Y < b,
imaginary cone Z < b*, the domain Y, Y where all ch,,, (4€P,)
converge, etc.; we have similar notions b°, II°, Y°, Z°, Y3, etc., for g°.

Let 7: g° - g be a homomorphism such that

n(h°) < b; a(Y)NY+#@; tiI°Nn*¥Z)=0. (4.33)

Here and further on, #* denotes the pullback map from functions on } to
functions on b°.

We first show that for A € P, L(A) is isomorphic as a g°-module to a
direct sum of modules L°(u), u € PS. L(A4) is h°-diagonalizable since
7(H°) < b, so it suffices to verify conditions (i) and (ii) of Proposition 2.9 for
the g°-module L(A). Suppose that f¢ is not locally nilpotent on L(A).
Choose 1 € P(A) and v € L(A), such that z(f?)" v+#0foralln€ Z . For
n€Z,, choose i,E P(A) such that the L(A), -component of n(f?)"v is
non-zero, so that 7*(1,) = n*(4) — nas. Since the sequence n~'4,, n > 1, is
bounded, it has a limit point 8 in h*. Then n*(f)=—a?, but § € —Z by
Proposition 2.4(e). This contradicts [I° N 2*(Z)=@. Hence, f7 is locally
nilpotent on L(A), verifying (ii). Similarly, €9 is locally nilpotent on L(A).

To verify (i), choose d € Y° such that n(d)€ Y and a(d) € iR for all
a € 4° so that d € w(C°) + by for some w€E W°. Put m= @,cnaq) as
¢ = min{Re w(a)(d)|i € I°} > 0. Since n(d) € Y, {ReA(n(d))|A € P(4)} is
bounded above, say by B. If v€L(A), and Ne+ A(n(d)) > B, then

607/53/2-8
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n(m)™v = (0), so that m acts locally nilpotently on L(A). Using the operators
(exp €3)(exp — f7)(exp €f) on L(A) (cf. Proposition 2.4(b)), we deduce that
nS acts locally nilpotently on L(A). This verifies (i).

An argument similar to the one above verifying (ii) shows that the
ad n(e?) and ad n(f?) are locally nilpotent.

Since ch, 4, converges on n(Y°)M Y, # @, the weight spaces of L(4) as
an h°-module are finite-dimensional. In particular, for A € P, and u € PS,
the multiplicity mult(A4 : ) of L°(¢) in L(A) is finite. For g = w(u’ + p°) — p°,
where wE€ W° and p’' € PS, set mult(4:u)= (det w) mult(d:u'); for
U4 € H°*, set mult(4:u)=0 if it is not already defined.

Put do={a €4 |n*(@)=0}. Then 4, is a (finite) root system since
(h°)N Y # @, and 4y, =4, 4T is a set of positive roots. Let W, < W be
the corresponding Wey! group, po =3 2 ac 4,, % €tc. Define a polynomial D,
on h* by

D)= T[] Aa")po(a").
a€ly,
ProposITION 4.34.  With the assumptions and notations above, we have:
(@) n(@°")<=Q%n(z°Y)=Z".
(b) For every w° € W°, there exists w& W such that to w*=wo non
b°; if w° is of order 2, we may take w to be of order dividing 2.

(c) If the kernel of 7 is contained in the center of o°, then the pullback
to 9° of any standard form on g is a standard form on g°.

(d) Forall AEP_, we have on Yo, Nn~'(Y,)+ @:
(i) 2 mult(A:u) e* = n*(ChL(A)) II (11— e—n)mulwa'

L aeA‘i
(i) : (det w) Dy(w(A + p)) ™ A +e)
weW\w
:7[* ( l—l (l-—e—a)*l 2 (detw)ew(/\+p)).
acdg, wew
(lll) ¥ ( I_I (1 __efn)multa> E mult(A :Iu) ot
acA N, Py~
= ( N (det w) Do(w(A + p)) e™ WA +oy—m)
we Wo\Ww
X n (l_e—a)munf’a‘
aeAi

Proof. To prove (a), note that 7*(W(P,))c W°(PS) since, for all
A€P,, L(A) as a g°>-module decomposes into a direct sum of L°(u) with
u € P2, and moreover,
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ZV(resp. 0¥)={h €Y |A(h) > O (resp. € Z) for all L € W(P,)},
Z°V(resp. Q°Y) = {h € H°| A(h) > O (resp. € Z) for all A € W°(P°,)}.

To prove (b) and (c), we need the following lemma. We omit its standard
proof.

LEMMA 4.35. Let W be the Weyl group of a Kac-Moody algebra ¢. Let
weE W be of order 2. Then there exist real roots B,..,[,, satisfying
BB € A0} for i#j such that w=ry ---ry. In particular, every
standard form on g is positive-definite on |hEhglwh)=—h}=
RBY + -+ + RB;.

We prove (b) only for a fundamental reflection rp € W®; the proof in the
general case is similar, using Lemma 4.35 applied to g°. Recall from Section
1.1(E) the associated 77 € Aut(g®), and let

77 = (exp ad n(e7))(exp ad 7(—/7))(exp ad n(e7)) € Aut(g).

Then 7 o m=m o F{. Moreover, since 77 preserves the reductive Lie algebra
80 =D+ 2sea,8, and 7o is the identity on g, there exists g in the adjoint
group of g, such that g} preserves b and w := (g77)|, has order dividing 2.
Then wo 7 =79 o 7 on °, and using Proposition 2.10 we obtain w € W. This
proves (b).

To prove (c), let (, ) be a standard form on g. If A€ I1°Y, then
n(h?) € QY by (a) and w(n(h3)) = —n(hS) for some w € W of order 2 by (b).
By Lemmad4.35, (, ) is positive-definite on Rn(h?), and (m(h?), m(hf)) is
rational since (k%) € Q. Since A9 does not lie in the center of g°, n(A9) # 0
by the hypothesis of (c). Hence, (n(/4?%), #(h$)) is a positive rational number,
proving (c).

Finally, we prove (d). Part (i) follows from the character formula for g°.
Part (iii) follows from (i), (ii), and the character formula for g. By the Weyl
dimension formula, we have

n* ( [T =e™®)™" Y (det w)e"“’) =Dy(A)e” P

acly, weW,

for any A € P; (ii) follows from this. |

Remark. Let R =n*(4,)\{0} = b°*, and suppose that R lies in an open
half-space of §°%*, that the kernel of 7 lies in the center of ¢° and that
n(n%)cn,. Let K, be the partition function for R, where ¢ € R is counted
with multiplicity

—mult®(@) + > mult(B).

BeA
z*(B)=a
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Then an equivalent form of (d)(lii) is

mult(4:u)= 3 (det w) Dy(w(4 +p))

weW \W

X Kg(m*(w(4 + p)) — (u + 7% (p))),

valid for all A€ P, and p€bh°*. This formula was obtained by G.
Heckman in the finite-dimensional case, by a different method.

