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0.1. From the time they were introduced in analysis by Jacobi [13] 
and in geometry by Riemann [37] the theta functions found numerous 
applications in various fields of mathematics. The present paper displays one 
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more application-to the representation theory of affine KaE-Moody Lie 
algebras. The representation theory provides in turn (among other things) a 
number of new theta function identities. The simplest cases of these identities 
are collected in Section 5.5, which may be read independently of the rest of 
the paper. 

One of the starting points of this paper is an interpretation by Looijenga 
of the Macdonald identities in terms of theta functions [27 ] and an obser- 
vation made by one of the authors [ 181 by analogy with the “Monstrous 
game” [4] that most of the generating functions for multiplicities which 
appear in the representation theory of affine Lie algebras become q-series of 
modular forms when multiplied by a suitable power of q. 

Our approach to the study of these modular forms is roughly as follows. 
We rewrite the character of a highest weight representation of an affine Lie 
algebra in terms of theta functions and the modular forms in question. Then, 
using classical functional equations for theta functions, we deduce transfor- 
mation properties of our modular forms. Furthermore, using the “very 
strange” formula, we estimate the orders of the poles at the cusps. As a 
result, the theory of modular forms makes it possible to compute any of 
these modular forms. We do so in a number of interesting cases. Moreover, 
combining our transformation laws with a Tauberian theorem, we obtain the 
asymptotics of the multiplicities in question. 

Another starting point of the paper is the work of one of the authors [ 341 
on explicit formulas for Kostant’s partition function. Using the results of this 
work we derive explicit formulas for (generalized) Kostant’s partition 
function in the case of certain affine Lie algebras. This allows us to compute 
weight multiplicities directly, at least for the simplest affme Lie algebra A I”. 
Quite unexpectedly the corresponding generating series turn out to be 
intimately related to certain modular forms discovered by Hecke [9], which 
are associated to real quadratic fields. 

0.2. First, we explain the sort of objects studied in the paper. For 
the sake of simplicity we concentrate here on the “non-twisted” affine Lie 
algebras. 

Let 9 be a complex simple finite-dimensional Lie algebra of type 
X(=A,, B ,,... ), $(. , . ) its Killing form. Let 6 be a Cartan subalgebra of 9, d 
the set of roots of 6 in 9. Fix a set of positive roots d, in d; let a, ,..., aI be 
the simple roots, 0 the highest root. Introduce the important integer 
g := (qe, e)- l. It is more convenient to deal with the normalized bilinear 
form by> := &$(x,Y), so that (0,0) = 2. We identify 6 with ii* via the 
form (. , . ). Let W be the Weyl group of fi and let M be the lattice spanned 
by the set w(0). M is called the dual root lattice of 9. It is a positive-definite 
integral (with respect to (., .)) lattice, which plays an important role in our 
considerations. 
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The affine Lie algebra g associated to 1 may be constructed as follows 
[ 14,31, 7,181. Let L = C[t, t-‘1 be the ring of Laurent polynomials in t, and 
set L(B) = L oc 0. This is an infinite-dimensional Lie algebra over C; denote 
its bracket by [ , IL. For x=Citi@xi, Y=Cjt’oyj, define (x,Y)~= 

Ci,j t’+j(xi, yj) E L. The function ~(x, y) = Res,=,(dx/dt, y), is a cocycle 
on L(g) w$h values in C, hence determines a central extension @j) of L(g). 
Explicitly L(G) = L(g) @ Cc, where the bracket is given by 

[x+Ilc,y+w]= [x,.Y]L+w(x,y)c (x,yEL(cl); l,pEC). 

The affine Lie algebra g of type X”’ is then obtained by adjoining to z(S) a 
derivation d which acts on L(g) as t(d/dt) and kills c. (g is the KaE-Moody 
algebra associated to the extended Cartan matrix of 3.) 

We identify 9 with the subalgebra 1 0 fi of g. The commutative subalgebra 
b = 6 0 Cc @ cCd is called the Cartaan subalgebra of g. For A E b* we denote 
its restriction to 6 by 1. We identify (1 E b* IA(c) = A(d) = 0) with 6 * by 
Al-+X. 

Introduce the important elements 6, A,, and a0 of b* defined by 

Q+cc=o, 6(d) = 1; a, = 6 - 8; 

4l16+cif=o~ A,(c) = 1. 

The elements a, ,..., aI, 6, A, form a basis of $*, and we extend the form 
(. , . ) from 6 * to a symmetric bilinear form on IJ * by 

( ~ C(Ti, CS + C/1, 
iY1 ) =o; (6,6)=(A,,n,)=o; @,A,)= 1. 

Writing /A 1’ for (A., A), we define 

P(resp. P+) := {A E h* ( 2(A, ai)/lai12 E Z (resp. Z,) 

for i = O,..., 1); P= {X (A E P). 

Let ri, be the maximal nilpotent subalgebra of fi which corresponds to 
J+, and let n+ c L(G) c g be the preimage of ti+ under the map 
C [t] @ 9 + 6 defined by sending t to 0. 

Following [ 161, for each A E. P, define an irreducible g-module with 
highest weight A, denoted by L(A), by the property that there exists a non- 
zero vector u E L(A) such that 

n+(v)=0 and h(u) = A(h)v for all h E b. 
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The g-module L(A) admits the weight space decomposition L(A) = 
@,, L(A),, where for 1 E h*, 

L(A), := {V E L(A) ( h(v) = A(h)v for all h E 0) 

is a finite-dimensional subspace; its dimension is denoted by mult,(A). 
The central element c acts on L(A) as multiplication by a non-negative 

integer m =/i(c) = (A, 6) called the level of L(A) [22]. Note that m = 0 if 
and only if dim L(A) = 1; we assume in the sequel that m > 0. 

For A E h*, define a function e(A) on h by e(A)(h) = exp A(h). Introduce 
the following domain in $: 

Y = {h E b 1 Re 6(h) > 0). 

Now we can define the character of the g-module L(A): 

ch L(A) = x mult,(A) e(A). 
,I 

This series converges absolutely uniformly on compact sets to an analytic 
function on Y. 

We express ch L(A) in terms of theta functions. For p E h* and a positive 
integer m, set 

0 -7 w,m := _ e(mVo+~-41~124)~ (0.1) 
yEM+m-‘p 

This series converges absolutely on Y to an analytic function. In coordinates 

Y = (-27ci(z + sd + tc) ) z E 5; r, t E C, Im r > 0}, 

one recognizes in (0.1) the classical theta function 

Ou,m(t, 2, t) = C2”‘“’ 2 etrimIyl~re-2nimy(z) 

yai+m-‘rr 

Note also that in these coordinates, 

where as usual q stands for e27rir. 
Define p E h* by @, oi) = 3(ai, a,), i= 0 ,..., I, and p(d) = 0. Let 

WC GL(t*) be the Weyl group of the Lie algebra 9. For A E P such that 
A(c) > 0, define 
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Now it is not difficult to rewrite the character formula from [ 161 in terms of 
theta functions: 

4”” chL@I)=&+,/A,, P-2) 

where 

IA +P12 IPI 
sA = 2(m + g) -7’ 

Another more “elementary” formula expresses ch L(A) in terms of theta 
functions and the so-called string functions ci(E, E P), defined as follows. Put 
s,,(n) = s,, - ]11]‘/2m and define c’j by [ 18,221: 

c;(r) = qsACA) 2 mult,(J - nd) q”. 
FteC 

This is a holomorphic function in t on the upper half-plane. We have 

ct(A)+my+n8 = 4 for w  E @, y E M and a E C. 

It follows that there are only a finite number of distinct string functions for a 
given module L(A). 

We have [ 18,221 

qs* ch L(A) = x c; &,,,. (0.3) 
ArPmod(mMtCZi) 

This formula provides information about the g-module L(A) as soon as we 
can say something about the string functions. Our main tool for investigating 
the string functions is the following identity, which follows from (0.2) and 
(0.3): 

A,,+&,= c 4 %,m. 
AcPmod(mM+CS) 

Finally, recall the Euler function 

v(4) = n (1 - 4”) 
n>1 

and the Dedekind q-function 

v(r) = P4PW 

0.3. Now we can state the main results of the first part of the paper. 

THEOREM 1. Let L(A) be a g-module with highest weight A E P, of 
level m > 0. Then 
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pj(-T-l) = (-it)y Y b(A,A;A’,L’)c~:(T), 
A’cP+modCd 

A’~Pmod(mMt Cs) 
A ‘(C) =A ‘(C) = m  

where 

b(A,A;A’,A’)= P+‘lFp-’ m-[‘Z(rn +g)-“2 
- - 

x exp(2rrim- ‘(Iz, A’)) x (det w) exp(-2zi(m + g)- ’ (2 + P; ~(2’ + D))). 
WPW 

(b) V(T) dim tic;(~) is a holomorphic modular cusp form of weight Id, 1 
for the group T(Nm) n T(N(m + g)) with the trivial multiplier sy_stem, where 
N is the least positive integer such that ;N 1~ ( 2 E Z for all p E P. 

(c) If mult,(A) > 0, then one has, as n + +a, 

mult,(A _ &) - cn -(1/4)(/f 3)e47c(onP’, 

where c is a constant which depends only on g and A (and is computed in the 
paper), and 

dim fi m 
a=24m+g* (0.5 > 

Theorem 1 appears in the paper as Theorem A(la, 4), and Theorem B for 
the “non-twisted” affme Lie algebras. 

Let us make some comments on the proof. For (a) we use the identity 
(0.4) and a functional equation for theta functions. In particular, we use the 
formula 

i 
1 z (z,z> A, ----,-,t+- 
5 T 22 1 

= (-i)‘d+‘(-i5)“2 A,(z, z, t). 

The crucial point in the proof of (b) is the following inequality: 

sA@) > --a if mult,()L) > 0, (0.6) 

where a is given by_ (0.5). 
In order to prove (0.6), we employ the following “very strange” formula. 

Let A E xi=, Qu, lie in the fundamental alcove, i.e., (A, ai) > 0, i = l,..., 1, 
(2, 8) < 1, and let n be a positive integer such that n;l EM. Then 
u = exp 2niA is an automorphism of 3 of order dividing n; let d, be the 
multiplicity of the eigenvalue exp 2nis/n of u. We have 

(0.7) 
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In a different form (0.7) is established in [ 171 for “rational” a; the proof of 
(0.7) in the general case is essentially the same. For L = 0, (0.7) turns into 
the celebrated “strange formula” of Freudenthalde Vries: 

$2 q. 

Formulas (0.7) and (0.8) yield the inequality 

P-8) 

for any A from the fundamental alcove which, in turn, implies (0.6). 
Finally, for (c) we use a Tauberian theorem of Ingham. We need here the 

fact that mult,(A - nd) increases with n, which we prove using a Heisenberg 
Lie algebra. This is the only point in the main body of the paper where 
a representation-theoretical argument appears necessary. Of course, the 
representation-theoretical framework provides motivations and clarifies 
arguments. However, it remains an interesting open problem to find an inter- 
pretation of the results of the paper in this framework. 

Using Theorem 1, we explicitly determine the string functions in many 
interesting cases. Let us demonstrate our method in the simplest case, that of 
representations of level 1 of the affme Lie algebras of type AI”, Di” or El”. 
It is easy to see that in this case all non-zero string functions ci for A of 
level 1 are equal to c(r) = q-“24 En>,, mult,&l, - n& q”. Hence, by 
Theorem 1, the function q(r)‘c(r) is SL(2, Z)-invariant. It is also 
holomorphic and has value 1 at im; hence it is identically 1. So, we recover 
the result obtained in [ 171 by the method of “principal” specialization (and 
in [6] for g=A I” by a straightforward computation): 

2 mult,,(A, -n@ q” = p(q)-‘. 
n>O 

In the case of Ei” this result is related to the “Monstrous game” [ 181. 
We remark that in general the multiplicities apparently fail to be given by 

simple combinatorial functions such as the classical partition function p(n). 
In this sense, the results of [6] and [ 171 appear not to generalize. To 
understand the string functions, it is necessary to replace the combinatorial 
point of view of p(q)-’ as the generating function for p(n) by the realization 
that v(r) = q”24rp(q) is a modular form. 

0.4. The rest of the main results of the paper deal with the partition 
function for the affine Lie algebra g of type AI”. The set A+ of positive roots 
of g consists of the roots (n - 1)s + a and na - a of multiplicity 1, and n~5 of 
multiplicity Z, where a E 8, and n > 1. The partition function K(A) on h* (K 
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in honor of Kostant) is defined to be the number of representations of A as a 
sum of positive roots (counting multiplicities). 

Using the results of [34] on the Kostant partition function for A,, we find 
an explicit formula for the partition function for Ai” (given by Theorem C). 
Here we state the result only for A’,“. 

THEOREM 2. Let g be of type A\“, and let p”‘(n), n E Z, be defined by 
C,,p(‘)(n) q” = q(q)-‘. Then for n,, n, E Z one has 

K(n,a, + nlul) = 1 (-l)kp’3’((k + 1) n, - kn, - tk(k + 1)). 
k>O 

The importance of the partition function K lies in the fact that (as in the 
finite-dimensional case) the multiplicities which appear in representation 
theory may often be computed in terms of K. 

Using Theorem 2, we compute the string functions for any highest weight 
module over A, . (‘) The result,- given by Theorem D, is 

THEOREM 3. Let L(A), A E P,, be un Ai”-module 
let J E P, ci # 0. Set 

of level m > 0, and 

a(A) = f V,a,)+ 1 (&a,) ER* 
( 2(m + 2) ’ 2m ) . 

For v = ‘(x, y) E [R’, set sign v = sign(x) and F(v) = (m + 2) x2 - my2. Let 
Go be the subgroup of SL(2, R) generated by the matrix (t z i ,“, , )‘. Then 

v(r)’ cm = x (sign v) e2nirF(v)a (0.10) 
t~EZ*ta(l) 
F(L)) >o 
L’ modGo 

The function (0.10) is a cusp-form of weight 1 of a type studied by Hecke 
[9]. Together with Theorem 3, identity (0.4) generates an intriguing series of 
identities for elliptic theta functions. 

0.5. Here is a brief account of the contents of the paper. In 
Section I we present the basic facts about afine Lie algebras, starting with 
the general framework of Kac-Moody algebras g(A). In Section 1.1 we 
recall the definition and properties of the invariant bilinear form, the root 
system, and the Weyl group W of g(A). In Section 1.2 we recall the 
classification of affine Lie algebras and introduce their invariants 1; k; ai 
(i = O,..., I); h and g. In Sections 1.3 and 1.4 we give an explicit description 
of the invariant bilinear form and of the root system A of an affme Lie 
algebra. In Section 1.5 we introduce the new notion of the adjacent root 
system A’, necessitated by technical complications appearing in the study of 
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theta functions in the “twisted” case. We have A’ = A in the case k = 1. In 
Section 1.6 we introduce the lattices M and M’ and describe the structure of 
the Weyl group of an affine Lie algebra. Note that formula (1.7) “explains” 
why theta functions appear in our considerations. In Section 1.7 we recall 
the realization of affine Lie algebras in terms of simple finite-dimensional Lie 
algebras. 

In Section II we study the highest weight representations L(I1) and their 
characters. In Section 2.1 we work in the general framework of KaE-Moody 
algebras. New results here are the description of the region of convergence of 
chu*, (Proposition 2.5), and separation of W D( 2niQ”-orbits by the 
characters (Proposition 2.10). In Section 2.2 we describe the set of weights 
of a highest weight module over an afftne Lie algebra and a convexity 
property of weight multiplicities (Proposition 2.12), using the fact that 
mult(J - n& increases with n (Proposition 2.11). In Section 2.3 we introduce 
the string functions and deduce the fundamental identity (2.18). 

Section III gives the necessary information on theta functions, the modular 
group, and modular forms. The main result of Section 3.1 is Proposition 3.8 
on the behavior of the Riemann theta function under the full modular group. 
In Section 3.2 we introduce and study the ring of theta functions. We give a 
basis for it and describe its multiplicative structure in this basis 
(Propositions 3.13 and 3.14). In Section 3.3 we briefly discuss modular 
forms and prove Lemma 3.20, which is used in the proof of the “very 
strange” formula. 