Now we turn to the case of a generalized affine Lie algebra g. Given h € b
and A € h*, we define the “symbol” A[A#] € C, which is a rational function of
A(h)) and a,(h), i € I, as follows. We extend the function f: T — C, defined by
()= A(h — t(R)), in the obvious way to the Zariski closure T~ 7T ®, C of
the translation group T in End(h). One can show that if A(c;)# O for all
canonical central elements ¢; and 6(h) # O for all imaginary roots & of g, then
f(t) has a unique critical point, say t,. We let 1[#] be the stationary value
f(t)-

For example, if g is an affine Lie algebra, then f(¢,) = A(h — ,(h)), where ¢,
is defined by (1.6) for all y € h*, and we have, prov1ded that A(c) # 0 and
6(h)+#0,

A1A) =400~ 512 50 - ol e,

a formula which is independent of the choice of the standard form ( , ).
We note the identities

w)[w(h)] =Alr]  and (k) — Alh] = A(w(h)) — A{w(h)],
valid for all we W.

PropPOSITION 4.36. Let o° and g be generalized affine Lie algebras, and
let n: 9° — g be a homomorphism such that n(h°) — h. Suppose that d € Y° is
such that n(d) € Y and a(n(d)) € Q. for alla € A. For A€ P, and p € P°,,

put

er()=q" N mult(A:u')qg™*'?,
u'(hr)=f(hhr).iel°
where
A = A(n(d)) — (A + p)[n(d)] + p[r(d)] + (u +p°)[d] — p°[d].
Then:

(a) IfAEP, and u € P°, then there exists a positive integer N such
that el(r) is a modular form of weight O and trivial multiplier system
for T(N).
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(b) There exists a modular form H(r) such that H(r) el () is a cusp
SJorm forall A€ P, and u€ P, .

Proof. We first check that +II° N #n*(Z) =@, verifying (4.33), so that
Proposition 4.34 applies. To see this, suppose that a? € II°, € Z, r€C,
and ra? = n*(5). Then (n*(8))(h3) = &(n(h)) = O since n(h3) € hM [g, g], so
that 2r=raf(h9) = (n*(6))(h{) =0. Hence r=0, showing that +II°N
m*(Z)=g.

Let ¢,...,c, €Y and c7},..., ¢5, € h° be the canonical central elements. Since
0¥NZV=3} ,Z,c; and Q°V z°V=3%"m 7. c%, Proposition 4.34(a)
shows that m(cR}€ 3’7, Z,c;, 1 <k<m. Clearly, we may assume that
() #0, 1<k m.

We next reformulate the character formula, the identities defining the ¢4
and d}, and Proposition 4.34d(i) in terms of A[A]. This reformulation is
necessary since the theta functions A, and S, are not defined in our context.

For A € P such that 4(c;) > 0, 1 < j<n, put PP ={A € P | A(c ) Ae)),
1< j< n}, and define, for A € P and he Y,

A [h]= Y (det w)e” VM,

wew
A’k

SA[h] = 2 e { ],

AleWw(d) )
Cj\‘[h] = p{Atp) k]l —olhl-AlR]-ALA] Z mult,,(k’) el’(h)’

A'€A+ T Coy

d«klhlz 2 S(A _,rp_,1/)e(A+p—/1’)[h]+l'[h]~(A+p)[h]’

A'eWw(d)

where ¢(u) =det w if u(h;)= w(p)(h,;), i €I, for some we& W, and &(u)=0
otherwise. Similarly, we define 4[4}, etc., for g°.

If g is an affine Lie algebra, then c¢[h] and d} [h] coincide with the
corresponding functions defined earlier, while 4,[k] and S,[#] differ from
earlier versions by a simple exponential factor.

Then we have the identities:

e~ Wah, () = (=4 A [R])/(e~ M4, k), (4.36.1)

A, B4Rl = S ]S, (Al, (4.36.2)
A€P . Mmax(A)

Ak)Sih = Y di(k] 4,k (4.36.3)
AeP‘jr”

A mod(ZChp

T mult(d ) <M = e~ WA, (k] chy o (1(h). (4.36.4)

uepe
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Now fix A € P, and ¢ € P° . We assume that A(c,) > 0, 1 <k < n, since
the proposition reduces to this case. We shall derive a formula for (),
assuming that 4 € P3"" Y (since otherwise e/ (1) = 0).

Let W,={(wEW|won=mnow® on h° for some w°€E€ W°}, W,=
{(w€ W|womn=nonh°}. Then W, is a subgroup of W, W, is a finite (since
n(d) € Y) normal subgroup of W,, and W,/W, is canonically isomorphic to
W®° by Proposition 4.3(b). Define a function (,) on TX T by: (t,t')=
(A — tA))(=(d) — t'(n(d))). 1t is easy to check using (1.6) that (,) is a
positive-definite Q-valued symmetric Z-bilinear formon 7. Let T, = TN W,,
T,={teT|(t,t')=0 for all ' € T,}. Clearly, T, is a subgroup of T and
|T/T,T,! < co. It is easy to check that W, normalizes T, and W, N T, = {1},
so that W,T, is a subgroup of W of finite index. We shall need the
following:

LEMMA.
(a) Ty={eT|A(nh)—t(nh)))=0for all hE >, ;. Ch?}.

(b) IftET, and we W,, then (A — t))xlh) — w(n(h))) =0 for all
A€ P(A) and h € 1.

Proof. 1If wé& W,, choose w° € W"° such that we 7 =7 o w° on §°. Then
forall k€K, r €T, and 1 € b*, we have
(A — t(A))(m(h) — w(m(h))) (4.36.5)
=AM’y —t""(n(h'))),  where I’ =h—w(h).

(a) follows from (4.36.5) since, as one sees using (1.6), the span of the
possible &’ in (4.36.5) for A=d and wE T, is ) ,.;c ChS. Note that in the
characterization of 7', in (a), the expression n(h) — t(n(h)) lies in > 7., Cc,
since 7(h) € ) ;.; Ch; by Proposition 4.34(a). Hence, if 1 € P(A), then (a)
holds with A replaced by A. Along with (4.36.5), this proves (b). 1

It follows from (b) of the lemma that if A € P(A) and h € 1°, then
wt(A)[n(h)] = —A[n(h)] + t(A)[n(h)] (4.36.6)
+ w(d)[n(h)] forall (€T, we W,.
Therefore,

Z ewt(l)[n(h)] — e—/l[n(h)] ( z et(./l)[ﬂ(h)]) ( Z ew()l)[n(h)]>' (4.367)
w

teT, teT, ew,
weW,
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Moreover, one easily computes using the isomorphism W,/W, > W® that

DML AT 2N elrwi-="(Mikigo . k). (4.36.8)