In Section IV we apply the results of the theta function theory to afftne 
Lie algebras. In Section 4.1 we adapt the general transformation laws for 
theta functions to our situation and deduce the transformation properties of 
the functions A,, which are anti-invariants of the Weyl group (Proposition 
4.5). In Section 4.2 we find more explicit transformation laws for A, 
(Proposition 4.6). 

In Section 4.3 we use the transformation properties of some specializations 
of the function A, to obtain a simple new proof of the “very strange” 
formula (Proposition 4.12). As a consequence, we obtain an estimate for 
s,,(A) (Proposition 4.14). We mention that the material of this section is 
related to q-function identities [29, 17,441 and to the “Monstrous game” 
[4, 181. 

In Sections 4.4 and 4.7 we deduce the main results partially stated above 
in Theorem 1. They concern the transformation properties of the string 
functions (Theorem A) and asymptotics of weight multiplicities (Theorem B). 

In Section 4.5 we present results of the second author on the determinant 
and the inverse of the matrix of the string functions of a given level 
(Proposition 4.18 and formulas (4.20), (4.20.1, 2, 3); see [36] for more 
detail). In Section 4.6 we compute the string functions for all modules of 
level 1 over all affine Lie algebras, except Ci”, and state a theorem of the 
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second author unifying these results. We also express most of the string 
functions for Ai” as linear combinations of infinite products up to level 10, 
and for Ai’) and Ai” up to level 3. 

In some cases the transformation properties of A, are as nice as those of 
A,. In Section 4.8 we study these A, and deduce interesting facts about three 
remarkable elements of a compact Lie group (cf. [25, 21 I). 

Finally, in Section 4.9 we outline an approach to the general restriction 
problem (Propositions 4.34 and 4.36). 

In Section V, which is largely independent of the previous sections, we 
prove Theorems 2 and 3 above. We first find an explicit formula for the 
partition function for the affine Lie algebras of type AI” (Theorem C and 
Section 5.2). In Section 5.4 we use Theorem C to compute the string 
functions directly in the case A’,” and unexpectedly encounter “indefinite” 
theta series (see Section 5.3 and Theorem D). Finally, in Section 5.5 we 
present explicit formulas which are special cases of our results. 

Apart from the material cited above, the paper has four Appendixes, 
which are only indirectly related to the main body of the paper. In 
Appendix 1 (Section 1.8) we study the asymptotic behavior of root 
multiplicities in general KaE-Moody algebras. Appendix 2 (Section 2.4) is 
intimately related to Appendix 1. Here we study the structure of a highest 
weight module over an arbitrary KaE-Moody algebra and give an explicit 
description of the region of convergence of its characters. We included 
Appendix 3 (Section 2.5) in the paper only because of the mysterious coin- 
cidence of a constant involved in a cocycle (studied here) and the constant u 
(see formula (0.5)). Finally, in Appendix 4 (Section 4.10) the results of the 
second author on the independence of the fundamental characters are 
announced. 

0.6. This paper represents work done by the authors primarily from 
August, 1979, to March, 1980. Theorems A (except for (2)), B, C, and D 
were proved during this period. The authors have subsequently discussed this 
work in several conferences, including the conference on Infinite-dimensional 
Lie algebras held in Oberwolfach in June, 1980. Some of the results of the 
paper were announced in [22]. Preprints of the paper were distributed in 
February 1982. 

NOTATIONS AND CONVENTIONS 

(a) L, , Z, Q, R, , R, C denote the sets of non-negative integral, 
integral, rational, non-negative real, real and complex numbers, respectively. 
Fora,bEC,wewritea>bifa-bER+. 

(b) @ and @ denote direct sum and tensor product of vector spaces. 
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(c) ]S 1 denotes the cardinality of a set S. 

(d) ]), ]* stands for (A, A), where ( . , . ) is a bilinear form. 

(e) If Q is an abelian group and P a subgroup, Q mod P denotes a set 
of representatives of cosets of Q with respect to P. 

(f) If z E 6, z # 0, define log z by requiring that elogz = z and 
--72 < Im log z < rc, and let zr = erlogr for all r E C. 

(f’) For r E C, let q stand for e2nir, and more generally, let qr stand 
for e2nirt. (This conflicts with (f), but should not cause confusion.) 

(g) The topology of a real or complex finite-dimensional vector space 
is taken to be the metric topology. 

(h) If V is a finite-dimensional real Euclidean space and L is a full 
lattice in V, we put vol(L) =,u(V/L), where p is the Euclidean measure on V. 

(i) U(g) denotes the universal enveloping algebra of a Lie algebra g. 

(j) The base field is C unless otherwise specified. 

I. AFFINE LIE ALGEBRAS AND ROOT SYSTEMS 

In Section I we present the necessary information about root systems of 
affine Lie algebras. We first outline the general framework of KaE-Moody 
Lie algebras, and then work out in detail the case of affine Lie algebras. 
Some proofs and details are omitted; they may be found in [ 14, 171 or in the 
book [50]. 

1.1. Basic Facts about Ka&-Moody Algebras 

(A) Let I be a finite set and let A = (aij)iSjs, be a generalized Cartan 
matrix, i.e.. a matrix satisfying the following conditions: aii = 2 for all i; aij 
is a non-positive integer if i #j; aij = 0 implies aji = 0. 

The matrix A is called indecomposable if I cannot be decomposed into a 
disjoint union of non-empty sets I, and I, such that aij = 0 for i E I,, j E I,. 

The matrix A is called symmetrizable if there exists an invertible diagonal 
matrix D such that DA is symmetric. 

Let h be a complex vector space of dimension II) + corank A. Then there 
exist linearly independent indexed sets 

and 17”= {hi}ipI c tj5 

such that ai = aij. They are determined up to isomorphism by A. The Cli 
(resp. hi) are called simple roots (resp. dual simple roots). 
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(B) Let g(A) be the complex Lie algebra generated by h U {ei,A}i,, 
with defining relations 

[ei&] = 6ijhi for i,j E I; 

[k ei] = ai(h> ei, [k&l = -%@)fi for i E I, h E tj; 

[h, h’] =0 for h,h’Et); 

(ad ei)’ -“’ ej = 0, (adA)‘-“ijfj = 0 for i,jEZ, i#j. 

The Lie algebra g(A) is called a Ku&Moody algebra and A is called its 
Carfun matrix. The commutative subalgebra h of g(A) is called the Curtun 
subalgebra. 

Let g’(A) denote the derived algebra of g(A). Then g’(A) is generated by 
the elements ei,h, i E 1, and we have g(A) = g’(A) + I). 

The center of g(A) is c := {h E $1 ai = 0 for all i E I). 
g(A) decomposes into a direct sum of Kac-Moody algebras associated to 

the indecomposable components of A. 
It has been established only recently that for an indecomposable A, any 

ideal of g(A) either contains g’(A) or is contained in c, provided that A is 
symmetrizable [8]. Since g(A) is usually defined to be the quotient of our 
g(A) by the sum of all ideals intersecting h trivially, our definition and the 
usual one coincide for symmetrizable A. 

(C) Fix a KaE-Moody algebra g(A). Denoting by n+ (resp. n-) the 
subalgebra of g(A) generated by {ei}ier (resp. (A}iE,), we obtain a vector 
space decomposition 

g(A)=n-Ot)On+. 

Furthermore, one has the root space decomposition of g(A) with respect to 

g(A)= @ 9,. 

Here g, = (x E g(A) 1 [h, x] = a(h) x orallhEh}andg,=h.Ifa#Oand f 
g, # (0) then a is called a roof of multiplicity mult a := dim g, (which is 
always finite). Note that fa, are roots of multiplicity 1 since 9,; = Cei, 
gPai= Cfi. Denote by A the set of all roots. 

The Z-span Q of the set ZI is called the roof lattice. For a = Ci kiai, the 
number ht a := xi ki is called the height of a. Let Q, = xi H, ai, and 
introduce a partial order on h* by 

n>cl if A-PEE+. 

Denote by A + = A n Q, the set of all positive roots. Then: 

A=A+ U(-A,). 
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(D) The KabMoody algebra g(fa) is called dual to g(A). We can (and 
will) identify the Cartan subalgebra h” of g(‘A) with II*, so that the set of 
simple roots of g(‘A) (resp. dual simple roots) is identified with 17” (resp. n). 
We will use freely the notions Q “, d “, etc., which are defined in an obvious 
way. 

(E) For i E I, define the fundamental reflection ri E GL($) by 

r,(h) = h - a,(h) hi for h E $. 

Note that ri operates contragrediently on h* by r,.(a) = a - a(hi) ai. 
The Weyl group W is the subgroup of GL(h) generated by the ri, i E I. 

Note that we can identify ri with r,” and W with WV via the contragredient 
action. One knows that for i E 1, ad e, and ad fi are locally nilpotent, and 
fi := (exp ad e,)(exp ad(--S,))(exp ad e,) E Aut g(A) satisfies 

‘iC9.z) = Qrl(a) and Fi lb= ri. 

In particular, the root system A is W-invariant and, moreover, mult a = 
mult w(a) for w  E W. It is easy to see that ri permutes A+\{a,). 

(F) A root which is W-equivalent to a simple root is called real; a real 
root has multiplicity 1. Denote the set of all real roots by A”. All other roots 
are called imaginary; the set of all imaginary roots is denoted by Aim. We 
put A~=ArenA+, A’,m=AimnA+. Then the sets Are and A’,m are W- 
invariant, and Are = AT U (-A:), Aim = A’,m U (-A$‘). 

Let aEAre; then w(a) = a, E n for some w  E W and i E I, and we set 

a”= wel(hi) E Q. 

a”E A” is called the dual root of a. This is well-defined by the following 
lemma. 

LEMMA 1.1. Zf w(a,) = ajfor some w  E W and i,j E I, then w(h,) = hi. 

Proof. w  = fi lb for some c from the subgroup of Aut g generated by the 
Fk, k E I. Applying 6 to both sides of [gar , g -,,I = Ch,, we obtain 
Chj = Cw(hi). Since w(ai)(w(hi)) = ai = 2, we get w(hi) = hj. m 

Now it is clear that the map “: Are + (A “)” defined by a H a ” is a W- 
equivariant bijection which maps n onto fl”. 

For aEAT, we define ra E W by 

r,(h) = h - a(h) a” for h E b, 

so that ri = 1, r&3) =/3 -P(a”)a for /3 E t)*, wr, w-’ = rwCn) for w  E W, 
and rai= ri for i E I. 
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(G) Symmetrizability of the matrix A is a necessary and sufficient 
condition for the existence of a non-degenerate g(A)-invariant symmetric 
bilinear form ( , ) on g(A). The restriction of such a form to h is non- 
degenerate and W-invariant. Conversely, any non-degenerate W-invariant 
symmetric bilinear form ( , ) on h can be uniquely extended to a non- 
degenerate g(A)-invariant symmetric bilinear form on g(A). 

For the reminder of (G), we assume that A is symmetrizable; we then can 
choose a non-degenerate invariant symmetric bilinear form ( , ) on g(A) such 
that (hi, hi) is positive rational for all i E I. Such a form is called standard. 
We identify h and h* using ( , ). A root a is real if and only if (a, a) > 0 and 
is imaginary if and only if (a, a) < 0 [ 141. A root a is called isotropic if 
(a, a) = 0. 

Furthermore, for a E Are, 

2a 

av=(w,u)’ 

r,(A) = A - (A, a “)a, 

and for a E A, 

ha3 g-,1 = a. 

The last equation defines a non-degenerate pairing of g, and g-a. 

Remark. If a is a root such that (a, a) > 0, i.e.. a is real, then 
mult(fa) = 1 and mult na = 0 for n # f 1. If (a, a) < 0, then na is a root for 
any integer II # 0 [ 141. Any isotropic root a is W-equivalent to an imaginary 
root of an affine Lie subalgebra [ 191 and hence mult a can be found from 
Table M in Section 1.4; in particular, we have: mult a < II). The situation 
changes drastically when we pass to a non-isotropic imaginary root a. In this 

case On,, gn, is a free Lie algebra, mult na is a non-decreasing sequence, 
and moreover, lim n+m(log mult(na))/n exists and is positive. We prove these 
facts in Appendix 1 (Section 1.8). 

(H) Set h, = {h E h 1 ai E R for all i E I}. This is a W-stable real 
subspace of h. We define I),* similarly. Define the fundamental chamber 
Ccb, by 

C = (h E hR 1 a,(h) > 0 for all i E I). 

The set 

x= iJ w(C) 
WEW 

is called the Tits cone; each w(C) is called a chamber. Define the imaginary 
cone Z to be the closure of the convex hull of {0) U d’,m [ 171. 
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Using Lemma 1.1, the usual proof of the “exchange condition” works in 
the framework of KaE-Moody algebras. We need only the following 
corollary of it. 

LEMMA 1.2. Let w=ril . . . ri, be a reduced expression of w E W (i.e., w 
cannot be represented as a product of fewer than s fundamental reflections). 
Then -w(q) > 0. 

Proof. Standard (see, e.g., [ 11, p. 501.) I 

It follows that ” maps Ay onto (A”):. (In particular, for i E I and /I E AT, 
we have a,@P’) < 0 o rB(ai) E Ay S+ r,(hi) E (A “,)” u P(hi) < 0. Hence, for 
a, /? E Are, we have a@“) < 0 o /?(a “) < 0.) 

We now establish some important properties of the Tits cone (cf. [41] and 
[281). 

PROPOSITION 1.3. (a) For any h E X the orbit W(h) meets C in exactly 
one element. 

(b) The stabilizer W, of any h E C is generated by the fundamental 
reflections contained in it. 

(c) C=(h~t),lforallwE W,h-w(h)ECilR+hi}. 

(d) X = (h E brn ) a(h) < 0 for only a fmite number of a E A+ }. In 
particular, X is a convex cone. The same resuli holds with A+ replaced by 
A?. 

(e) rf h E X, then h E Interior X if and only if 1 W,, 1 < co. 

(f) Z= {a E f)* 1 a(h) is non-negative real for all h E X). 

Proof Let w= ri, . . . ri, be a reduced expression. Take h E C and 
suppose that h’ = w(h) E C. We have: a,,(h) > 0, so that w(a,,)(h’) > 0. But 
by Lemma 1.2, w(ui,) < 0 and hence w(aJ(h’) < 0. Therefore, w(a,,)(h’) = 0 
and so a,,(h) = 0. Hence, riS(h) = h and both (a) and (b) follow by induction 
on the length s of w. To prove (c), note that C = {h E b R 1 h - r,(h) E R + hi 
for all i E I}. Hence it suffices to show that for h E C and w E W, 
h - w(h) = Ci cihi, where all ci > 0. This is proved by induction on the 
length s of a reduced expression w = ri, ..a ri,. Indeed, for s = 1 it follows 
from the definition of C. For s > 1 we have: h - w(h) = (h - ri, ... rise](h)) + 
ri, a** ri,-,(h - ris(h)); using the inductive assumption and Lemma 1.2, 
applied to A”, (c) follows. 

To prove (d) set X’ = (h E hIR ] a(h) < 0 for only a finite number of 
aEA+},andforhEX’setM,=(aEA+~a(h)<O).ItisclearthatCcX’ 
and that X’ is stable under W. Hence X’ 3 X. We prove that h E X’ implies 
h E X by induction on ]M, ]. If ]M, I = 0, then h E C c X. Otherwise, ai E M, 
for some i E I. But then M r,(hj = r,(M,\{a,}), SO that r,(h) E X by the 
inductive assumption. The same argument works for Ay, proving (d). 