WeW,

Choosing coset representatives w,,..., w, for W,T\W, it follows from
(4.36.7) and (4.36.8) that

Siln(h)] = Z Fi(h) S3eqw, anlh)s (4.36.9)

r=1

where

Fl) =W Wl | W3 ap| 77 21D 3 gtrDinl,

(€T,

On the other hand, putting
A(h) = A(n(h)) — (4 + p)[n(h)] + p[m(h)] — p°( ],
it is immediate from (4.36.1), (4.36.2), and (4.36.4) that
N mult(A :p) e ® =™ N cA[m(h)] AS.[h] S1[n(h)].
uepe AeP  Nmax(A)
(4.36.10)

Substituting (4.36.9) into (4.36.10) and using (4.36.3) applied to g° we
obtain

N mult(A:p) 4™ (4.36.11)
uEPp°
= E e’“””‘“*"””"E"}(h)e_‘“+”°)["]Az+po[h],
weP AN

umod(E. ChpyL
where

Eiy= Y ¥ cila(h)] dgm " P [h] Fih).

A€eP  MNmax(A) r=1
It follows from (4.36.11) that for all u € P3"" ), we have
eA\(r) = EA(—2nird). (4.36.12)

To prove (a), we will show that the factors of the summands of
E%(—2nitd) are modular forms of appropriate weights. Fix 4 € P, M max(A4)
and r€Z, 1<r<s. It follows from Theorem A that c}[—2mitn(d)] is a

modular form of weight —1 rank T for some I'(N). Remark (f) of Section 3.3



242 KAC AND PETERSON

shows that d™ ***[2zird] is a holomorphic modular form of weight
3 rank T° for some I'(N). Remark (f) of Section 3.3 also shows that if S, is
the stationary value of tw,(1)|n(d)}] for tE T, :=T, ®, C, then

s —twr(A)[(d)]
q 1 2 q wr(d) [z
teT,

is a holomorphic modular form of weight § rank T, = j(rank T—rank T,)=
j(rank T —rank 7°) for some I'(N). To show that F(—2mitd) is a
holomorphic modular form of weight 3(rank 7 —rank 7°), so that
E%(—2nitd) is a modular form of weight O, we have to show that S, =
n*(w,(4))[d]. Let S and S, be the stationary values of tw (1)[n(d)] for tE T
andfort€ T, :=T, ®; C, respectively. Then (4.36.6) shows that

S = —w W)@ + 5, + 5.

On the other hand, S =0 by the definition of 4|B], and using the definition
of T,, we easily obtain

S = w,A)[n(d)] — ¥ 0w, W)\ d].

Hence, S, =7n*(w,(4))|d] as required. Except for the assertion about the
multiplier system, whose proof is omitted, this proves(a). Since
dem M [ 2ritd] and F4(—2nitd) are holomorphic modular forms, (b)
follows from Theorem A(4). [

As an example, we consider in more detail the decomposition of the tensor
product of two g-modules L(A) and L(A') where g is an affine Lie algebra
and A4,4’€P,, using the diagonal inclusion gcg®g. Due to
Proposition 2.9 this tensor product decomposes into a direct sum of modules
L(A") where A" € P, and A"(c)=A(c) + A'(c). Hence there exist non-
negative integers mult(A4, 4’5 A”) such that

chyayChian= S mult(d, 454" chy 4.

A"eP,
Introduce the generating functions

cA,454")= N mult(d, 4’3 1) e Satsa s
AeA"+ Cs

(note that s, _,5=s, —n). Then as in Section 4.4, one can prove:

ProposiTION 4.37. (a) If A, A, A"€P,, Alc)=m>0,
A'(c)y=m’' >0 and A"(c)=m + m’', then c(A,A"; A") is a modular form of
weight zero for T(N(m+ g)NOIT(N(m' + g)NIT(Nm+m' + g)). If
a,=1, then F(t)c(A,A';4") is a cusp form; if a,=2, then
n(@)" ¥V e(A, A", A") is a cusp form.
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(b) The span of the c(A, A’; A") with fixed A(c), A'(c) and A"(c) is
stable under I'y(k').

Progf. Only the assertion on behavior at the cusps deserves proof. For
A € max(A), write

ApiypSi= z e(d, A5 A") Ay,
-
where e(d,4';4")E P(#,). By Proposition 3.14 and Remark (f) in
Section 3.3, the e(4, A'; A”) are holomorphic modular forms. Since

o(d,4';4") =Y che(d, A5 4"),
A

Theorem A(4) completes the proof. 1

Let A€ P, . Then for n> 0, the symmetric group S, acts on the nth
tensor power ®"L(A) of L(A). For any irreducible S,-moduleV, the
subspace (®" L(A4)), of ®" L(A) transforming according to V is g-stable,
hence decomposes into a direct sum of irreducible highest weight modules.
We may then form generalized string functions for this decomposition, which
are again modular forms of weight zero.

ExampLE. Take n =2, so that §, has two irreducible modules V', and
V_ (V, is the trivial module). Write ch, and ch_ for the characters of the
modules (L(4) ® L(A4)),,. Then (cf. (2.10.2))

ch, +ch_=chj,,
(ch, —ch_)(h) = chy,4,(2h).

In the case g=A4{" and 4 = A4,, a computation using these formulasyields
the following illuminating result:

e o)
Q —ké
ch, = ( N oaye ) chy 2ap

k=0

[¢ o]
O —ké
ch_ (L Arp 1€ )Chuzm—a)’
k=0

where

18

s o]
V' oa,qF = k]_[] (1+4¢* M.

0

x
If

(Note that in the related result [17, p. 134, Example (a)], the roles of a,, and
@, .1 have been inadvertantly reversed.)

We now give another example, which shows that for restriction to a finite-
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dimensional subalgebra the situation is different—the generalized string
functions are no longer modular forms.

Let g be an affine Lie algebra, g the simple finite-dimensional subalgebra
corresponding tod. Let AEP +» A(d)=0, be of level m >0, and consider
the g-module L(A) restricted to § @ Cd (direct sum of ideals). For L€ P,
denote by F(4) the irreducible §-module with highest weight 1. Let L(A4) =
@0 L(A4)_, be the eigenspace decomposition with respect to ag 'd. Set

$1(@)= Y (multiplicity of F(A) in L(4)_,) q".

nxo0

In order to calculate ¢,(g), ¢ =e~?, recall that

g4 ch L(A)= D clo¥ (4.38)

a.ms
ueP mod mM+ C8

where c;‘ is a string function and

@lg‘m:eon Z q(l/l)mlylzemy.
yeM+m=—lyg
By the Weyl character formula, ¢,(g) is the g-series, which is the coefficient
of e™%e**? in (3, . (det w)e”®)ch L(A). Hence, the uth summand of
(4.38) gives a contribution to ¢,(q) if and only if =4 + p — w(p) mod mM
for some w € W. But then ¢ = ¢}, 5_ .5+ ma.» and we obtain
0

0@ =g " Y (detw) g/ @l o mimay (439)

we W

Now suppose that the type of g is X'*, where X = 4, D or E, and consider
the “basic” g-module L(A,). Then there is a unique non-zero string function
ca? = g*"°b(q) for L(4,), where

bg)=]11-g) ™"
i>1

(see Section 4.6, Example 1).
Hence, by (4.39), ¢,(q) =0 if A & M, and for A € M we have

$1(@) = blg) gV AHED N (detw) g AP
weW
:b(q)q“”""lzﬂﬂﬁ,ﬁ) n (q—(l/z)u+5.a),_qu/z)(,u,;,a)).

aeld,

We thus we arrive at the following formula:

6@ =b@) g™ [T 1—q®+#®) if leMNP,.

ael,
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In the case k = 1, this formula was deduced in [18] by a more complicated
method.