607/53/2-2 
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To prove (f) we may assume that the matrix A is indecomposable. Put 
Z’ = (a E h* 1 a(h) > 0 for all h E X}. We must show that Z = Z’. Z c Z’ 
since A’,m c Q, is W-stable. If IAl < cc), then {O} = Z’ c Z by (d). If A is an 
affme matrix (cf. Section 1.2), then Z’ t Z follows from Proposition 1.9(a) 
below. In the remaining case, there exists y E A’,m such that y(h,) < 0 for all 
i E Z [ 191. Suppose Z’ Ct Z. Since Z is a closed convex cone, we may choose 
h’ E h such that a(h’) 2 0 for all a E Z, but a(/~‘) < 0 for some a E Z’. We 
deduce that a(h’) > 0 for all a E A’,“, but h’ 6$ Closure X. Choose h E h near 
h’ and E > 0 such that h 6? X but ai > ai + E for all i E I. If /I E A:, 
then y(j3”) < - 1, and r,(y)(h) > E ht r,(y) since r,(y) E A’,m. We deduce that 
/3(h) > -y(h) + E ht /I for all /I E A?, so that h E X by (d). This contradicts 
h & X, proving (f). 

To prove (e), we may assume that h E C. Then (e) follows from (b) and 
the following lemma applied to W,. I 

LEMMA 1.4. The following conditions are equivalent: 

(i) IW(<m, 
(ii) X= hn, 

(iii) IAl < co. 

Proof. (i) 3 (ii) since for any h E blR, each h’ E W(h) with maximal 
ht”(h’ - h) lies in C. (ii) * (iii) by taking h E hIR such that a,(h) < 0 for all 
i E Z, and applying Proposition 1.3(d). (iii) * (i) as A is W-invariant and any 
w E W leaving A pointwise fixed is the identity by Lemma 1.2. 1 

Finally, introduce the following important domain Y in h 1281: 

Y = Interior (X + it, J. 

EXAMPLES. If A is an affine matrix, then 

Y=(hEbIRe6(h)>O}. 

If A is a generalized Cartan matrix of hyperbolic type, then 

YU-Y={x+iyIx,yEl~,,(x,x)<O]. 

1.2. The Classification of Afjne Lie Algebras 

One knows that dim g(A) < co if and only if A is offinite type, i.e., all 
principal minors of A are positive. In this case, g(A) is semisimple; 
conversely, every finite-dimensional semisimple Lie algebra is of the form 

s(A)- 
A generalized Cartan matrix A is called an affine matrix, and is said to be 
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of afuze type, if all its proper principal minors are positive, and det A = 0. 
Note that A is an affine matrix if and only if ‘A is. One knows that any 
generalized Cartan matrix with all principal minors non-negative 
decomposes into a direct sum of matrices of finite and af’fme types. The 
corresponding KaE-Moody algebras are characterized by the property that 
root multiplicities are bounded. 

The KaE-Moody algebra associated to an affine matrix is called an q@ne 
Lie algebra. 

To each alfine matrix A = (aU),,jcr we assign a diagram S(A) as follows. 
The set of vertices of S(A) is Z = (0, l,..., f} i, and if i, j E Z, i #j, the vertices 
i and j are connected by aijaji lines; if 1 aijl > 1 aji(, these lines are equipped 
with an arrow, pointing toward the vertex i. One associates numerical marks 
ai to the vertices i as follows: ai, i E Z, are positive integers with greatest 
common divisor 1 such that for all i E Z, cjG, ajaij = 0. The diagram S(A) 
with I + 1 vertices is called the Dynkin diagram of g(A). 

It happens that two affme Lie algebras are isomorphic if and only if they 
have isomorphic Dynkin diagrams. These diagrams are listed in Tables I, II, 
and III [ 14, 3 11. The numerical marks are written beside the vertices. To the 
left of the Dynkin diagram of g(A) in the tables is a symbol such as A’,“, 
called the type of g(A). The superscript of this symbol is k, the number of the 
table, which, along with 2, is an important invariant of g(A). 

In the remainder of this paper we always assume that 0 is the leftmost 
vertex of the Dynkin diagram of g(A) as shown in the tables. In particular, 
a, = 1 unless g(A) is of type A$‘, when a,, = 2. 

We denote by a: the numerical marks of the diagram S(‘A), so that 
xi ayaij = 0 for all j E I. Note that a{ = 1 in all cases. 

The integers 

h := s ai 
ief 

and g :=s a: 
iel 

are called the Coxeter number and the dual Coxeter number, respectively, of 
the affine Lie algebra g(A). Note that when k = 1, h is the Coxeter number 
of the finite root system with Dynkin diagram S(A)\(O}, and g is the inverse 
of the square of the length of a long root with respect to the Killing form for 
this root system (cf. 4.12.2, 3). 

1.3. The Normalized Znvariant Form on an Aflne Lie Algebra 

For the next four sections we fix an afine matrix A. Let g(A) be the 
associated affine Lie algebra, $ its Cartan subalgebra, etc. 

’ We take I of this form merely for convenience. 
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TABLE I 

,(l) Lo 1 
(R > 3) o- -...a=$0 

II - 122 2 2 

5 (I-) (i 2 2) 

DR (l) (!L 1 4) 

(1) 
G2 

(1) 
F4 

(1) 
E6 

(1) E, 

?& (1) 
8 

122 21 

12 3 4 2 

91 

0-L 
12 3 21 

0 
12 

O-0-0-0-0-0-0 
1234321 

O3 
-iI o-o-o-o-o -0-o 

12345642 
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TABLE II 

143 

(2) 
A2 

Aw 
2 2 

(n. > 2) 2L - o+o-...A& 

A2Q-l (2) (a. 2 3) 

P 1 

0-O-h. . 
12 2 

.-z‘" 
1 

DR+l 
(2) (a 2 2) y==y- -0' -y=y 

(2) 
E6 o-o-0+0--0 

12 3 21 

TABLE III 

(3) 
D4 

Then the center of g(A) is one-dimensional and is spanned by the 
canonical central element 

c := x a,vh,. 
is1 

Since a,(c) = 0 for all i E I, c is fixed under the action of the Weyl group W. 
Fix an element d of lo such that: 

q(d) = 0 for i = 1 ,..., 1; a,(d) = 1. 
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Then g(A) = g’(A) + Cd. The elements ho,..., h,, d form a C-basis of h. For 
iEZ, define /i,E h* by 

/1 i(hj) = 6, ; A ;(d) = 0. 

The elements /i @,..., A, are called fundamental weights. Note that /1 i(c) = a: 
and that {a,...., al,/i,} is a basis of h*. 

We define a bilinear form ( , ) on h* by 

(ai, aj) = a;‘ayaij hi E 4, 

(Ao9af)= (ai,n,)=O for if 0, 

(&,a,)= (a,,hJ=ai’, (~o,~o) = 0. 

It is easy to see that this form is symmetric, non-degenerate, and W-invariant 
(so that, in particular, A is symmetrizable). Hence, it induces a bilinear form 
on $, which we extend to a standard form ( , ) on the whole Lie algebra g(A) 
(see Section 1.1(G)). The form ( , ) on g defined above is called the 
normalized standard form. 

Introduce the following two important elements of h*: 

6= C aiai, 
icI 

6=6--a,a,. 

As Ia,,l* = 2a;‘, we have 

l8l2 = 2a,, 

6-O=a,V. 

Identifying h* with IJ via the normalized standard form, we obtain 

6=C; A, = a; ‘d; aiai = a,ya,y for i E 1. 

Hence (6, Q) = 0 and 6 is fixed by W. 
Denote by t* the linear span over C of a,,..., a,. Then h* is the 

orthogonal direct sum of $* and the two-dimensional space C6 + CA,,. One 
knows that the restriction of (, ) to 6: := CI=, Ra, (resp. CiZO Ra,) is 
positive-definite (resp. positive-semidefinite with kernel R6). Furthermore, 
one has 

(4),A,>=(4@=0; (flo,6)= 1. 

For 1 E h*, denote by 1 the orthogonal projection of I on h*. Then, if 
il E h* is such that 2(c) # 0, one has the following useful formula: 

n-X=n(c)A,+(2qc))-‘(IAJ2-IX12)6. (1.5) 
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WeputQ=(aIaEQ},Qv={~IaEQVJt.Notethat: 
- 

Q”cQifk=l;QcQ”ifk#l. 

1.4. An Explicit Description of the Root System of an Afine Lie Algebra 

Set d = d n c*. Then d is isomorphic to the root system of the finite- 
dimensional complex simple Lie algebra fi := 6 + c’sKgu, with Dynkin 
diagram that of g(A) with the vertex 0 omitted. Thus l7 := {a, ,..., a,} is a set 
of simple roots of d, and d + := d n A + is the corresponding set of positive 
roots. Denote by d’ and ds the sets of long and of short roots of d. 

We shall reconstruct A, Aim, Are, A+, XI, 6, etc., from d,, 6, k, q,. The 
proof can be easily adduced from the explicit construction of afline Lie 
algebras in Section 1.7. 

It is known that 

Aim = {n6 1 n E %, n # O), 

and that the multiplicity of an imaginary root n6 is 1 except in the following 
cases : 

TABLE M 

Type XLk’ A (2) D’l’ E’2’ 
216 1 

0’3’ 
1+ I 

n odd odd o:d $0 mod 3 
mult nd I-1 1 2 1 

Note that mult n6 = 1 if k divides a,n, and mult n6 = [fi ndsl otherwise. 
Furthermore: 

Are={a+n61aEd] when k= 1, 

Are=(a+n6~aEdS}U(a+nkd~aEd’} when a,k = 2 or 3, 

Are={a+n61aEdS}U{a+2n61aEd’} 

U{j(a+(2n-l)d)/aEd’} when a,k = 4. 

Here n ranges over Z. 
The set A+ of positive roots consists of those roots given above for which 

n > 0, and of 2,. 
Note that 0 is the highest root of d, when a,k = 1 or 4, and is the highest 

short root of d, when a,k = 2 or 3. We have 

ll= {a, = a&‘(6 - 8), aI ,..., ar). 

’ For typographical reasons, p has sometimes been rendered in the text as Q”, p’ as p’, 
etc. 
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Warning. d is the orthogonal projection of Are on $* in all cases except 
for A it’, when the projection of Are on c* is a non-reduced root system and 
d is the associated reduced root system. 

1.5. The Adjacent Root System 

The facts presented in this section are easily deduced from Section 1.4. 
We associate to the root system A the adjacent root system A’, with 

multiplicities mult’, etc., as follows. If a,k = 1 or 4, then A’ = A, 
mult = mult’, etc. Otherwise, 

A ‘im:={k-ln~(nEZ,n#O), 

mult’ k-l& := 
I 

mult k6 if n = 0 (mod k) 
mult k8 - mult 6 if n & 0 (mod k); 

A”e . _ .- (a+nf3)aEdS,nEZ) 

U(k-‘(a+ns)IaEd’,nEZ} 

={2(a,a)-‘(a+ns)/aEd,nEE}; 

A’ :=Afim uA”e; 

A; :=A’nk-‘Q,. 

Set k’ = a;‘k, so that k’ = 1 if a,k = 1 or 4 and k’ = k otherwise. 
Then A’ is isomorphic to the root system associated to some affine Cartan 

matrix A’; furthermore, g(A) and g(A’) are isomorphic unless g(A) is of type 
,,j (2) *,-, or Di:‘l, when g(A’) is of type DIyl or A::‘,, respectively. More 
precisely, there exists a linear isomorphism @ from $* onto the dual of the 
Cartan subalgebra of g(A’) such that for all a E b*, we have: 
dim s(A’),(,, = mult’a if a#O; @(a)>0 if aEd’,; I@(a)l*=k’lal*; 
@(a) = @(a). Using @, we have notions ZZ’, 6’, 8’, Q’, W’, T’; Q’ , A’, A’+ ; 
a;, A;; etc. 

Denote by g (resp. @) the highest root of d, (resp. d’+). Then: 

18(* = 2k; e; = 8; k’& = 6; k’B’ = 0; 

aoab = 6’ - 8’; A~=A,; -v Q’=Q+Q. 

Moreover, the dual Coxeter number of g(A’) is g (cf. (4.6_111). 
For a E A’Ie, put a”= 2a/la/*. Put Q’“= Enen, Za”, Q’“= {ala E Q’“}. 

ThenQ’“=~~Q”.1fk’#1,wehave:Q’=Q”+L6’,Q’”=Q,d;=d~. 

Warning. The Dynkin diagram of g(A’) is found in Table k, not in Table 
k’. 

1.6. The Weyl Group of an Affine Lie Algebra and the Lattice M 
Let W be the Weyl group of the affine Lie algebra g(A). Recall that W is 

generated by the fundamental reflections r,,, r, ,..., rl (cf. Section 1.1(E)). Let 
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@ be the subgroup of W generated by r r,..., r,; this is the Weyl group of the 
finite root system 2. 

Denote by M the Z-span of the set w(O”) and by M’ the Z-span of the set 
p(p). Then it is easy to see that 

M’ 3 M I> k’M’. 

WehaveM=QnQ”(=@‘ifk=l and=Qifk#l)andM’=Q”=Cf=, 
Hay. Moreover, 

M+Z6=Q’“andM’+Z6=QV. 

For ~EC set h,*={AEh*I(11,6)=t}, hTR=hFnh& Note that 
lJo* = -&ccl,. s ince the bilinear form ( , ) is W-invariant and 6 is fixed by 
W, the afftne hyperplanes h;” are W-invariant. 

Consider the affine space h? mod (cd. Since the action of W on I$$ is 
faithful by Lemma 1.2, its action on h*/C6 2: (h,*)* and thus on hr mod C6 
is also faithful. The latter action has the following simple geometrical 
meaning. We identify h: mod C6 with h* by projection, thus obtaining an 
isomorphism from W onto a group W,, of affrne transformations of ii*. We 
denote this isomorphism by af: W+ Waf, so that 

w(A) = af(w)(X) for I.Eh,*. 

The group war is called the affine Weyl group. 
For w  E W, we have: af(w) = w. Furthermore: 

af(r,J(A) = r,(A) + 0” for IEij*, 

so that af(r,J is a reflection in the hyperplane 19 = 1, i.e., in 
{A E ij* ) (A, e> = 1 }. 

Since rB E w, the group W is generated by w  and the element 
tev :=-rmOre. We have af(t,v)@) = II + 8” for A E h*. For a = w(B”), where 
w E W, set t, := wtgvwP1, so that af(t,)@) = ;1 + a. Denote by T the 
subgroup of W generated by {t,,@v, 1 w E W}. 

Then T z af(T) is an abelian normal subgroup of W, and we have the 
semidirect product decomposition: 

W=WD<T. 

Since M is the Z-span of @O”), we have an isomorphism a H t, of M 
onto T defined by: af(t,)(A) = A + a. 

Since ( , ) is W-invariant, we have (t,@)l’ = [Al* for all A E h*. From this 
we deduce the following formula, which is crucial in our considerations: 

t,(A) = A. + (A, S)a - (f(A, 6) /a I2 + (a, A))6 for AEh*. (1.6) 
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We extend the definition of t, to arbitrary a E $* by (1.6). Then one easily 
checks that t, is linear and preserves ( , ), ta+O = t, t,, and wt, w-r = twqcaj 

for w E IV. 
It is sometimes convenient to use an equivalent formula for t,, derived 

using (1.5), which holds for 1 E h* such that m := n(c) # 0: 

t,(l)=nvl,+~~II’G+(X+ma)-~lX+mal’S. (1.7) 

Another useful pair of formulas, not depending on the normalization of the 
form, is 

(A,+$ A(h,) + (1, 0); A(c) = - a, -4 “;l(hJ 
0 i=O 

(1.8) 

For the adjacent root system, we similarly define W’ and the decom- 
position W’ = w K T’. We note that W and W’ differ only in their trans- 
lation subgroups T and T’, and that T’ consists of the translations ta, 
aEM’. 

Recall Section 1.1(H). We describe explicitly the Tits cone X and the 
domain Y. 

PROPOSITION 1.9. (a) X= (h E hlRI 6(h) > 0) U Rc; 

Y = (h E Q I Re 6(h) > 0). 

(b) Zf h E C(={h E blR I a,(h) > Ofor all i E Z)), then W,, is generated 
by the fundamental reflections contained in it. Zf h E X, then W(h) n C has 
exactly one element. Zf h E Y, then W,, isJinite. 

Proof (a) follows from Proposition 1.3(d) and the description of afftne 
root systems in Section 1.4. (b) is a particular case of Proposition 1.3(a), 

(WY (e>- 1 

Consider the (surjective) projection map 7~: h F, n-+ 66, and put 
C,, = {I E ?jg I (A, ai) > 0 for 1 < i < I, and (A, 0) < 1). Then, identifying I)* 
with h using ( , ), we have x’-l(C,r) = C n h:,. Since af(w) 0 x = ~0 w for 
all w E W, we deduce from Proposition 1.9 that C,, is a fundamental domain 
for W,, = af( W) on i; g ; more precisely, using W = w K T we obtain: 

PROPOSITION 1.10 (a) Any point of $6 is W-equivalent mod M to a 
unique point of C,,. 

(b) The stabilizer of any point of C,, under the action of w on 66/&I 
is generated by its intersection with { rB, ra, ,..., ra,}. 
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- 
Remark. The volume of the simplex C,, is (I! vol(Q”) nie,cy)-‘, and 

the volume of a fundamental domain for af(ZJ on 6; is vol(M). Since C,, is a 
fundamental domain for af(w) on ii,*, a comparison yields 

1.1. Realizations of Affie Lie Aigebras 

(A) Let p be a complex reductive Lie algebra, i.e., a direct sum of a 
semisimple and an abelian Lie algebra. Consider the “loop algebra” 

@:=C[tJ’]&p, 

a complex Lie algebra with bracket [ , ] _ given by 

[t” 0 a, t” @ b] ,= tmtn @ [a, b]. 

Let B be a non-degenerate p-invariant symmetric bilinear form on p, and 
extend B to such a form on @ by 

E(t” @a, t” @ 6) = 6,,-$(a, b). 

We define a Lie algebra 

by the following commutation relations: 

lb9c,l =o, [4,x1 =I$, 

I-GYI = IXYVI - + ~(k4I~xLY) Gl 

for x,y E @. Then B extends from b to a @,-invariant non-degenerate 
symmetric bilinear form on $, by 

B(x, c,) = B(x, d,) = 0 for x E 6, 

w,, co) = 0 = w,, 4l), B(C,) d,) = 1. 

Let u be a finite-order automorphism of p preserving B. Fix a positive 
integer N such that crN = I and set E = exp(2ni/N). Let p = 0, ps be the 
corresponding Z/NZ-gradation, where ps = {x E p ] a(x) = ?x}. We extend o 
to an automorphism of &, preserving B and the subspace ii, by 

cl)++cg, d,~‘&, 

tm @ a w (~-‘t)~ @ u(a). 
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Let fia(a, N) and F(a, N) denote the subalgebras of @, and @, respectively, 
fixed by this automorphism. Then: ii@bN)= @s~Zf~@P~,,,od,,r; 
bB(a, N) = @(c, N) @ Cc, @ Cd,; B restricts to a non-degenerate form on 
fiB(a, N) and on @(a, N). 

(B) Now we explain how the construction above gives explicit 
realizations of all affine Lie algebras (see [ 14, 171 or the book [50] for 
details). In the construction above, let p be a simple Lie algebra of type X, 
and let u be a finite-order automorphism of p. Let 0: be a Cartan subalgebra 
of the fixed point set p” of u. Then the centralizer ho of h; in p is a Cartan 
subalgebra of p. Put 

Z,=dimh,, h,=-1 +I;‘dimp. 

Fix a set of positive roots of p with respect to ho, let p0 be half their sum and 
let 8, be the highest root. We normalize the invariant form B by 
B(8,, 19,) = 2 and set 

g, = 1 + HP, > 0,). 

Let k be the least positive integer such that uk is an inner automorphism of p 
(k = 1,2 or 3). Then we have: 

PROPOSITION 1.11. Let A be the afJine matrix of type Xkk’. Then 

(a) There exists an isomorphism F: g(A) z eg(u, N) such that: 

6) F(c) = NC,, F(b) = b; + Cc, + Cd,, 

[do 3 F(eJ] = siF(ei), [do 3 F;(h)1 = -siF(fi) 

for some non-negative integers si, 0 < i < I, satisfying the relation 

k x aisi=N. 
i=O 

(ii) k(h, h’) = B(F(h), F(h’))for h, h’ E g(A). 

(b) Define y E ij* by 

(7, ai) = ksi/N, l<i<I. 

Then F(t,(d)) = N-‘ka,d,, where t, is defined by (1.6) and F is as in (a). 

(c) Let h and g be the Coxeter number and the dual Coxeter number, 
respectively, of g(A). Then: g, = g; h,l, = khl; h, = h if k = 1, and h p = g if 
k# 1. 
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(d) Let p’ = f zaGA; a. Then (k/2g) Iy’]* = (l/24) dim p. 

(e) Let p = $ CupK+ a. Then 

(%(h,+ I))-‘I~l’=&((k+ 1)1-l,). 

Moreover, the following “very strange” formula holds: 

&lp-gy’=&dimp-- ---& yg: i(N - i) dim Pi* 

ProoJ The “very strange” formula of (e) is just Proposition 4.12 (by the 
existence of F below). In a different form, it is proved in [ 171 for “rational” 
a; the same proof, using Lemma 3.20, applies to any cr. We give a simpler 
proof in Section 4.3. The rest of (c), (d) and (e) may be checked case-by-case 
or deduced from the “very strange” formula. We omit this here. 

We now proceed to construct F. For x E g’(A), write X for x + Cc E 
g’(A)/Cc. In [15], an isomorphism F from g’(A)/Cc onto #(u,N) is 
constructed, such that F(;(hi) E 4; for all i E I and such that for some non- 
negative integers si, i E 1, with k Ci,, aisi = N, we have [d,, F(pi)] = s&) -- - - 
and [do, F(h)] = -siF(h)* 

By formula (4.12.2) in Section IV (which is a consequence of (e)), we 
have 

5’ a(h)’ = 2kg 1 hi* 
aczAremodkZS 

for all h E ho := Cicl Ch,. On the other hand, it is well-known that 

tr(ad, h)* = 2g,B(h, h) 

for all h E p. Since g = g, by (c), a comparison shows that 

for all h, h’ E QO. 

-- -- 
B(F(h), F(h’)) = k(h, h’) 

Let z: g’(A)-+ g’(A)/Cc be the canonical map and let y be as in (b). 
Define a linear map F: g(A) -+ fie(o, N) by requiring that F coincides with 
FQ K on n, and on n-, that F(t,(d)) = N-‘ka,d,,, and that F(hi) = ~(i;i) + 
iks, Ih,l* c0 for i E I. Using the definition of g(A) by generators and 
relations, it is easy to see that F is a homomorphism. Since F(c) = NC, by an 
easy computation, F is an isomorphism, and it is easy to check that (a) and 
(b) hold. 1 

Remark. It is not difficult to show that the Coxeter number of A’ is 
(1 + k’ -‘)h, - h. This forces g E k’Z, and hence gQ” c Q. Applied to A”, 

this gives ho c Q”. 
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1.8. Appendix 1: On Asymptotics of Root Multiplicities 

Here we prove the following: 

PROPOSITION 1.12. Let g(A) be a Ku&Moody algebra with a 
symmetrizable Cartan matrix A, let ( , ) be a standard form on t)*, and let 
a = xi k,a, be a positive imaginary root of g(A). Set w(a) = 
lim s~p~.++~ n-’ log mult(na). Then: 

(a) v(a)=lim,,+, n-’ log mult(na); v(a)= supna r n -’ log mult(na) 
if (a, a) < 0. 

(b) w(a) =0 if (a, a)= 0, and .48 < w(a) < ht(a) log ht(a) - 
xi ki log ki if (a, a) < 0 (h ere 0 log 0 is interpreted as 0). 

(c) w(na) = nv/(a)for n > 0; w(w(a)) = v(a)for w E W. 

(d) W(a+P)~~(a)+wGa)ifa,P,a+PEd’t”. 

LEMMA 1.13. Let L be a free abelian group on generators /?,,...,pr, let 
L, =CiH+Pi, and let J=J,U... V J, be a disjoint union of non-empty 
finite sets. Let a = @,,, a, be a free Lie algebra on generators ej (j E J) 
graded by degej=PiforjEJi. For a=CikiPiEL+, set k=Ciki and 

w,,(a) = k log k - x ki log(k,/ / Ji I). 
i 

Then one has for all a E L+\(O), 

lim n-’ log(1 + dim ana) = w,,(a). 
n-m 

Proof. Since the universal enveloping algebra of a is the free associative 
algebra on the ej, we have 

n (1 - ea)-dimh = (1 -x 1 Jil @i) -l. 

a i 

Take the logarithm of both sides and match the coefficients of ea, obtaining 

Stirling’s formula completes the proof. I 

At this point, we need the construction of the Lie algebra g’(A) associated 
to a (possibly infinite) symmetric matrix A = (aii)i,jcr over C (see [ 14, 201 
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or the book [50] for details). Let &4) be the Lie algebra with generators ei, 
fi, hi (i E Z) and the following defining relations (i,j E I): 

h&l = Gijhi, [hi, ej] = aijej, 

[hivf;.] = -aijfi, [hi, hi] = 0. 

Let Q be a free abelian group on an indexed set ZZ= {aiJiE,. Setting 
dege,= -degjJ = ai (iEZ) defines a Q-gradation G(A) = 0, i,. Let r be 
the sum of all graded ideals of $A) intersecting &, trivially. We set 

s’(A) = W)/r- 

We have the induced Q-gradation g’(A) = 0, 9,. Put Q, = Cisl z + oi c Q; 

for a E Q+\{O}, we write a > 0. Setting n, = @ a>0 g fa defines the decom- 
position g’(A) = n- 0 go @ n+ (direct sum of vector spaces). The center of 
g’(A) lies in go. 

Now let g(A) be a Kac-Moody algebra with a symmetrizable Cartan 
matrix, ( , ) a standard form on g(A). 

LEMMA 1.14. Let L CA, satisfy 

(i) a,BEL*(a,P)<O, 

(ii) a,/?EL,a-pEA+*a-pEL. 

Let rt,+ (resp. n,) be the subalgebra of g(A) generated by BaEL g, (resp. 
O,,, g-J Then 6 is a free Lie algebra on a basis of the space n,’ n 
[ni, nF I’. 

Proof: We may assume that L is finite. By induction on 1~5.1 we prove 
simultaneously using [20, Corollary l] that: 

(a) For each a EL, there exist bases Z,’ = {x2,)+ ,..., ~$2, of 
g*, f7 [nl_‘, tt,‘]’ which are dual under ( , ). 

(b) Put I* = UaeL. I,‘. Then I* generates n,‘. Moreover, we have: 
[x$+, xx’-] = Ba4cYija. 

(C> Put B = (bij)i,j,l+, where b,= (a,/?) if iEZ2, jE Zi. Then 
gL := n: 0 CapL Ca @ n,’ is isomorphic in the obvious way to a quotient of 
g’(B) by a central ideal. 

(d) ni and n, are non-degenerately paired by ( , ). 

(e) The statement of the lemma. ! 

We recall some useful notions. For a= C k,a,E Q, put suppa= 
{i E I] k, # 0). We say that a subset J of Z is connected if, whenever J is the 
disjoint union of Jo and Jr, and Uij = 0 for all i E Jo and j E .Z, , then J, = 0 
or .Z, = 0. It is easy to see that if a E A, then supp a is connected. 



154 KAC: AND PETERSON 

LEMMA 1.15. ZfaEd’,m is non-isotropic and a(hi) < 0 for all i E I, and 
ifp E A + is such that a > j?, then mult a > mult p. 

Proof: Using the argument of [ 19, Lemma 1.61, one shows that /I = a or 
else @(hi) < 0 for some i E supp(a -/I). In the second case, /I + oi E A+, 
a >p + ai and mult@ + ai) > mult(j3). The result follows by downward 
induction on ht@). 1 

LEMMA 1.16. Zfa,P, a +/3E A? and @,/I) < 0, then (a,P) < 0. 

ProoJ By Proposition 2.4(b), we may assume that &hi) ,< 0 (i E I), so 
that (a, /3) < 0. Suppose that (a, p) = 0. Since supp(a + p) is connected, we 
deduce that supp(a) c supp@). Choose w E W such that w(a)(hi) < 0 (i E I). 
Then as above, supp w(,Q c supp w(a), so by Proposition 1.3(c) applied to 
A”, we obtain 

supp /3 c supp WV) c supp W(a) c supp a. 

Hence suppCp> = supp(a), and since also (a,/l) = 0 and P(hi) < 0 (i E Z), we 
have Q?, p) = 0, a contradiction. 1 

Proof of Proposition 1.12. If (a, a) = 0, then 1 < multja < 1 ZI for 
j = 1,2 ,... (see Section 1.1 (G)), so that (a) and (b) are clear. We now check 
(a) and (b) for (a, a) < 0. For a positive integer m, let L = {ma}. Then using 
Lemmas 1.13 and 1.14 we have 

lim inf((mj)-r log mult(mja)) > m-’ log mult(ma). 
j-++cc 

(1.12.1) 

But by Lemma 1.15, 

mult((j + 1)a) > mult(ja) > 1 for j> 1. 
, 

It is easy to d k duce from this that 

lim inf(mj)-’ log mult(mja) = lim inf j-’ log mult(ja). 
.i++cc j-im 

From this and (1.12.1) we deduce (a). 
Since mult a > 1 and mult 2a > 1, a computation using Lemmas 1.13 and 

1.14 gives y(a) > .48. The rest of (b) follows from Lemma 1.13. 
(c) is clear from (a). 
Let a and p be as in (d). If a or p is isotropic, (d) follows from (b) and 

Lemma 1.15. If a and /I are proportional, (d) follows from (c). Otherwise, by 
Lemma 1.16, Lemma 1.14 applies to L := {m ht(P)a, m ht(a),Z?} for each 
positive integer m. Apply Lemma 1.13 to n,f , with /I, = m ht(P)a, 
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,f&= mht(a)b, ]J,] =mult/?,, ]J2/ =mult&, k, =hta, k,= htp, y= k,fi, + 
k,& = m(ht a)(ht P)(a + p). Then we obtain 

mtht a)tht P> da + P) = Y(Y) > We 

= ht(a + ,8) log ht(a + p) - (ht a) log ht a 

- (ht p) log ht p 

+ (ht a) log mult(m htQ?)a) 

+ (ht /I) log mult(m ht(aJf?). 

We divide both sides by m(ht a)(htp) and let m -+ co, obtaining (d). 1 

Remarks. (a) If A is indecomposable, it follows from Proposition 1.12 
that y extends uniquely to a concave function on the interior of the 
imaginary cone Z such that t&a) = tw(a) for t > 0. 

(b) For a free Lie algebra a on N generators e,,..., e, of linearly 
independent degrees a, ,..., aN, and a = xi kiai with all ki > 0, we have 

dim ana - C(a) n-(N+l)/2 &WO(~) as n-+co, 

where C(a) = (2n)“-N”2 (Ci ki)-‘j2 ni k;“‘. This and other evidence 
suggests the following conjecture: 

Under the hypotheses of Proposition 1.12, provided that A is indecom- 
posable and a lies in the interior of the imaginary cone Z, there exists 
C(a) > 0 such that 

muIt Y C(a) n -(lrt + 1)/2en*(a) as n-rco. 

II. HIGHEST WEIGHT REPRESENTATIONS 

In Section II we describe the structure of the weight system of an 
irreducible highest weight representation with dominant integral highest 
weight of an affme Lie algebra and present the character formula obtained in 
[ 161. Then we use the decomposition of the Weyl group to express the 
character of such a representation as a finite sum of classical theta functions 
with coefficients called string functions [18, 221. This gives us the theta 
function identity (2.18), which is the basic fact for the theory of string 
functions which we develop in Section IV. 

2.1. Basic Facts about Irreducible Highest Weight Modules over Kab 
Moody Algebras 

(A) Let g = g(A) be a KaE-Moody algebra. Recall the decomposition 

607/53/2-3 
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g=n-O$On+ (S ec ion t 1.1(C)). Then for any /1 E $*, there exists an 
irreducible g(A)-module L(A), unique up to isomorphism, satisfying: 

There exists a non-zero vector o,, E L(/i) such that 
n+(u,) = 0 and h(v,) =/i(h) u,, for all h E $. (Ll) 

L(A) is called the irreducible highest weight module with highest weight A 
[161. 