4.10. Appendix 4: On Independence of Fundamental Characters

We state here a resuit of the second author, which is the precise version
(b) of (a) below, which in turn is a theorem of I. Bernstein and O.
Schwartzman [2]. The proof follows theirs in considering a Jacobian of theta
functions; it will appear in [35].

For F a holomorphic function on Y =, X b X C = b, define the partial
derivatives

OF)(h) = lim £~ [F(h + th) — F(h)].

Then the Jacobian of 4, , ,/4,,0< j <, is

S =det(@(A s, /A, ocr i<t

We have .~ €Th;, so that .~ =b(t)A4,, where b(z)E2(#,) (by
Proposition 4.3(e)). Also, the 4, , /4,, 0<i</, when restricted to Y_,

generate Th* |y, if and only if b(r) # 0.
We have:

THEOREM 4.40. (a) [2| For any t€#,, Th* ly, is a polynomial
algebra on | + 1 generators 0,,..., ©,, where 0, € f;l;iv ly, -

(b) [35] Suppose that g is not of one of the types E{", E, E{V, E(,

F". Then Th* is a polynomial algebra over #(#,) on generators A At plAys

0< i<l Moreover, b(r) does not vanish on #,, and is given up to a
multiplicative constant in Table ] below.

Remark. The proof is case-by-case, and uses the theory of modular
forms. We do not know if b(7) vanishes on #, for the excluded types.

In Table J we list the type XX of the algebra g, a positive integer M
associated to g, and a product expansion of b(z) valid up to a multiplicative
constant. In the product expansions, F, denotes the modular form

Fr= q(SM)‘l(M—Zr)2 ]—I (1 _qn)

n=0mod M

npl
x Il a-¢n I (-g"
n=rmod M n=—rmodA

npli nxl
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TABLE J
Type X% Modulus M b(r)
A", CpY 1 n(@)’
B{Y 20+ 1 n(z)'= Fy 'F} times:

FF,  ifl=12r,

F,FS, ifl=2r+ 1.
DV [ n{r)'~* times:

FIF,  ifl=2r,

Fiifl=2r+ L.

Gy’ 9 n(t) F,

A5 20+3 n(@) ' Fy

A4, 2042 (@) P Fp

DY, 2042 n(20)' 2 FFp,,
Dy 36 n(t) n(2t)~" n(3z) "

X n(47) n(67)* n(91)* n(12r)~"
X q—49/72 ]—[ (1 _qn)—l

n=0,+1mod9
nx1

V. THE PARTITION FUNCTION AND HECKE “INDEFINITE”
MobuLAR Forms

In Section V we find explicit formulas for the partition function K of the
affine Lie algebra of type 4{" using methods developed in [34]. This allows
us to compute the string functions directly using the muitiplicity formula
(2.8). In the simplest case, the affine Lie algebra of type 4 {", these functions
multiplied by the cube of the #-function turn out to be modular forms
associated to indefinite binary quadratic forms. In conclusion we collect the
main results of the paper in the case A!", obtaining various identities for
modular forms and elliptic theta functions.

5.1. The Partition Function K for A\

Let g be the affine Lie algebra of type 4{". Let b be the Cartan subalgebra
of g, 4 h* the root system, 4, the set of positive roots, {ag,..., &,} the set
of simple roots, numbered as in
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Foo  —oop

@y & oy, o

Let W be the Weyl group of g, generated by the reflections r, ,..., r,,, which
we denote as usual by ry,..., r;. Let W be the subgroup of W generated by
Ty Py We regard W as the Weyl group of the root system A of type 4,. Let
Q be the lattice in h* generated by ay,..., @;, and let Q be the sublamce
generated by «,..., ;. Define functions n;, 0 <i</, on @ by

a=nya)ay,+ - +na)q for a€Q.
Note that {ag,..., a;, p} is a basis of h*. We define 0 € GL(h*) by
o(a)=a;,,, 0<i<y
o(a) = a; a(p)=p.

Then ¢ normalizes W, so that we may define the group W, :={o)X W,
where {¢) is the subgroup of GL(b*) generated by 0. Note that W is the
group W, of Proposition 4.27(b). Then 4, Q, and Q +p are W -invariant.
We define a “shifted” action of W, on @ by w.a=w(a+p)—p. This
induces an action of W, on functions on Q by (w. f)(a@)= f(w™'.a), and
hence an action of the group ring C[W,] on these functions.

Recall the partition function K, defined on Q. Then on Q, K is the usual
Kostant partition function for 4,

We introduce the following polynomial function on Q [34]:

n(By—n,_(B)+1-r
o= Y k@[ ("
aeQ 1'1:[ r(a)_nr l(a)+l_r
nla)=0
Here we define (})=n(n—1)--- (n—k+ 1)/k! for k>0, (3)=1, (x)=0
for k < 0. Note that if o € Q gives a non-zero summand, then we must have
n(a)>0 and n(a)—n,_,(a)+1—r>0 for 1L r<l Since these and
n(a) =0 imply 0 < n,(a) < ('3") for 1 <7<, the sum defining F is actually
finite.
For motivation, we mention that F(f) coincides with the Kostant partition
function for 4, on the set of all S € Q satisfying n/(f)>n,_,(B)> - >
n,(8) >0 [34]. We set:

K'=(+r)0—r_yr) 1= rr).K (5.1)

The crucial observation is that the function K’ is “simpler” than the partition
function K. So, we first give an effective algorithm for computing X’ and
then express K in terms of K’. For that we need the following two lemmas.
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LEMMA 5.2 [34]. IfB€ Q, then K'(B) = F(B).
Define a function X” on Q by

2 K"(')/) e'= n (1 _ ea)Amulta,
ve@ acd K,

i.e., this is a partition function for which parts from 4, are not permitted.
Then clearly, K(B) =3,z K(a)K"(B—a) for f€ Q. f wE W and a € Q,
then K"(w(a))=K"(a), so that:

Kw.h)= ¥ K@K f-a)

Y K@K"w ' (w.f—a))
Zi K@K"(B—w".a)
ZZ Kw.a)K"(B—a).