We shall sometimes describe /i by its labels A(hi), i E I. If A, /i’ have the 
same labels, they may differ only off Ci Chi; however, then L(A) and L(A’) 
are isomorphic as (irreducible) g’(A)-modules, and the actions of elements of 
g(A) on them differ only by scalar operators. Note that 

dim L(A) = 1 if and only if A(hi) = 0 for all i E 1. 

One has the weight space decomposition of L(A) with respect to h: 

where L(A), := (u E L(A) 1 h(v) = I(h)v for all h E Q}. 

(B) Consider the formal expansion 

defining a function K on h* called the partition function. As (1 - ema)-’ = 
1 + eea + e-*” + ..., K(J) is the number of partitions of j3 into a sum of 
positive roots, where each root is counted with its multiplicity. Since v,, is a 
cyclic vector for the n--module L(A) ( i.e., no proper n-submodule of L(4) 
contains v,), we find that 

dim L(A)A < K(A - A) for LEh*. (2.2) 

In particular, L(A), = Cv, and dim L(A), is finite for all A E $*. If 
L(A), # 0, then L is called a weighr of L(A) of multiplicity dim L(A),; we 
write mult,,(A) := dim L(A),. We denote by P(4) the set of weights of L(A). 
It follows from the irreducibility of L(A) that if 1 E P(A)\(n), then 
e,(L(A)J # 0 for some i E I and hence I + ai E P(4) for some i E I. 

As u,, is a cyclic vector for the n--module L(A), we have 

P(A)cA-Q,. 

(C) For L E h*, define a function e” on h by eA(h) = eACh). We define the 
character ch,(,,, of L(A) to be the function 

h tr ch,(,,(h) = 1 mult,@) eAchI 
AEIj’ 
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defined on the set, which we denote by Y,, , of all h E h such that the series 
converges absolutely. 

LEMMA 2.3. Let A E $*. Then: 

(a) YA is convex and contains the set of all h E 9 satisfying the 
following two conditions: 

(i) Re at(h) > 0 for all i E I, 

(4 LA, (mult a) le-a(h)I < co. 

(b) Y,, I> {h E $1 Re a,(h) > log 111 for all i E I). 

(c) If g is an afflne Lie algebra, then 

Y,, 3 {h E @ 1 Re a,(h) > 0 for all i E Z}. 

Proof The convexity is clear from the convexity of 1 e’ 1. From (2.2) we 
obtain, for h E b, 

S mult,(I) IeACh)/ < IeACh) 1 K(P) Ie-°Ch)I. 
ael’ 4sQ+ 

But (2.1) implies, for h satisfying (i): 

C K(p) le-B(h)I = n (1 - le-a(h)J)-multo. 
4eQ+ aEd+ 

This product converges if h satisfies (ii), which proves (a). (b) follows from 
(a) by the easy estimate mult a < (II hta Finally, (c) follows from (a) since . 
for an affine Lie algebra root multiplicities are bounded by (II. 1 

We remark that using the convexity of I e’ 1, the absolute convergence is 
uniform on compact subsets of the interior of Y,, and hence ch,(,,, is 
holomorphic on the interior of Y,,. 

(D) We call A E $* an integral weight if A(hJ is integral for all i E I; an 
integral weight 1 is called dominant if A(hi) > 0 for all i E I, and regular 
dominant if A(hJ > 0 for all i E I. Let P (respectively, P, , P, +) be the sets 
of integral (respectively, dominant integral, regular dominant integral) 
weights. Note that P 3 Q and that any coset of P mod Q is W-invariant. Fix 
p E h* such that p(hi) = 1 for all i E I. Note that P, + = p + P, . 

PROPOSITION 2.4. Let A E P, and let A, p E P(A) be weights of the 
g (A )-module L (A ). 

(a) Let a E Are. If A(a”) < 0, then for any non-zero x E g,, the map 
x-lfaV): L(A), -+ L(A)r,Clj is an isomorphism. 

(b) Let w  E W. Then there exist t3 E Aut g and ti E GL(L(A)) such 
that @(IJ) = 0, v?‘/~ = w, and $(x(v)) = 6(x)(ti(v))for all x E g and v E L(A); 
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in particular, G(g,) = gwcaj for ail a E $*, and B(L(A),) = L(A),,,,. We 
may take fi (resp. Fi) to be (exp et) (exp -fi) (exp e,), regarded as an 
operator on g (resp. L(4)). Moreover, A’,” c - W(P+) and P(A) c W(P+). 

(c) 1 lies in the convex hull of W(A). 

(d) Suppose that A is symmetrizable and ( , ) is a standard form on 
g(A ). Then: 

6) &Y)<kfl*, with equality if and only if A = p E W(A). 

(ii) IA +pj* < \A +pl*, with equality Sfand onZy ifn =A. 

(e) The set of asymptotic rays for the set -P(A) is contained in the 
imaginary cone Z. 

Proof. The proof of (a)-(d) requires some minor modifications of that 
for the classical finite-dimensional case. For (a) and (b) see ] 141 or the book 
150 I* 

(c) is proved by induction on ht(A -A). If A =A, there is nothing to 
prove. If L #A, choose i E I such that A+ ai E P(A), and let P E P(A) be 
such that .D = A + sai, s > 1, ,U + a, G P(A). Then ,U (and hence also rib)) lies 
in the convex hull of W(A) by the inductive assumption. But i lies in the 
interval [p, rib)] and hence I also lies in the convex hull of W(4). 

Since both P(A) and ( , ) are W-invariant, we can assume by (b) that 
A E P, in the proof of d(i). But p := A - A E Q, and p, := A -,u E Q, , so: 
(A, A) - (A, ,u) = (j?, A) + (‘J,, A) > 0. If we have equality, then (A, /3) = 
(L,p,)=O. ButAEP+,/?EQ+, (A,@=OandA--pEP(A) implyP=O. 
Hence, A = L and so (A, pi) = 0. By the same argument, fi, = 0, proving d(i). 
For d(ii), we have 

(;t+P,A+p)=(~,I)+2(A,p)+@,p) 

< (AA) + 2(&P) + @7P) 

=(A+P,A-tP)-2(P,p)~(A+p,A+p>, 

and the equality holds only if p = 0. 
Since P(A) C fi,,, w(A - Q,), (e) follows from Proposition 1.3(f). m 

Now we can prove an important result about the region of convergence of 
ch L(A). 

PROPOSITION 2.5. Let A E P, and let Y,, be the region of absolute 
convergence of ch,(,,,. Then: 



INFINITE LIE ALGEBRAS AND THETA FUNCTIONS 159 

(a) Y,, is a convex W-invariant set, which for any y E Y contains ty 
for suficiently large t E IR, . 

(b) Y,, 1 Y’ := Interior{h E h ] Caed+ (mult a) ]e-a(h)] < co}. 

(c) Zf g is an afine Lie algebra and dim L(A) # 1, then 

Y,, = Y(={h E b 1 Re 6(h) > 0)). 

Proof. First, we prove (b). Set C’ = {h E h ] Re a,(h) > 0 for all i E I}. 
Then by Lemma 2.3(a), Y’ n C’ c Y,, . It is clear that Y’ is convex and W- 
invariant. It follows from Lemma 2.3(a) and Proposition 2.4(b) that the 
same is true for Y,. Hence it remains only to show that the convex hull of 
W(Y’ n C’) contains Y’. Indeed, obviously, Y’ c Y. Since the union of the 
“walls,” say R := {h E h]Re a(h) = 0 for some a E Are), is nowhere dense in 
h, and since Y’ is open, Y’ is contained in the convex hull of Y’\R = 
W(Y’ n C’). This proves (b). 

Consider Y” := {y E Y 1 ty E Y, for sufficiently large t E IR + }. Y” is W- 
invariant and convex; it contains C’ by Lemma 2.3(b). An argument as in 
the proof of (b) gives Y” = Y, proving (a). 

The inclusion Y,, I> Y in (c) follows from (b) by the structure of the root 
system. The reverse inclusion follows from Proposition 2.11 (a) below. 1 

Remark. Suppose that A is indecomposable and symmetrizable, and 
/i E P, is such that A(hJ # 0 for some i E I. Then Y,, is open and: 

Y,,= hE h 
I I 

c (multa)]e-“‘h’] < co 
asA+ 

We prove this fact in Appendix 2 (Section 2.4). 

(E) Assume that the Cartan matrix A of g is symmetrizable. Then one 
knows the following character and denominator formulas [ 161: 

ch,,,, = c (det w) ew(A+p’, 
WEW WEW 

(2.6) 

c (det w) e”‘(O) = ep (1 - e-a)m”‘ta. (2.7) 
WEW + 

Recall also the following multiplicity formula, which is a formal conse- 
quence of the latter two formulas [ 161: 

mult,@) = c (det w) K(w(/l + p) - (A + p)). 
WEW 

cw 



160 KAt: AND PETERSON 

Remark. Formula (2.6) implies the following “star” formula (which 
enables one to compute the multiplicities of weights inductively): 

c (det w) mult,(A + p - w@)) = 0 if A E P(A)\{A ). 
WEW 

Indeed, we equate the coeffkients of e*+O and use the fact that w(li + p) # 
A++forwEW,since(A-w(A))+@-w@))>O,andp=w@)*w=l. 

(F) We recall (in a modified version) a generalization of the Weyl 
complete reducibility theorem to the case of Kac-Moody algebras [ 17, 
Proposition 2.81. 

PROPOSITION 2.9. Let g’ be the derived algebra of a Kac-Moody 
algebra g with symmetrizable Cartan matrix. Let V be a g’-module 
satisfying: 

(i) lf v E V, then n:(v) = (0) for some k > 0. 

(ii) Zf v E V and i E I, then f:(v) = 0 for some k > 0. 

Then V is isomorphic, as a g’-module, to a direct sum of irreducible g’- 
modules L(A) with dominant integral highest weights A. 

Proof. is a corrected and modified version of that in [ 171. Recall the 
algebra gradation U(g’) = OBEa U(g’),, with e, E U(g’),i andfi E U(g’)-,?. 
Since I is finite, (i) implies: 

If v E V, then U(n+), v = (0) for all but a finite 
number of/?E Q,. (2.9.1) 

For AEb’*, put V, = {v E Vi h(v) = A(h)v for all h E Q’}. For i E I, ei 
and & act locally-nilpotently on V by (i) and (ii), so that 
dim U(CA + Gh, + Ce,)v < co for all v E V by Lemma 2.9.14 below. Since Z 
is finite and Cfi + Chi + Cei E sI,(G), a standard argument proves: 

v= @ v,. (2.9.2) 
,lE$” 

If AEl)‘*, VE v,, v#O and iEI, then A(h,)E Z, and 
moreover, e;*(hi)(v) # 0 if A(hi) < 0. (2.9.3) 

Our objective is to prove (2.9.13) below. Let ( , ) be a standard form on g, 
and let Y: lo + h* be the vector space isomorphism induced by ( , ). For 
pEQand~E~‘*,putP=Pla, and F(/3, A) = A(v-‘@I)) + i@ + 2p)(v-‘(/I)). 
Put V”+ = {v E Vln+(v) = (0)}. We will need: 

If A E b’*, u E VA, i E I and ei(v) # 0, then e:(v) # 0 
and F(na,, A) > 0 for some positive integer n. (2.9.4) 
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If P E Q+\KW J E $‘*, VAn V”+# (0) and VA-En 
V’+ # (0), then F(-/?, A) < 0. (2.9.5) 

The statement (2.9.4) follows from (2.9.3) by taking n = 1 if A(hi) > 0 and 
n = -A(hi) if A(&) < 0. If 1 and /I are as in (2.9.5), then A(v-‘(p)) > 0 and 
(A - j?)(v- ‘co)) > 0 by (2.9.3), and p(v-i(p)) > 0 since /3 E Q+\{O}, proving 
(2.9.5). We now deduce: 

If AElj’*, v E VA and v @L V”+, then there exists 
p E Q such that U(g’),v n V”+ # (0) and .F(j?, A) # 0. (2.9.6) 

If /?EQ+\{O}, AEh’*, vE VAnI’“+ and 
U(n-)-,v n V”+ # (0), then F(-/I, A) # 0. (2.9.7) 

By (2.9.1), the statement (2.9.6) follows by repeated application of (2.9.4), 
using the identity F(J, A) + I’(/?‘, 1 + $) = F(j3 + /I’, A). The statement (2.9.7) 
is immediate from (2.9.5). 

For aEd+, choose bases {ez’ } of g, and {e!!), } of g-a, dual under ( , ). 
Following [ 161, we define the “partial Casimir operator” a, on V by 

l2,(u) = x x e(i’,(ez)(u)). 
asA+ i 

0, is well-defined by (2.9.1), and clearly commutes with lj’ on V. For a E C, 
Put 

We have, since Y is U(g’),-finite by (2.9.1) and (2.9.2), and C is 
algebraically closed: 

v= @ V”. 
OEC 

Q, and h’ commute on V. (2.9.8) 

We will need: 

If I/” is a g’-submodule of V, v E V and n+(v) t V’, 
then v E V’ + V. (2.9.9) 

If /I E Q, 1 E h’* and a E C, then U(g’)#, n Vu) c 
vA+gn Va-F(4J). (2.9.10) 

Indeed, let V’ and v be as in (2.9.9), and suppose v @ V’. By (2.9.8), 
choose a non-zero polynomial p such that p(f2,)v = 0. Since L!,(v) E 
U(g’) n+(v) c V’ and hence J&(v) E V’ for r= 1,2,.., v & V’ forces 
p(0) =O. Write p(X)=X'q(X), where r> 1 and q(0) # 0. Then q(O)v = 

(q(O)v -q&!,)(v))+ q(L$,>(v)E V' + p, proving (2.9.9). 
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Asin [16,17],forx=eior&wehaveon V:~R~-n~x=[x,e_,~e,~].It 
is easy to deduce from this that, for /I E Q and u E U(g’)B, we have on V: 

un, - R,u = u(v-‘(p) + g/3 + 2p)(v-‘@))I,). 

Statement (2.9.10) follows. 
We can now deduce: 

V”+=P. 

n- u(n-)V”+c @ V”. 
a+0 

(2.9.11) 

(2.9.12) 

V= V”+@n_ u(n-)V”+. (2.9.13) 

By (2.9.9) for V’ = (0), V”+ c P. Using this, (2.9.6) and (2.9.10) imply 
that V, n V’ c V”+ for all 2 E b’*. Using (2.9.2) and (2.9.8), (2.9.11) 
follows. By (2.9.7), (2.9.10) and (2.9.11), U(n-)-,(V”+n VA)c @,,. V” 
for all /3 E Q+\{O} and A E $‘*. Using (2.9.2), the statement (2.9.12) follows. 
By (2.9.11) and (2.9.12), V”+ nn- U(n-)V”+ = (0). Using (2.9.1), (2.9.9) 
applied to V’ = U(g’)V’ gives V= U(g’)V”. Hence, by (2.9.11), V= 
U(g’)V”+ = iY(n-) U(b’ + n,) V”+ = U(K) V”+ = V”+ + nP u(n-) V”+. This 
proves (2.9.13). 

Finally, (2.9.13) and Lemma 2.9.16 below show that, if A E b’*, 
u E V”+ n V,, u # 0, and if/i E $* satisfies /i(hi) = n(h,), i E I, then U(g’)v 
is isomorphic to the irreducible g’-module L(/i). Hence, by (2.9.2), V is 
isomorphic as a g/-module to a direct sum of modules L&4); these /1 are 
dominant integral by (2.9.3). 1 

LEMMA 2.9.14. Let a be a Lie algebra over afield F of characteristic 0, 
and let V be an a-module. Then the span of {a E a 1 for all b E a and v E V, 
(ad a)” b = 0 and a”(v) = 0 f or some k > 0) is a subalgebra of a. 

Proof. If a, b lie in the set in question, then so does (exp (ad ta))(b) for 
all t E F. 1 

LEMMA 2.9.15. Let a = @ nEL a, be a Z-graded Lie algebra over an 
arbitrary field, and put a + = @ n a1 a + n. Let Modi be the category of all a- 
modules V satisfying v= v+ @ a- U(a->v+, where v+ := 
{v E V 1 a+(v) = (0)}, and all a-module homomorphisms. Let Moda be the 
category of all a,-modules and all a,-module homomorphisms. Define 
functors R: Mod: + Moda and L: Mod,0 + Mod: as follows. R(V) = V’, 
R(f)(v) =f (v). Zf V is an a,-module, regard V as an (a, + a+)-module with 
trivial a+-action, form the a-module M(V) = U(a) @oCo,+ a+, V, the submodule 
Z(V) = {m E WV) I u(a>m = a-(M(V))l, and the quotient module L(V) = 
M( V)/Z( V). For m E M(V), write ti for m + Z(V) E L(V). DeJne L(f) bJ7: 
L(f )(u @ v) = u @f(v). Then: 
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(a) t: LR 2: I and to: I = RL are natural equivalences, where, for V an 
object of Mod: and V’ an object of ModaO, t,: LR(Q3-t” V and t;,: 
Vo -+* RL(V”) are dejined by t,(u @ v) = u(v) and &(v) = 1 @ v. 

(b) @ is the coproduct in Mod: and ModaO, and L and R preserve 
coproducts. 

(c) If V is an object of Mod: , then V+ is an essential a+-submodule 
of V. If V is an irreducible a,-module, then L(V) is an irreducible a-module. 

The proof, which is not difficult, is left to the reader. -1 

Below, we prove the special case of the lemma which is used in the proof 
of Proposition 2.9: 

LEMMA 2.9.16. Keep the assumptions and notations of Lemma 2.9.15, 
and let V be an a-module satisfying V = V+ 0 a- U(a-)V+. Then; 

(a) V is isomorphic to L( V’). 

(b) V is an irreducible a-module tf Vc is an irreducible a,-module. 

Proof Since V= U(a)V+, we have: 

U(a+)vn v+ # (0) if v E V and v # 0. (2.9.17) 

(b) follows from (2.9.17) and V = U(a)V’. 

To prove (a), let w: M( Vt ) + V be the surjective u-module 
homomorphism defined by v(u @ v) = u(v). We must show that Ker w = 
Z(V+). If v EI(V’), then W> w(v) = WWW = w(a-(WV+))) = 
a-(p(M(V’)))=a-(V), so that (U(a)v(v)nV+)c(a-(V)n V’)=(O). 
Hence, by (2.9.17), I&V) = 0, proving that I(V+) c Ker w. Now let U(a) = 
0 nsz U(a),, be the Z-gradation of U(a) induced by a = Onsz a,,, and 
suppose that v =vO + vi + ... + vk E Ker w, where vi E U(a)-,(l @ V’). We 
have U(a),v, = U(a),v c (1 @ V+) n Ker w = (0), and hence U(a)v, = 

Crick W&v, + Cnhk U(a),v, c a-(M( V’)) + (0), so that vk E I( V+). 
Hence, by an inductive argument, v E I( Vt ), proving (a). 1 

Remarks. The proof of Proposition 2.9 also shows: 

(1) The partial Casimir operator R, is diagonalizable on V, and its 
eigenvalues are positive rational. 

(2) With the additional assumption that V is h-diagonalizable, 
Proposition 2.9 also holds for g. 

(3) Proposition 2.9 holds over any field of characteristic zero. 

(4) With the hypotheses (ii), (2.9.1) and (2.9.2), Proposition 2.9 holds 
for arbitrary index sets I. 
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(5) Let I be a set, A = (uij)i,js, a matrix over a field, g’(A) the 
associated Lie algebra (see Section 1.8). Then by Lemma 2.9.16, if V is a 
g’(A)-module satisfying (2.9.2) and (2.9.13), V is isomorphic to a direct sum 
of modules L(A). Suppose, moreover, that A is real symmetric. Then the 
same conclusion follows from (2.9.1), (2.9.2), (2.9.4) and (2.9.5), where 
F(C kiai, A) in (2.9.4) and (2.9.5) means 

x kiL(hi) + 1 fki(ki + l)Uii + i s kikjaij. 
i I i#j 

(2.9.18) 

Remark. In addition to Proposition 2.4, one has the following 
description of P(A) for A E P,. We call L E P A-non-degenerate if either 
A = A or else i < A and for any connected component S of supp(A - A) one 
has 

Sn (ilA(hi)#O)#O* 

Then P(A) = W. {A E P, 1 A is A-non-degenerate}. Furthermore, J. E P(A) = 
w(A) is A-non-degenerate for all w E W o A - 1 E Q and 1 E convex hull of 
W(A). This is a generalization of Proposition 2.12 (a), (b) below; its proof is 
similar to that of Lemma 1.6 from [ 191. It follows that Proposition 2.12(c) 
holds for arbitrary KaE-Moody algebras as well. (See [50] for details.) 

(G) Let Q” act on h by hj . h = h + 2xihj. Then we have an action of 
G::= WK Q”on h. 

PROPOSITION 2.10. The ch,(,,,, A E P, , separate the orbits of I? on 
Y’ := n,,,,, Y,,, i.e., given h, h’ E Y’, @t(h) = @(h’) f and only if 
ch,Jh) = ch,(,,(h’)for all A E P, 

Prooj Let h, h’ E Y’ be such that ch,(,,,(h) = ch,(,,(h’) for all A E P, ; 
we have to show that q(h) = q(h’) (the other implication is obvious). First 
we show that 

c&d4 = chL,A,W’) for all A E P, and n = 1, 2 ,.... (2.10.1) 

For that, set 

F/c(h) = ch,wdh), G,(h) = c&&h). 

(Here AkL(/i) is the kth exterior power of L(A).) 
Then it follows from the Newton identities for power sums that 

Q[F, ,..., F,] = Q[G, ,..., G,]. 

This implies (2.10.1). 

(2.10.2) 
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Since Y’ c Y, we may assume that Re a,(h) > 0 and Re a#‘) > 0 for all 
i E I. Note that A, := {a E A 1 Re a(h) = 0} is a finite root system; let Q, be 
the lattice spanned by A,, Q,, := Q, n Q, . Then the sum 

XA := C mult,(A - a) e-” 
asPOt 

is finite and hence xn(rh) is an almost periodic function of r E F?. We have 

,li~~, (e-A(“h) ch,,,,(nh) -x,,(nh)) = 0. (2.10.3) 

Similarly, for h’ we define XL, etc., and have 

liym (emAcnh’) ch,,,,(nh’) -xi(nh’)) = 0. (2.10.3’) 

It follows from (2.1O.lk(2.10.3’), and from the fact that I,, and ,&(nh’) 
are non-zero almost periodic functions, that for all A E P, we have: 
Re A(h) = Re A@‘). Hence i(h - h’) E Ci IRh,, Q,, = Q6+ , and 

C mult,(A - a) eiIm(A-a)(*) 
aEQ0t 

= \7 mult,(/i - a) ,i w* -a)(*‘). (2.10.4) 
a~Qo+ 

But (2.10.4) is an equality of irreducible characters at two elements of a 
compact group. Now it remains to apply two facts about connected compact 
Lie groups: the irreducible characters separate the conjugacy classes, and a 
conjugacy class intersects a maximal torus in an orbit of the Weyl group. 1 

2.2. Modules L(A) over AJ%e Lie Algebras 

Now let g = g(A) be an affine Lie algebra, L(A) an irreducible highest 
weight g-module. 

We recall that the center of g is spanned by c = Cic, a,vhi, where the a: 
are positive integers. c operates on L(A) by the scalar operator A(c)l. In 
particular, A(c) = A(c) for all A E P(A). The number 

A(c)= 2 ayA(hi) 
ISI 

is called the level of A, or of the module L(A) [22]. 
Define p E I)* by p(hi) = 1, i E 1, and p(d) = 0. The level of p is the dual 

Coxeter number g. Note that 1 p 1’ = 1 PI * and p = f CaeA+ a. 
Define p’ E I)* by @‘, a”) = 1 for all a E n’, and p’(d) = 0. We shall see 

that p’(c) = g. 
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Define p” E $ * by @ “, ai) =_1, i E I, and p”(d) = 0, so that p”(c) = h. Note 
thatF=pifk’=l,andp’=p”ifk’#l. 

Let A E P,, i.e., the labels A(&) ,..., A(h,) are non-negative integers. Then 
the level of A is zero if and only if A&) = 0 for all i E I, that is, if and only 
if L(A) is one-dimensional. From now on, we assume that A E P, and that 
A has a positive level m. 

Proposition 2.4(a) describes the strings P(A) n (A + Za) for a real root a. 
Now we consider the case of an imaginary root a. 

PROPOSITION 2.11. Let A E P, , A(c) > 0, and A E P(A); let a be a 
positive imaginary root (=~a, s > 0). Then: 

(a) The set of all t E E such that A - ta E P(A) is an interval 
[-p, +oo), where p > 0, and t t+ mult,(A - ta) is a non-decreasing function 
on this interval. 

(b) Ifx E g-,, x # 0, then x: L(A) -+ L(A) is an injection. 

Proof Fix x E g-,, x # 0, and choose y E g, such that [x, y] = c (cf. 
Section 1.1(G) and recall that 6 is identified with c, via ( , )). Suppose that 
v E L(A)A is such that v # 0 but x(v) = 0. Then by induction on n we obtain 

xy”(v) =A(c) ny”-‘(v) for n>l. 

Indeed: xy”(v) = [x,y] Y”~‘(v) +y(xy”-l(v)) = cy”-‘(v) +yA(c)(n - 1) 
y”-‘(v) =A(c)ny”-l(v). Hence, y”(v) # 0 and so L(A)A+,,a # 0 for n > 1, 
which is impossible. This proves (b). (a) follows from (b). m 

The proof of (a) and (b) of the following proposition is now essentially the 
same as in the finite-dimensional theory (cf. [3]). 

PROPOSITION 2.12. Let A E P, , A(c) = m > 0. Then: 

(a) P(A)=W{AEP+/A>A}. 

(b) The following conditions on ,I are equivalent: 

(i) I E P(A); 
(ii) A - w(A) > 0 for all w  E W; 

(iii) A -A E Q and II lies in the convex hull of W(4). 

(c) Zf ;1 -A’ E Q and A’ lies in the convex hull of W(A), then 
mult,(A ‘) > mult, (A). ’ 

(d) If A E P(A), then /Al2 < [A(‘, i.e., P(A) is contained in the 
paraboloid (A E $* 1 1x1’ + 2a;‘mA(d) < l/i 1’; A(c) = m}; equality holds if 

* It seems that this result, whose proof is valid for an arbitrary Kaf-Moody algebra, is new 

even in the finite-dimensional case. 
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and only if A E W(A). Furthermore, IA+ pj2 < 111 t p 1’; equality holds if and 
only if A = A. 

Proof: The inclusion c in (a) follows from Proposition 2.4(b). In order 
to check the other inclusion, we prove by induction on hta that if ,u E P, , 
a E Q, are such that ,U + 01 E P(A), then p E P(A). For a E ZS, this is clear 
by Proposition 2.1 l(a). If a = ,JJ kiai $Z Z6, then (a, a) > 0 and therefore 
there exists i E I such that k, > 0 and (a, ai) > 0. But then @ t a, ai) > 0 
and so, by Proposition 2.4(a)(i), ,U + (a - a,) E P(A). Applying the inductive 
assumption, we get p E P(A). This completes the proof of (a). 

Now we prove (b). The implication (ii) 3 (i) follows from (a) by taking 
fi E IV@) with minimal ht(/l -,u), so that p E P, . For the implication 
(iii) 3 (ii) remark that /1 - w(A) > 0 for all w  E W. A I from the convex 
hull of W(A) can be written in the form 1= JJ,,w c,w(li), where c, are 
non-negative real numbers such that all but a finite number of them are 0 
and C c, = 1. Hence, for each w0 E W we have li - w&) = 
2, c&4 - w0 w(A)), so that /i - w&) > 0. Hence, (iii) * (ii). The 
implication (i) => (iii) follows from Proposition 2.4(c). 

For (c) we can assume that 1 E P, . Then by the equivalence of (i) and 
(iii) in (b) applied to L(A), 1’ C P(L). We prove (c) by induction on 
ht(A -A’). If A’ = 1, there is nothing to prove. Otherwise, 1’ + ai E P(A) for 
some i E I. Let s > 0 be such that ,U := 1’ t sai E P(A) but p t ai & P(A). 
Since, by (b), ,U lies in the convex hull of W(A), we can apply the inductive 
assumption: mult,@) < mult,@). Since 1’ lies in the interval [,u, rib)], 
mult,@) < mult,,@‘) by Proposition 2.4(a), proving (c). 

(d) follows from Proposition 2.4(d). 1 
-- 

Denote by P, P, , P+ + the orthogonal projections on b* of P, P, , P, + , 
respectively. These are the integral, dominant integral, and regular dominant 
integral weights for the finite root system d: Similarly, using the map @ of 
Section 1.5, we define P’, P’, etc. 

In the following proposition we collect some technical facts which will be 
needed later. 

PROPOSITION 2.13. (a) p = (A E i;* 1 @,a) E Z for all a E M); P= 
{AEij*I(A,a)EZforallaEM’}. 

(b) Let,uEb*. Then:,uEf’ifandonlyif,u(c)EZandC7EP’;pEP 
if and only if,u(c) E Z and ,ii E P. 

(c) Let y E M, y’ E M’. Then 

(Y,Y’)EC a, 171’ E Z k 1 y’ I2 E 22. 

Proof. (a) and (b) follow from Q”= M’ t E6 and c” = M t ZS. To 
prove (c), note that: (M, M’) c Z since M c 0 and M’ = Q”; a,,@” = 6 E M’ 
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and k@‘= BE M; M (resp. M’) is spanned over P by v(0”) (resp. 
W(O). I 

2.3. String Functions and Classical Theta Functions 

Let g = g(A) be an affine Lie algebra. Fix /1 E P, of positive level 
m =/i(c). 

A weight 1 E P(A) of the g-module L(/i) such that 2 + 6 & P(A) is called 
a maximal weight of L(A).3 Denote by max(A) the set of all maximal 
weights of L(A). It is clear that max(/i) is a W-invariant set and hence, by 
Proposition 2.12(a), each maximal weight is W-equivalent to a (unique) 
dominant maximal weight. On the other hand, it follows from Proposition 
2.1 l(a) that for any ,u E P(A) there exists a unique A E max(li) and a unique 
non-negative integer n such that p = A- n& 

PROPOSITION 2.14. Let A E P, be a weight of level m. Then A H 1 
defines a bijection from max(A) n P, onto mC,,n (2 + 0). In particular, 
the set of dominant maximal weights of L(A) is finite. 

Proof. Straightforward using Propositions 2.11 and 2.12. 1 

For A E max(/l) introduce the generating function: 

bi := f mult,(k - n6) e-“‘. 
?l=Cl 

This series converges absolutely on Y since it is majorized by le-‘l CrrE,,,,,) 
(mult pu) I efi I, which converges on Y by Proposition 2.5(c). Since 
WA n T = (1 } for J E P(A), and since bco, = bi for w E W, we have 

%(A, = c e”b* = \’ f(1) A 
a ye b,. (2.15) 

aEmax(A2) aeIExL4, ,zr 
AmodT 

We proceed to rewrite character formulas (2.6) and (2.15) in terms of 
theta functions. For I E b* such that A(c) > 0, set 

(2.16) 

Similarly, we define Oi by replacing T by T’. 
Using (1.7), we obtain for n(c) = m: 

@a=emAQ 1 e-(1/2)mly128+my 
1 (2.16.1) 

EM+m-‘l 

’ Note a discrepancy with [ 17, p. 128]-we do not require that p be dominant. 
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which is a classical theta function (see Sections III and IV for details). It is 
clear that this series converges absolutely on Y and that 0, depends only on 
L mod mM + C& 

Introduce the following number: 

SA := IA +A2 lPl2 
2(m + g) -7’ 

For a weight I E P(/i) introduce the number 

s*(A) := s* -g, 

called the characteristic of 1. It is easy to see that s,,(J) is a rational number. 
It will be “responsible” for the leading term in the q-expansion of a modular 
form. 