Along with formula (5.1) and Lemma 5.2, this yields:

LEmMMA 5.3. For BEQ, K' ()= g F(@)K"(f —a).

For k€Z,, g€C, [q|< 1, set 0,(q) =051 (Xgnd*)q" and o(q) =
Iss: (1 —g"). Recall that both functions are intimately connected to
classical modular forms, namely, setting g =e***, we have: E(t)— 1=
¥x02x—1(q) for k > 1 and some constant y,, where E, () is the kth Eisenstein
series (see, e.g., [39]), and 7(r) = ¢"/**p(q) is the Dedekind #-function.

Now we can give an algorithm for computing the function K’.

PROPOSITION 5.4. There exists a polynomial R, in I+ 2 indeterminates
such that for f € Q and |q| < 1, one has

o(g)'*» ;} K'(B + nd)q" = Ry(n,(B)yr n,_(B), 0,(q), 35(q), 05(q))-

Proof. We shall prove this as an equality of formal power series in g.
The convergence is clear by the argument of Lemma 2.3.

For a € h*, regard e® as a function on b. Let D be the linear constant-
coefficient differential operator on b such that D(e®) = F(a) e for a € h*,
so that F(a)= (D(e®))(0). (In other words, F is the symbol of the differential
operator D.)
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If € Q, Lemma 5.3 gives

go K'(B+nd)q" = (D (e" ygﬁ K"(y + né)q"e‘?)) (0).
50

But from the description of the root system of an affine Lie algebra ¢ from
Table I we obtain

Y K'(y+nd)g'e '=0(q)" [] (1—g"*)"".
ye@ ael
n>o0 nz1

Hence, we have, for § € Q,

n; K'(B+nd)q" = (D (e“w(q)" LIK (1 —q"e")“)) (0). (5.4.1)
51

On the other hand, for a € h* we have

1
log [] (1—g"e®)™'=3 ¥ —(g"")'= Y ¢" Y d~'e,
nx1 nst 1 I

and in particular,

—logp(g)= Y ¢" Y d%.
n>1 din

Therefore we obtain

[T (A—g"e) (1 —gme )"

nxl

— (p(q)—z exp ( 2 qn Z d—l(e(d/Z)a _ e—-(d/Z)a)Z). (5'42)
nz1 din

Introduce

G = Z q" Z d-! Z (e(d/Z)a _e—(d/Z)n)Z.
A>1 din aeh,

Then (5.4.1) and (5.4.2) yield

9(@)'*? 3 K'(8 + nd) g" = (D(e” exp G))(0). (5.4.3)

ny0
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Let D’ be the polynomial in the derivatives of f such that D(exp f)=
D'(f)exp f. Then we obtain

(D(e? exp G))(0) = (D' (B + G))(0)
=R ’(nl(ﬂ)""ﬁ nl(ﬂ)a Gl(q)’ Us(q)’ 0'5(q),...)

for some polynomial R’. This follows from the fact that G and its derivatives
of odd order vanish at 0, and its derivatives of even order are multiples of the
0,1-1(q), k> 1, at 0. Since F(f) does not involve n,(f5), neither does R’. Now
the Proposition follows from (5.4.3) and the well-known fact (see, e.g., [39])
that for k > 2, 6, _,(q) is a polynomial in g4(q) and o,(g). 1

For 1 /< 4, R, is given below; in the formulas, we have set m; = m(f) =
(B +p) =n )+ 3il —i+ 1), 1<i<L.
R, =1;

R,=m,;

R,= AZ}Z& (3m, —2m,)(4m? — 1 + 240,(9));

R, =——(m} —m,)(3my — 2m,)(6m} — 15m,m, + 10m; — 4)
+ —é—ml(?;m3 — 2m,)(4m? — 6m,m, + 4m3 — 3)o,(q)
4, (3, — 2o )(o(@) + 3600

In order to recover the partition function K from the function X’ we need
three more lemmas. For 1< i</, we introduce the following elements of
W .

o
r__ . — ‘s, I—i+1
W=ty Vi_is1s W;=0WwW;; t,-—Wl- .

Lemma 5.5.
(a) If1<i<j<l, then wiw;=w,w; and t;w; = w;t;.
(b) t,=1x,_,, Jori=1,..,1 wheret,is defined by formula (1.6).

In particular, t{ag)=ag+9d, tja;_;,)=a;,_;,,— 90, and t(a;)=a; for
J#0,1—-i+ 1.

The proof consists of a straightforward calculation, which we omit.

For 0 < i</, define functions K’ on Q inductively by
KO—K, K®=(1—(=1)w/).KY for 1<i<L
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LEMMA 5.6. For 0<ig]|,
KO = (14w =ws™) e (1= (1) Wi 7). K.

In particular, K"’ = K'.

Proof. The lemma is clear for i =0. Suppose it is true for i — 1. Then
since (67" . K)(a)=K(6 . a) = K(6(a)) = K(a), we have 6 ' . K = K, so that
wil.K=w/"'".K. Using this, and wiw,=w,w, for 1<k <i from
Lemma 5.5(a), we obtain

KO = (1= (=1)' wi ") KD
=(1=Diw DA 4+w™ ) e (1= (=D w2 . K
= +wi™h) - (=D wimH = (D w ) K
=(1+wi ) (=D wizH( - =D wi ) K

COROLLARY 5.7. For 0K i<, if a € Q and ny(a) <0, then KV (a)=0.

Proof. By Lemma 5.6, it suffices to note that for w € W and a € Q such
that ny(z) <0, we have (w.K)a)=K(w™'.a)=0 since n,(w'.a)=
ny(a) <0. 1

LemMmAa 5.8. For 1<igland a €Q:

@ K@= Y DKW .a)

n>0
=— N ()" KOW]. a)
n<0
®) N (D"KPw'. a)=0.

nel

-

Kjveoer kg

© K@= X (DR KO (o wha +p) = p).
0

In each sum above, only a finite number of summands are non-zero.

Proof. For k€ Z', k= (k... k), set w(k)=wh ... wh. Fix a € Q. We
first show that ny(w(k).a) < O for all but a finite number of k € Z, so that
by Corollary 5.7, the sums in question are finite.