For k E max(/f), set 

A .- cA .-e -sn(A)G C mult,(3, - n8) ePns. 
n>O 

As we have seen, this series converges absolutely to a holomorphic function 
on Y. Furthermore, if 1 E $* is such that 1 -p E C6 for some ,U E max(ll), 
then p is uniquely determined (by Proposition 2.11 (a)), and we set cf = c,^ ; 
if (,4 + 66) n max(/i) = 0, we set ci = 0. The function ci is called the string 
function of A E b*. Note that 

40, = ct for wE W, 1E$*. 

Since W = @ D( T, using (1.6) we deduce that 

A 
cw(A)+mytaS = c r: for AEQ*,wE W,yEM,aEG. (2.17) 

Note also that 5: depends only on /1 mod C6. 
Using W = W D( T, we combine (2.6) and (2.15) to obtain: 

We use this important identity in Section IV to study and compute the 
string functions. 

2.4. Appendix 2: On the Region of Convergence of ch,(,, 

Let’ g(A) be a Ka&Moody algebra with symmetrizable Cartan matrix A, 
let ( , ) be a standard form on g(A), and let A E P, . For a E d, , we set 
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ny’=@j”=,g+j,, g’“‘=n!?@Ca@n~‘. One knows [14] that if aEd:, 
then g@) N sl,(C) and the module L(A) restricted to gCa) is a direct sum of 
finite-dimensional irreducible submodules. Furthermore, gCa) is an inlinite- 
dimensional Heisenberg algebra if (a, a) = 0; and ny’ are free Lie algebras if 
(a, a) < 0 (by Lemma 1.14). In this appendix we study the restriction of 
L(A) to Q (=’ for aEA’,m and deduce an explicit description of the region of 
convergence of chLo,. The results are stated in the following two 
propositions. 

PROPOSITION 2.19. Let a E AT and A E P, ; introduce the following 
two subspaces of L(A): 

L(A)s”’ = 0 L(A),, L(A):“’ = 0 L(A),* 
a:(a,a)=O .a:(l,a)>O 

(a) One has a direct sum of g’“‘-modules: 

L(A) = L(A)?’ @L(A):“‘. (2.19.1) 

(b) L(A)?’ = {x EL(A) / g’“‘(x) = O}. 

(c) The U(n?‘)-module L(A)?’ is free on a basis of 
{v E L(A)~‘In:“‘(v) = 0). 

(d) The g’“‘-module L(A) is completely reducible. 

PROPOSITION 2.20. Suppose that A is indecomposable and that the g(A)- 
module L(A), where A E P,, is not l-dimensional. Let Y* be the region of 
absolute convergence of ch,,,,. Then Y,, is open and 

C (mult a) le-a(h) 
aed+ 

Now let B = (bij)i,jc, be an (in general infinite) symmetric matrix over c, 
and let g’(B) be the associated Lie algebra (see Section 1.8). We have the 
triangular decomposition g’(B) = n- 0 go 0 n+, where 

n, = @aEo+\,O) s’(B)+,. 

LEMMA 2.21. Suppose that all entries of B are non-positive real. Let V 
be a g’(B)-module satisfying the following conditions: 

(9 V=Oaeg VA, i.e., V is go-semisimple; 

(ii) if v E V, then U(n +)s v = 0 for all but a finite number of /I E Q + ; 

(iii) zf V, # 0, then n(hi) > 0 for all i E I. 

Then the module V is isomorphic to a direct sum of irreducible g’(B)- 
modules L(A), which are free U(n-)-modules on one generator v E L(A),, . 
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ProoJ By Remark (5) following Proposition 2.9, we must verify 
conditions (2.9.4) and (2.9.5) for the g’(B)-module l? By (iii), (2.9.4) holds 
with n = 1. The definition (2.9.18) shows that if DE Q+\{O} and VA # 0, 
then F(-/3, A) < 0 by (iii) and the conditions on B; this verifies (2.9.5). 
Hence, I’ is a direct sum of modules L(A). Since the corresponding Verma 
modules are indecomposable and satisfy (i), (ii) and (iii), they are irreducible 
and hence coincide with the L(A). 1 

Proof of Proposition 2.19. Since d’,m c - W(P+) by Proposition 2.4(b), 
we may assume that a(&) < 0 for all i. 

Write a = xi,, ciai, and put I’ = (i E Z 1 ci # O}. Let A’ = (u~~)~,~~,, be the 
corresponding generalized Cartan matrix, so that we may regard g(A ‘) as a 
subalgebra of g(A). (a) and (b) now follow from Proposition 2.9 applied to 
the g(A’)-module L(A). 

In order to prove (c) and (d), note that gta) is isomorphic to a quotient by 
a central ideal of the Lie algebra g’(B), where B is an (in general infinite) 
matrix whose entries are non-positive real numbers. This is clear when 
(a, a) = 0 because, by Proposition 1.11, gtu) is an infinite Heisenberg algebra 
and hence is a quotient of g’(B), B = 0, by a central ideal; when (a, a) < 0, 
we apply Lemma 1.14. Now we can apply Lemma 2.21 to the g’“‘-module 
L(A):“‘. I 

We are grateful to P. Slodowy for calling our attention to the following 
fact. 

LEMMA 2.20.1. Let A E P, . Then the region of absolute convergence of 
ly,, := Cwcw (det w) e”““’ PI is Y. 

Proof. If h E h satisfies Re a,(h) > 0 for all i E I, then e-“’ +“)w,, is 
majorized at h by the convergent series 

‘T 
ks; 

exp -c ki Re a,(h); 
I 

here we use Proposition 1.3(a), (b), (c). Since the region of absolute 
convergence of w,, is convex and W-invariant, we deduce that it contains Y. 

On the other hand, suppose that h E h\Y. Then A, := {a E 
AT 1 Re a(h) < 0) is infinite by Proposition 1.3(d), (e), and for any a E A,,, 
J,kdA+d)w > le(A+D)ul) I. Hence w,, does not converge at h. 1 

Proof of Proposition 2.20. Put 

Y’= hEt) 
I I 

x (mult a) le-a(h) 
asA+ 

By Proposition 2.5, it suffices to show that Y’ is open and that Y,, c Y’. 

607/53/2-4 
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Put B, = naEAiy (1 - e-a)m”‘ta. By (2.7) and Lemma 2.20.1, and by the 
extension theorem for holomorphic functions across sets of codimension two, 
B, extends to a holomorphic function on Y. For h E Interior (X), consider 
the meromorphic function f(t) := B,(th)-‘. By a standard property of 
Dirichlet series with positive coefficients [39, Chapter VI, Proposition 71, the 
set {t E R 1 th E Y’ } of convergence of the series obtained by multiplying out 

rI ueAi,m (1 + e-fa(h) + e-2ta(h) + . . .)mu’ta, which representsf(t), is an open 
segment (c, + 00). Since Y’ is convex, and since for any h’ E Y, there exists a 
t’ > 0 such that t’h’ E Y’ by the argument proving Proposition 2.5, this 
shows that Y’ n $n is open in ho, so that Y’ = (Y’ nt),) + it)n is open in h. 

We now show that YA c Y’. If A is of finite type, there is nothing to 
prove. If A is of affine type, this is shown by Proposition 2.5(c). Otherwise, 
by [ 19, Proposition 1.31, there exists a E A’,m such that supp a = I and 
a(h,) < 0 for all i E I. But then y :=A -a lies in P(A) by Proposition 
2.19(c). Moreover, by Proposition 2.19(c) and Proposition 2.4(a), for any 
non-zero u E ,5(/i), the map I//: n- +L(/i) defined by I&) =y(v) is an 
injection. This shows that Y,, c Y’. 1 

Remark. By Lemma 2.20.1 and by the character formula (2.6), for any 
n E P, the function ch,(,,, extends to a meromorphic function on Y. Let A 
be indecomposable and not of afline or finite type. By the proof of 
Proposition 2.20 and by Proposition 1.12(b), for any h E Y n hn there exists 
a t > 0 such that for every II E P, with dim L(rl) # 1, the meromorphic 
extension of ch,(,,, has a pole at th. The existence of such an “immovable” 
pole was first shown for the rank two hyperbolic case by A. Meurman. 

Remark. (1) For an indecomposable symmetrizable Cartan matrix which 
is not of finite or affine type, let x0 and Z” be the interiors of the dual 
convex cones X mod c and Z, and define continuous W-invariant functions 
@: x0 + (0, +co) and E Z” --) (0, +03) as follows: 

Q(h) = min(t > 0 1 B,(t-‘h) = 0), 

where B, is holomorphic on Y and satisfies 

B, n (1 - eea) = r (det w)e’+(“-“; 
asA’ WEW 

a@) p(a) = min -. 
hex~ Q(h) 

Then for aEAynZ”, W) coincides with w(a) 
(= supnr 1 n -‘log mult na = lim,,, K’log mult na) introduced in 
Proposition 1.12, Y is of class C’, and 

a(h) 
@i(h) = n& ‘y(ar>. 
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Then the following conditions on h E XD are equivalent: 

(a) The zero of B,(th) at t = Q(h)-’ is simple; 

(b) @ is real-analytic in a neighborhood of fr; 

(cl !JJ is real-analytic in a neighborhood 
z, := {a E z” 1 Y(a) Q(h) = a(h) = I}; 

(d) (a, a) /I(h) > 2(/I, a) a(h) for all a, /? E Z,,; 

(e) Z, consists of a single element. 

If the Cartan matrix is of hyperbolic type, it is -easy to see 

of 

that 
p - 2((p, a)/(a, a))a E -Z” for all a,p E Z’, verifying condition (d), so that 
@ and Y are real-analytic, and condition (a) holds for all h E X’. 

(2) Consider the Cartan matrix (_‘, ;“) of hyperbolic type, put 
(ma, + na,l’ = m* - 4mn + n2 and, for a E d’,m, put 

R(a) = (-/aI*)-” w(a). 

Then one can show that for a E AT, 

.9255989 --. =R(a, +2a,)<R(a)<R(a, +a,)=.9256000..., 

so that R(a) is almost constant! 
The results stated in this remark are due to the second author. 

We note the following useful corollary of Propositions 2.19(c) and 2.4(a). 

COROLLARY 2.20.2. Let A E P, and I E P(A). Fix a non-zero vector 
v E L(A), and set 

n+l= ,z g-,. 
+ 

(A,a)>O 

Define a map IV: n- + L(A) by I,Y( y) = y(v). Then I+U is injective on n’! . 

2.5. Appendix 3: On the Segal Operators 

The material of this section has no apparent relevance to the rest of the 
paper. Nevertheless, we decided to place it here because of the unexpected 
mysterious coincidence of a constant in the cocycle below (formula (2.26)) 
on the one hand and a constant in the asymptotics of weight multiplicities 
(Theorem B in Section 4.7) on the other hand. 

Let p be a finite-dimensional complex simple Lie algebra. We keep the 
notations of Section 1.7. Let (~~1 be a basis of p and let {u’l be the dual 
basis with respect to the invariant symmetric bilinear form B. 
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LEMMA 2.22. (a) The element xi ui @ ui of p @ p is independent of the 
choice of the basis {ui}, is symmetric and is killed by p. 

(b) Ci (ad ui)(ad u’) = 2gI,,. 

Proof. (a) is obvious. (b) follows from the standard fact that the Casimir 
element Ci uiui acts by the scalar B(B, +pO, BO +pO) - B@,,p,) = 2g, in 
the adjoint representation, along with g, = g from Proposition 1.11 (c). I 

Let N be a positive integer, let c be an automorphism of the Lie algebra p 
such that uN = I, and let p = 0, ps be the corresponding L/N&gradation. 
Set d, = dim ps, s E Z/N& and choose bases u,,, ,..., u~,,~ and u”‘,..., uds*S of 
ps and P+. respectively, dual under B. We shall assume that Ui,-s = uiYs, 
which is possible due to the symmetry of B. 

Let $3 = oa(a, N) be the associated afftne Lie algebra (cf. Section 1.7) 0 
its derived algebra. We shall write x(n) for f” @ x E @‘. Recall 
that[y(m),z(n)] = [y,z](m +n)+mB(y,~)6,,-~c, and c=Nc,. 

Define the following elements of the universal enveloping algebra U(i,‘) of 
$i’ for n,rEB: 

S,(r) = + ui, -*(-r) Ui,,(nN + r), 
g 

T,(r) = G S,(r +j). 
Jr1 

Fix m,nEZ and xEp,. For r E Z define the following auxiliary 
elements of U($?‘): 

F(r) = G Uiq-r(-r)[Ui,rr X](nN + m + r), 
*F, 

G(r) = G F(r +j), 
jr, 

II(r) = -;I: [Ui,-r, X](m - r) ui,,(nN + r), 
z, 

I(r) = + H(r +j). 
,z 

We need the following technical lemma. 

LEMMA 2.23. For all r E Z we have: 

(a) T,(r) = T,(-(n + l)N - r - 1) - 6,,, (Cj”=r (r +j) d,+j) N-‘c. 

(b) [T,(r), x(m)] = G(r) + I(r) - 6,mx(nN + m) N- ‘c, 

where a,= cj”=~ (am,r+j + B-nN-m,r+j)' 
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(c) G(r) + Z(r + m) = 0. 

(d) Z(r) = G(-(n + 1)N - r - 1) - 2gx(nN + m) if m # -nN. 

ProoJ: We have: 

Sp#(r) - S,(-nN- r, = 2 [Ui,-r(-r), Ui,p(iV + r)] 
i=l 

= -6”,,rd,N-‘C + 2 [Ui,-r, Ui,,](iV)* 

i=l 

Substituting i = N + 1 -j in the definition of 7’,,(-(n + l)N- r - 1) and 
using the equation above, we obtain 

T,(r)-T,(-(n+ l)N-r- l)= 5 S,(r+i)-S,(-nN-r--) 
i=l 

N dr+i 

= C C LUj,-r-i, uj,r+il(nN> 
i=l j=l 

- 4,ll c 5 (r + i) d,,,) W’C. 
i= 1 

The first sum is zero by the skew-symmetry of the bracket, proving (a). 
To prove (b), write 

[Sri(r), x(m)l = 5 ([Ui,-r(-r>, x(m)l ui,r(nN + r> 
i=l 

+ Ui,-r(-r)[ui,r(nN + r)y x(m>l) 
= H(r) + F(r) - (6,,, + a,, -“N -,) m(nN + m) N- ‘c 

by the definition of the bracket in j3. A summation now proves (b). 
To prove (c), note that F(r) + H(r + m) is the image, under the linear map 

from Per 0 P~+~ to U($‘) defined by y @ z ~ty(-r) z(nN + m + r), of 
CfLl Ui,-r 0 [U(,r, x] + Cy:+rm [z+,-+~, x] @ z++~, which vanishes by an 
application of the Z/m-grading to Lemma 2.22(a). A summation now 
proves (c). 

To prove (d), suppose m # - nN, and write 

F(r) - H(-dV - r) = 2 [ui,_,(-r), [Uj,r, X](WV + m + r)] 
i=I 

= fJ [“i,-,, [Ui,r, X]](nN + m). 
i=l 

Using Lemma 2.22(b), a summation proves (d). 1 
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Now let V be a @‘-module such that for any v E I’, there exists n, such 
that x(n)(v) = 0 whenever n > n, and x E p,. Any module L(4) clearly 
satisfies this condition. For n E Z, define an operator T, on V by 

T,, = x T,(r) + 2 T,(r - (n + l)N). 
*>0 r>o 

This operator is well-defined on V since each u E V is killed by all but a 
finite number of summands. 

Remark. By Lemma 2.23(a), 

Tn = 1 W-1 
rEZ 

if n # 0. 

If, in addition, no is semisimple, we have 

T,, = N c S,(r). 
rsZ 

In the case o = Z, N = 1, the operators T, were originally introduced in this 
form by G. Segal (unpublished). We mention also that this kind of 
construction is popular in the dual string theory (cf. [7]). 