For k= (ky,... k) E Z', write k,= (I —s+ 1) g, +r, for 1 <5</, where
g, rs€Z and 0 r,<l—s+ 1. Set t(k)=1¢7'--- t], o(k)=w;' --- wi'. Then
by Lemma 5.5(a), w(k)=t(k)g@(k). Set y(k)=3"'_,q,4,_,,,- Then by
Lemma 5.5(b), t(k) = t,,. For |k|— co, |y(k)| - oo and ¢(k) takes on only a
finite number of distinct values. Since (p,d)=1+1>0 and n,(8)=1>0,

607/53/2-9
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formuia (1.7) shows that ny(w(k).a) <0 for all but a finite number of
kez'
To prove (a), note that by definition,
KP@)=K"P@)— (-1) K" (w,.a),
so that
K Ya)y=KD@) + (=1) K" P(w;. a),
and hence, by induction on N,
N—-1
K(i—l)(a) — Z (__l)ni K(i)(w;t . a) + (_I)Ni K(i—l)(wli\/. a)'
n=0
Since KO(w¥.a)=K"Y"P(w¥.a)=0 for N large, this proves the first part
of (a). The second part follows similarly from

- K(i—l)(a) — (_l)i K(i)(wi_l .a)— (—l)ilf(i_”(wi_l .a),

and (b) is immediate from (a).

Finally, (c) follows from the first part of (a) by downward induction
oni.

Set T, =l 1tk k) €L, ), @={whi-..wh |0k, I—i for
1 i</}, and define a character y of W, by y(g) =1, y(w)=det(w) for
wE W. Then since K” =K’ by Lemma 5.6, Lemma 5.8(c) and its proof
yield, for i = 1:

THEOREM C. For the affine Lie algebra of type A", one has, for a € Q,
K@= Y x(t$)K'(tp(a +p) —p).

teT,
oED

Remark. One can show [34] that if n,(8) > n,_,(8) + ny(B) for 1 <r <1,
then K(f)=K’(f). This, together with Lemma 5.2, implies a remark
preceding Lemma 5.2.

5.2. Formulas for K in Low Ranks

Theorem C, along with Proposition 5.4, gives explicit formulas for the
partition function K.
For example, let /= 1. Then

4, ={ngas+n,a,|ng,n €7 ,,n,—n,| < 1\{0}
AM={nd|n€Z,n>1}, where S=a,+a,; 4, ={a,}

and multa=1 for all a € 4. Furthermore, we have: ® = {1} and T, =
(| kE Z .}, where Hay)=a, + 3, ta,)=a,— 8, t(p)=p—a,, y(t)=—1.
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We also have: R, =1 and therefore K'(8)= p®(n,(B)). Here p'¥(n) is
defined by
2. p(n)q" = p(gq)~" for g| < 1,

ne’

i.e, p®(n) is the number of partitions of n in positive integral parts of d
different “colors.”
Theorem C and Lemma 5.8(b) now give:

PROPOSITION 5.9. For the affine Lie algebra of type A\, one has for n,,
n€Z:

(@) K(mpapy+na)=Y (=1)¢p® ((k+ 1)”o—kn1—k(k2+ 1))’
k>0
(b) K(nga,+n,a,)=-— Z (—1)k p® ((k+ 1) ng — kn, — k(k2+ l)>.

Note that for use in computing K(n,a, +n,a,), (a) is best suited if
n, 2 n,, while (b) is best suited if n, > n,.

Remark. Let I=1. Then the proofs simplify considerably. One has:
F(@)=1=K'(a) for a € Q, and so Lemma 5.2 is trivial. Lemma 5.3 and
Proposition 5.4 mean that K'(8) =3, .5K"(8—a)= p?(n,(B)). These
facts follow easily from the description of 4, and 4. Finally, K'(a)=
K(a) + K(r,.a) and K(o.a)=K(a), so that setting ¢ =or,, we obtain the
following form of Proposition 5.9(a):

K@)= Y (=1)}K'(t*. a).
k>0
Now let /= 2. Then Theorem C and Proposition 5.4 give:

PROPOSITION 5.10. For the affine Lie algebra of type A\, one has, for
Ry, Ny, N EZ,
K(nyo, + na, + n,0a,)

= N (m—ny+2k+1+1)
k>0

Xp®(k+1+Dng—kn, —in,— Ik +1+1)—k(k + 1))

- N (ny—n +2k+1+2)
k>0

X pO((I+ 1) ng+ (k+ 1yn,—(k+ 1+ 1)n,
— (4 Dk + 1+ 1) — k(k + 1)).



254 KAC AND PETERSON

Finally, we note that (see [34]) for any affine Lie algebra, there exist
formulas for the partition function, derived using its “hidden” symmetries,
similar to those given above. However, except for those for algebras of type
AV, they seem relatively intractable.

ExaMpPLE. Consider the affine Lie algebra of type A%, with simple roots
numbered as in

and d = 2a,+ a,. Then the positive roots, all of multiplicity one, are given
by

oy + kS, (k+ 1)0, —ay + (k + 1)d,
a, + 2k, —a, + 2(k + 1)d, where k€ Z,.
For k> 1, e,,..., e, € Z, define a function p®*"""*: 7 - 7 by

E p(el"'ek)(n) qn —_ I_I (1 _q”)‘enmodk for |q‘ < l'
nel nx1

For f =nya, + n,a, € Q, we have:
K(B) + K(ri(B+p)—p)=p"""V(ny),
K(B) +K(ro(B +p) —p)=p“(n)).
Applying these formulas alternately, we obtain:
K(nyay+n,a,)
= N p®PN(2k + 1) ny — 4kn, — k(3k + 2))

k>0
— N pOI(k + 1y ny— 2k + 1)n, — 3k + D3k +2))
k>0
= Z pUI(—kny + 2k + 1) ny — 3k(3k + 1))
k>0
_ ,\:, p(2123)(_~(2k + Dnyg+4k+1)n, —(k+1)3k + 1))
k>0

5.3. Hecke *“Indefinite” Modular Forms

Let U be a two-dimensional real vector space, let L be a full lattice in U,
and let B be an indefinite symmetric bilinear form on U such that B(y, y) is
an even non-zero integer for all non-zero y& L. Set L*={y € U]
B(y,y')E 7 for all y € L}. Let G, be the subgroup of the identity component
of the orthogonal group of (U, B) preserving L and fixing L*/L. Fix a
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factorization B(y,y) =1{,(y) l,(y), where [, and [, are real-linear, and set

sign(y) = sign /,(y) for I,(y) # 0.
For p € L*, set

Op,.(0) = 2 sign(y) " BN,

yeL +u
B(p,N>0
ymod Gy

This is a cusp form of weight 1. More precisely:

(1) 6, ,(t+ 1)=e"Brmg, (1),

1 T .
6 (— —):——— NT o gBEwng (7).
e T VIL*/L| ver modr -

The span of the §, , is stable under SL(2, Z).

(2) Let Ne Z, N > 0 be such that NB(y, y) € 2Z for all y € L*. Then,
if (¢ )& Iy(N), there exists a ¢ € C of absolute value 1 such that for all
HEL¥,

ar+b ,
0, ., ( =T d ) = ¢(ct + d)(exp miabB(u, u)) 6, ,,(7).

These results are due essentially to Hecke |9], who treats by a general
method the case where B is an even multiple of the norm on the integers of a
real quadratic field. For this reason we call the functions 6, , Hecke
indefinite modular forms.

For a treatment of this from the point of view of the Weil representation
see [26], and from the point of view of the theory of Galois representations
and Artin L-functions see [38].

5.4. String Functions for A\"

First let g be of type A{". Let A € P, be of level m=A(c) > 0, and let 4
be a maximal weight of L(A). Recall the string function defined in
Section 2.3:

ef(@)=g*? Y mult,(A —sd) ¢°,
s»0

where 1 € #,, ¢ = e, and s,(A) is the characteristic of 4, which in our
case can be computed by

A+p? 1 I(+2
SA(”="°(A—“+‘2(L—+/1—1)—%—(—2I‘2'

607/53/2-10
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Substituting the expression for mult,(4) given by (2.8) into the definition
of ¢4, and rearranging using absolute convergence, we obtain

0@ P (@) =g"" Y (detw) S(w(d +p)— (A +p)), (5.11)

weW
where

SB)=0@)""*? Y K(B+s9)q’" (5.12)
§>0
Set U=h%®b¥, introduce the lattice L=M ® M c U, and define a
quadratic form B on U by

B((ry' N =(m+1+ 1) y)—m@y' ')
Then B((y;y")) € 2Z for (y;y’') € L. We will need the following formuia:

—n(t {1, (A +p)—4)—p)
A gy AR AP
== i) T am

+—;—B((y+y’ Fm+l+ D) A+p)y+m A (5.13)

To prove this, rewrite the left-hand side as no((4 +p)—t,, (4 +p)) —
no(A — t(A)) — no(A4 — 1), and apply (1.7).

Now let g be of type 4{". Then @ :=a,, § and p form a basis of h*. The
simple roots are ¢, =J —a and a, =a, and the fundamental weights are
Ay=4p—1ia and 4,=1p+3a. We have a=a, 6=0, j=1a, 4,=0,
A , = 3a. The lattice M is Za. The normalized symmetric bilinear form ( , )
on b* is defined by (a,a)=2, (@,p)=1, (p.p)=1, (1,6)=2, (6,0)=
4, a)=0.

Define s, t € GL(b*) by
s(a) = —a, s@)=0, sp)=p—a
tHo)=a—9J, t(0)=9, Hp)=p+a—2o.

Then t =1, ,,),, defined by (1.6). W, is the semidirect product of the finite
Weyl group W = {1, s} and the free abelian normal subgroup generated by ¢.
The subgroup W of W, is generated by s and ¢°.

We have L =Za @ Za and U =Ra @ Ra. Hence, identifying L with 72
and U with R?, we have

B((x, ) =2(m + 2) x* — 2my*.

Clearly, B does not vanish on L\{0}.
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The lattice dual to L with respect to B is

1 1
L¥*=——o —Z.
2(m+2) Z® 2m
Define an element a of the identity component SO,(U) of the orthogonal
group of (U, B) by

a((x, ))=((m+ )x+my,(m+ 2)x + (m + 1) y).

Then a generates the subgroup G of SO,(U) preserving L, and a’ generates
the subgroup G, of Gy fixing L*/L.

For u € L* mod L, we recall the Hecke indefinite modular form 6, ,(7)
defined in Section 5.3. We proceed to show that 7(r)’ c}(r) is one of the
8, (7).

Set U* = {u € U|B(u) > 0}. Then F := {(x, y) € R*| —|x| < y<|x|} is a
fundamental domain for Gj on U*, and F\Ua(F) is a fundamental domain
for G, on U™.

LEMMA 5.14. Let g be of type AV, and let B = nyo, + n,a, € Q be such
that either ny <0 or n, <0. Then:

(8) SB)= N (~1)kg-muct+o-o,
=

®) SE)=— T (~1)g-rteos),

k<0

Progf. Since t =1t ,,,, (1.7) gives
no(t“(B + p) —p) = (k + 1) ny — kn, — k(k + 1)/2.

In particular, n,(t*(8 + p) —p) =n,(t* (B +p) —p) if k + k' =2n,—2n, — 1,
so that

Z (_l)k q—no(rk<B+a)—p) =0.

kel

Hence, (a) and (b) of the lemma are equivalent.

Since n,<0 or n, <0, either n,<0 and n,< n,, or else n, <0 and
n < ny. If ny <0 and ny < ny, then (k+ 1) ny—kn, — k(k + 1)/2< 0 for
k€ 7, and Proposition 5.9(a) yields

S(B)=9(q) Y K(B+s0)q°

s3>0
k(k + 1 .
=0l@) T X 0t (o m—kn, — LD 1) g
s»0 k»0 2
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=Y (1)@’ Y p® ((k+ 1) ny — kn,

k(k + 1
__(_+_)+s> g
k>0 530

2

N 1VK -k Dngt+kny +Hk(k+1)/2
o (D%q
k>0

- k —
— E (_l)kq no(t*(B +p) ﬂ).
k>0

This proves the lemma for n,< 0 and n,<n,. If n, <0 and n, < ny, a
similar argument using Proposition 5.9(b) gives the proof.

Let AEP,, m=A(c) >0, and let A€ P, 4 € max(4). Then by (5.11),
we have

10 c}() = g5 D | Y S (A +p) — (4 +9))

n>o
+ Y SEA+p)— (A +p)
n<0
- Y SE*"s +p)— (4 +p)

— N S@*s(A+p)— (A +p))!.
n<o0
To the first and third sums we apply Lemma 5.14(a), and to the second and
fourth sums we apply Lemma 5.14(b). This is allowed by the fact that
wd+p)—(A+p)—0€&Q, for all we&W, which follows f{rom
Proposition 2.12(b). Then using formula (5.13), we obtain an absolutely
convergent expansion:

1)’ ed(x) = (2 S )(—nk
k>0 k<0
nz0 n<0

X q(l/Z)B(((k/2+n)a+(m+ D-UA+ D ik/Da+m=11))

—(v—z)ew
k>0 k<0
n>0 n<o

X q(1/2)B(((k/2+n)a—(m+2)*‘(K+D:(k/2)a+m*1l))

Apply B((7;7'))=B((—y;7")) to the second summand, and combine to
obtain

n(r)’ ci(r) = )y (—1)* sign(k + %)
k.one(1/2)Z
k=nmod Z

k> {nlor—k>|n}
X q(l/Z)B((ka+(m+ )-UA+pina+m-11))
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Break the sum into two parts, according as & is integral or half-integral, and
to the second apply B((y; y')) = B{(—y; 7')), obtaining

n(r)3 CQ(T) = \° 31gn(k + %) X q(|/2)8((ka+(m+2)“(x+a:na+m—‘i))

el
k,neZ
k>|n|lor—k>|n|

+ : sign(k — %) X q(l/z)B((ka—(m+2)“(K+B:m +m—*1))‘

k,neZ+1/2
k>|nlor—k>|n|

Write (m +2)"'(4 +j5)=Aa, m 'A=Ba. Then £ >4 >0 and { >B>0.
Using these, and assuming 4 > B, we may combine the sums above to obtain

’7(7)3 CQ(T) — 2 sign(x) q(l/z)B((x.y))’

where the sum ranges over

{(x, ) EF|(x,y)=(4,B) or (; —A4,3 + B)mod Z?},

or equivalently, over

{(x, yYYE F| (x, y)= (4, B) or a((4, B)) mod Z*}.

Since FU a(F) is a fundamental domain for G,, we have obtained that
(1)’ e4(©) = 0L (ms 21K s prm-1y

is a Hecke indefinite modular form.

It remains to remove the restriction 4 > B. Write (m + 2) " '(6(4) + p) =
A'a, m~'6(A) =B’a. Then A+ A’ =B+ B’ =4. Hence, if 4 <B, then
A’ > B’ and we have

n(z)* ed(x) = n(z)’ ey (@)
= L,(A.'a;B'a)(T)
=0, G- tasi—Bar(T)
= L,(E—Aa:—ﬂs‘z)(z)
=0 a(4a:8a)(T)

= HL,(Aa:Ba)(T)‘

Thus 7(7)* ¢2(t) = 0, (m+ 2~ + im-11,(7) in all cases, and we have proved:
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THEOREM D. Let g be of type A". Let AE P, A(c)=m >0, and let
4 € P, be a maximal weight of L(A). Then

()’ ci(r) = 0L (m+ 1T+ D3m-11)(T)
is a Hecke indefinite modular form.

Remark. By Theorem D, the ¢} are closely related to the real quadratic
fields Q(v/m(m + 2)). Note that every real quadratic field is of this form.

5.5. Some Applications

In this final section we display various identities for modular forms and
elliptic theta functions. Some of these formulas are classical, and many seem
to be new. All of them appear naturally in the framework of the represen-
tation theory of the simplest affine Lie algebra A{" and are very special
cases of our general theory. This section can be read independently of the
rest of the paper. As usual, ¢ stands for e?*® where Im 7 > 0.

(a) Fix a positive integer m. For integers N and n with N = n mod 2, put

N — : (m+2)x2—my?
g(r) = by (signx)q ;
(x,y)eR?
—Ixl<y<ixi
(x,y)or(1/2—x,1/24+y)e((N+ 1)/20m+ 2),n/2m)+ 22

— (1/2)(k+N + 2}/ 8 k/m+ (N + 1 202
d,’:,(r)_ Z (_1) /2)¢ )q(m(m YUk/m 4+ ( )/ m+ 202

kel
k=4 nmod2m

By Theorem A(4) and (5.15) below, the #)(zr) are cusp forms for
I'(4m) N I'(4(m + 2)) with the trivial multiplier system. The 65(z) appear (in
a different form) in Theorem D, which says that for O N m and
n= N mod 2,

Com-manina ) =1() 7" 6,(0). (5.15)

Here 7(7) = g"**0(q), where o(q)=TTiZ, (1 —¢").
From Propositions 2.12(b) and 2.19 and Theorem B we deduce that for
o0gKn, N m, n=Nmod2, we have

n(@) o) =q"(1 +b,g+ b,q> + ), (5.16)
where
I (N+1)? n? ( 1 )
b= -—p—— —(n—
8 P amy ) am T \0 =)
and

1+b,g+b,9°+--=0(@ (A +cig+ ), (5.17)
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where c; > 0; moreover,

sin (N + 1)/(m +2) . rommmrmE
b, TCTT (5.18)

for kK — 0.

Comparing (5.15) with the computation in Section 4.6 of string functions
of low level, we derive a number of identities. Among the prettiest are (from
m=1, 63(12t); m=2, 0(87); m=4, 03(487t) — 6}(487); m =38, 63(27),
respectively):

’7(121)2 = Z (__l)k+lq[3(2k+1)2—(61+1)2]/2’ (5‘19)

k,leZ
k>211

n(87) n(167) = k;“z (—1)k g@k+D2=3202 (5.20)
K310

’7(24) 77(96‘[) — Z (__l)l(l+l)/2q8(3k+1)1—3(21+l)2(1 _ q24(2k+l)), (521)

k,leZ
2k>120

n(47) n(207) = k;z (—1)k gls@ks E=alr i, (5.22)
25150

Identity (5.19) appears (in a different form) in Hecke [9]. Arithmetic
properties of n(87) n(167) were studied in detail in [32].

For ¢ =0 or 1, introduce the matrices C,= (%) and D,= (dy), where n,
Ne{keEZ |k=emod2, 0Kk m} Then:

det C,=det C, = n(r)™*! if m is odd;
det Co = n(7)"* n(2r)~! and (5.23)
det C, =n(r)" ' n(2r)  if mis even.
Co,D,=D,Cy=n(z)’l; C,D,=D,C,=n(r)’L (5.24)
These formulas may be easily deduced from (5.15) and the results of Section
4.5 (see [36] for details). Note that (5.19) and (5.20) are the simplest cases

of (5.23).
Introduce the following elliptic theta functions:

@n,m(r’ Z) — Z quze—Znimkz’

keZ+n/2m

Ay (0, 2) =0, o(1,2)~ O_, W(t,2)==2i Y g™ sin2nmkz.
keZ+n/2m
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We have the following division formula:

A me2l® 2 -
N‘;l, +2(5 2) =7(r) 3 Z 9’:(‘[) 0, (7, 2). (5.25)
1‘2(T’ Z) ogn<2m

n=Nmod2

This formula is (by (5.15)) a special case of the “theta function identity”
(2.18). Indeed, we have in the notation of Section 4.1:

@n,m(r’ Z) = @on-}.nE(t’ zp, O),
An,m(T’ z)= AonJrnB'(T’ 2p, 0).

Note also that the (particularly important) function A4 ,(z, 25, 0) =4, ,(7, z)
is, up to a constant factor, the Jacobi elliptic theta function & (z, z):

A (1, 20,0) = —id (1, 2) =20 ¥ (—1)k e VP 5in((2k + 1) n2).
k=0

(b) It is easy to see that Proposition 3.9 is equivalent to the following
identity:
/DK + 1)

[Ta-g a7 1=g"27) " =p@? ¥ (1) L. (5:26)
k>0 kel —qz

This expansion is valid for |g| < 1 whenever both sides are defined. Note that
(5.26) is precisely the partial fraction decomposition in z of the left-hand
side for fixedg. This expansion appears, in a different form, in |40,
Section 486]; we thank G. Andrews for pointing out this reference to us.
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