Now we can prove the main lemma. 

LEMMA 2.24. [T,, x(m)] = -2(g + c) mx(nN + m). 

Proof. First, suppose that m # -nN, so that we can use Lemma 2.23(d). 
Using Lemma 2.23(a) and (b), we have 

= y (G(r) + Z(r) - 
ZZ 

G,mx(nN + m) Np ‘c) 

= c (G(r) + Z(r)) - 2mx(nN + m)c. 
TEZ 

To evaluate the sum, first suppose m > 0. Then for A + B > 2m, Lemma 
2.23(c) and (d) gives 

i 

-A+??-1 

(G(r) + Z(r)) = .=g, Z(r) + 5 G(r) 
f--A r=B-i?Z+l 

-A+m-1 

= 1 (G(-(n+ l)N-r- l)-2gx(nN+m)) 
r=-A 

B 

+ ,z&+, G(r)- 
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Since lim,, + m G(r) = 0, we obtain 

c (G(r) + W) = A ,;2 o. t (G(r) + W) 
WZ r= -A 

= -2mgx(nN + m). 

A similar argument gives the same result for m < 0, proving the lemma in 
case m # -nN. 

If m = -nN, we may assume x= [y,z], where yE pi, z E pmPi and 
i # 0, -nN (since these elements span p,). Then x(m) E [y(i), z(m - i)] + Cc, 
and a calculation of 

using the Jacobi identity proves the lemma in this case too. 1 

We next calculate [T,,, T,,,]. Using Lemma 2.24, we have 

IT,,, S,(r)1 = 2(g t cW,+,(r- W - (1. + mN> S,+,(r)). 

A formal calculation using this gives, for n > 0, 

TnT s T,(s) = 2(g + c)N(n - m> x T,+,(s) s>r I s>r 
r-1 

+Q+c) c 
s=r--nN 

2s+ 1 +nN-r-N 7 T,+,(s). [ I) 
The definition of T,,, now gives 

[T,~T,1=2k+c)N(~-m) 2 T,,,+,(s)+ c 
S>O s>-(m+l)N 

+2(gtc) i 
s=-nN 

2st 1 +nN-N $ Tm+,&) [ I) 
-(m+l)N-1 

+2(g+c) c 2s+l+nN-N Tr?l,“(S). 
s=-(m+n+l)N 

Reparametrize the third sum by t = -(m + n t 1)N - s - 1, and apply 
Lemma 2.23(a) to its summands. It then becomes 

-(m+l)N-1 

c 
t=-(m+n+l)N 

-(m+1)N--2f---l--N[~])T,,,+,(t)-6,,~,,LN~~c, 
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s=-nN 

2s+l+nN-N + [ I) jgl Cs +j) ds+j* 

Using the fact that d,. depends only on r mod N, we obtain 

L=-2N3 T(n’-n)-$( 5 i(N-i)d,)). 
i=O 

Substituting the expression above for the third sum and combining the four 
sums, we obtain (using a similar argument for n < 0): 

LEMMA 2.25. 

[T,, T,!] = -2(g + c) N(n’ -n) Tn+n, + 6,,-,,4N*K,(g + c)c, 

where 

Note that by Proposition 1.1 l(d) and (e), we have for y defined by 
Proposition 1.11 (b): 

K,=~~~‘~*n(n’-2)+&-gy~‘n. (2.26) 

Finally, we include the Lie algebra @’ as an ideal in a larger Lie algebra 
fi,, where a E C, as follows: 

b,=V+ s Cd,, 
ne.? 

[dj, x(n)] = N-‘nx(n + Nj); [dj, C] = 0, jE L; 

[d,, d,,] = (n’ - n) d,+,, + ad,,,-,K,c, n, n’ E H. 

Note that dj operates on 6 as N-‘tNj+ ‘(d/dt). 
Now we can state the result of the calculations above as follows: 

PROPOSITION 2.27. Assume that c operates on V as multiplication by a 
scalar mf-g; set a=(m+g)-‘. Then the representation of 8’ on V 
extends to a representation of 6, on V by 

dj H Dj := (-2N(m + g))-’ Tj, jEZ. I 
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Remark. In the case k = N = 1, a version of Proposition 2.27 was stated 
in an unpublished manuscript of G. Segal; unfortunately, his calculation 
contained an error. A more explicit version of Proposition 2.27 is established 
in [7] and [23] for all level, 1 modules L(I1) of AI”, Di”, Ej”, and BI”. 

III. CLASSICALTHETA FUNCTIONS AND MODULAR FORMS 

In Section III we present the necessary background on theta functions and 
modular forms (cf. the books [5, 12, 24, 26, 33, 501). 

3.1. Transformation Properties of Theta Functions 

Let CJ, be an I-dimensional real vector space, ( , ) a positive-definite 
symmetric bilinear form on U,. Introduce the Heisenberg group N, = U, X 

U, x I?, with multiplication 

(a, 8, t>(a’, P’, t’) = (a + a’, /3 + P, t + t’ + )[(a’, P) - (a, B’)]). 

It is useful to know for computations that 

(a, P, t>(a’, P’, t’>(a, P, t>-’ (a’, P, t/)--l = (0, 0, (a’, P) - (a, P’)). 

Let R+ = {r = x + iy 1 x, y E R, y > 0} be the Poincare upper half-plane, 
and let SL(2, R) act on Z+ by 

ar + b 
r=-. 

CT + d 

Introduce the metaplectic group 

Mp(2,R)= ;,,j)]A=(; +X(2$), 

j: &“i + C holomorphic, j(t)* = cr + d , 
I 

with multiplication (A,j)(A’,j’) = (AA’,j”), where j”(r) =.@‘r)j’(r). 
Let Mp(2, R) act on N, by automorphisms 

K 34 . (a, p, t) = (aa + b/l, ca + d/3, t), 

and form the semidirect product G, = Mp(2, R) K N,, with gng-’ =g . n 
for g E Mp(2, R), n E N,. 

Let U = U, OR C, and extend ( , ) to a symmetric C-bilinear form on U. 
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Let G,, act on 

Y:=Z x uxc 

by analytic maps: 

(a, P, 43) * (5, z,t) = ( z,z-a+z~,f-Cc,z)-3r~,~)+~(a,P)+~,). 

This action is well-known in the theory of theta functions. We will often 
write A . (r, z, t) for (AJ) . (r, z, t). Note that 

(a, 0,O) . (t, z, t) = (r, 2 - a, t); 

(O,P,O) * (7,G t)= (732 +7/3P, t- (AZ> - fdAP>), 

which is nothing else but the action (1.6); and 

(0, 0, to> * (7,z, t>= (G z, t + 1,). 

Now we define a right action of the group G, on functions on Y by 

fl(A,j) @P z9 f, =j(7)-‘f(A ’ C7, z% f))9 

fl, (7, z, t) =f(n ’ (5 z, f)). 

Fix a lattice L spanning Ui, such that (y, y’> E Z for y, y’ E L. Let I,* := 
(y E U, 1 (y, a) & Z for all a E L} be the dual lattice, so that L c L* . 

Let 

This is a subgroup of N, c Gn. Denote by Gz the normalizer of N, in Gn. It 
is easy to see that 

WY, Y) = 2(a, v) mod 2E, ac(y, r> E 2@, y) mod 22 for all y E L . 
I 

Now we introduce the space 5, of all holomorphic functions f on the 
complex manifold Y such that 

fj, =/for all n E N,, and &,o,r, = e-*““ffor all 2 E R. 

It is clear that the space %, is Gr-invariant. 
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Remark. One has the following geometric interpretation of the space ?x2, 
of functions on the complex manifold Y. Consider the maps Y+‘R+ X U X 
C +“Z+ x U defined by f(r, z, t) = (r, z, e-*““), n(r, z, t) = (r, z). The 
action of G, on Y induces actions of G, on R+ X U X C and R+ X U by 
analytic maps such that f and rr are equivariant. Moreover, Z = { (0, 0, t) E 
N,I t E Z } acts trivially on &F” x U x C and A?+ x U, and Iv, := NJZ acts 
freely on &“+ x U. We regard 72 in the obvious way as the bundle projection 
of a holomorphic line bundle. Then N, acts by bundle morphisms, so that we 
obtain a holomorphic line bundle 9: (R+ x U X C) mod Nz+’ (A?@+ x U) 
mod N,. Note that the fibers U/(L + rL) of the map (7, Iz) mod N, ++ r are 
abelian varieties, so that we may regard y as a bundle over a family of 
abelian varieties. Let-o:A?+ x UX C-+ (SF+ X UX Cc) modfl, be the 
canonical map. Then 7’h, is the pullback to Y under u 0 f of the space of 
holomorphic sections of the line bundle Y-r dual to 9, regarded ,as 
functions on the total space of 9 which are linear on the fibers. Hence, T/z, 
is canonically identified with the space of holomorphic sections of the line 
bundle ip- ’ over the family of abelian varieties U/(L + zL), z E Z+ , in a 
way consistent with the action of G,. 

Define an N,invariant measure dn = da @ dt on the homogeneous space 
N,\N,, where-n = (a,P, t) E NR. Then d(gng-‘) = dn for g E Gz. 

For f,f’ E T/z,, define the pairing (f,f’): A?+ + C by 

PROPOSITI~~N 3.1. Let fE 5,) g = (AJ) E Mp(2, IR), n E N,, gn E G,. 
Then fl,, E Th, and Ilfj,,ll* (5) = /j(r)l-*’ Ilfll’ (AZ), where llfll* stands for 

Uf 1. 

Proof. f Ign E i?h, since gn normalizes N, and centralizes (O,O, t). For 
n’ E Nz\N, and n” = (gn)n’n(gn)-I, one has dn” =dn’ by previous 
remarks, so that: 

Ilf Ml* (7) = jNzpR Kf IgnnJ(~v 0, WI* dn’ 

= 
i NZ\NR 

Kf In&~, O,O)l’d~” 

= I I.@-‘(f I,z~O(At, 0, WI’ dn” NZ\NIR 

= l.w-*’ Ilf II2 (A~)* I 
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Now we define the Riemann theta function: 

OL(r, z, t) = eeznif 5 exp[nir(y, y) - 27d(y, z)]. 

This series converge~absolutely on Y to a holomorphic function. It is easy 
to check that OL E Th, . For p E U, set 

so that 
0: = GL I(o,-WI) 9 

Ot(7, z, t) = e-‘“” 2 exp[Wy, Y> - WY, z)]. 
YeLtu 

0: is called a classical theta function of degree 1 (with characteristic ,u). It-is 
clear that 0: depends only on ,u mod L. For ,u, ,u’ E L *, we have 0: E Th, 
and: 

0; Iww = (exp 2niCu, N>> @i, 

0: I(O.~‘,O) = @LP 
(3.2) 

ForrEZ+‘,set Y,={r)xUxCcY. 

PROPOSITION 3.3. (a) For ,u,,u’ EL*, 

(Oi, Ok,) = vol(L) 6,+,,,,,(2 Im 7)-"*. 

In particular, the functions Ok, ,u E L* mod L, are linearly independent on 
Y, for each 7 E RI. 

(b) For any non-zero t,, E ilR + , the functions Oh, p E L * mod L, are 
linearly independent on {ro} x L* x {O} c Y. 

Proof. Proposition 3.1 and (3.2) show that (0;) 0: ,)(7) = 
6 LtLI,LtpS I)OLjl* (7). We compute: 

II GL II2 (7) = JNrWn IOL(7,-a + r/&+7(&/?)+ f(aJ)+ t)l’d(a,p,t) 

=( 1 1 s expl”h(y-io,y-P)+2.i(.,y)j/*dadi 
URIL Up&L YEL 

= k,,L daj LR lexp 7cir@,j3)1* d/3 = vol(L)(2 Im 7)-I'*. 

This proves (a). In order to prove (b), note that for z E L * and ,u E L *, 

B;(~,, z, 0) = ,-2du.r) C e~iCY.Y)ms (3.3.1) 
ysL.tw, 
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It is clear that the sum in (3.3.1) is positive for r0 E AR,. (b) now follows 
from the fact that the characters of the group L*/L are linearly 
independent. 1 

The following result goes back to Jacobi. 

PROPOSITION 3.4. For ,u E L*, one has the following transformation law: 

( 
1 z (z,z> 0; ----,-,t+- 
r 5 22 ) 

= IL */L ) - 'I* (-ir)'ll 

X p ,,LTmod, [exp - 2d.4 cl')] 0: Jr, z, t). 

Proof. This follows from the Poisson summation formula (see, e.g., 
1391). 1 

Let Th, c Th, be the C-span of the linearly independent set 
{OL,/,uEL* modL}. 

PROPOSITION 3.5. The space Th, is invariant under G,. Furthermore, 
the matrix of any g E G, with respect to the basis (0: 1 ,u E L * mod L} of 
Th, is unitary. 

Proof It sufftces to prove the first statement, since the second follows 
from it by Propositions 3.1 and 3.3. 

By (3.2), Th, is invariant under G,nN,. Therefore, if 
g, = (Ak,jk) nk E G,, k = 1,2, and the A, generate SL(2, Z), it suffices to 
show that Th, is invariant under the g,. For A, = (y ,’ ), Proposition 3.4 
shows this. For A, = (A i ), j, = 1, n2 = (a, O,O), where a E Un satisfies 
(y, y) = 2(a, y) mod 22 for all y E L, 

0: lg2 = [exp xi@, p + 2a)] 0: 

shows it. The proposition follows since the matrices A, and A, generate the 
group SL(2, Z). I 

In order to obtain a more general transformation law for theta functions, 
we need two further results. 

PROPOSITION 3.6. Suppose that (y, y) E 22 for all y E L. Then: 

-i- 4L 
eziCv,v) = e2nW8 dEVi. 

This result of Milgram is proved in [30]. 
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Let n be a positive integer. Taking L = Z, with bilinear form (m, m’) = 
4nmm’, Proposition 3.6 gives 

Hence, \/ti E Q(e2”‘14” ) for all non-zero n E Z, and 6 E Q(e2ni’n) if 
n= 1 mod42. 

For relatively prime integers n and k with k odd or n = 1 mod 42, we now 
define the extended Jacobi symbol (2) = f 1. If II = 0, put (,& ) = f 1. If 
n # 0, define an automorphism uk of the field F = U, Q(e21cr”“), where N 
runs over all positive integers relatively prime to k, by uk(e2”‘lN) = eZZikiN. 
Since fi E F, we may define the extended Jacobi symbol by: 

LEMMA 3.7. Suppose that (y, y) E 22 for all y E L. If IL *IL) is odd, 
then the rank I of L is even, and 

(-1)“2 IL*/L) = 1 mod 42. 

ProoJ Put N = 1 L “/L 1, so that NL* c L, and hence N(y, y) E Z for all 
yE L*. Then e 2zi1/8@ E ,qe2nilN ) by Proposition 3.6. Choose E = f 1 such 
that EN = 1 mod 42. Then &% E Q(e’“““). Hence, Ae-2ni”8 E 
Q(e2”‘lN) n Q(e21ci/8) = Q, so that E = e2ni1/4. 1 

The following proposition gives a transformation law for theta functions 
which is sufficient for our purpose. 

PROPOSITION 3.8. Let A = (F i;) E SL(2, H), (A,j) E Mp(2, R). Let 
aO, /I, E U, satisfy 

bdQ3, /?) = 2(a,, p) mod 22 for all /3 E L, 

ac(a, a) 3 2(a, p,,) mod 22 for all a E L* such that ca E L. 

(Such a, and PO always exist.) Fix t, E R and set g = (A,j)(a,,, PO, to), so 
that g E G,. Then there exists v(g) E C such that: 

(a) OL Ig = v(g) s (exp ;rci[cd(a, a) + 2(a, ca, + d&J]) Ok,. 
nEL* 

ca modL 

(b)(i) Iv(g)1 = IF + CL *l/L I -1’2, VW’> = v(g) ; 
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(ii) ifbI~l*E2Zf orallyEL,c~y~2E2ZforallyEL*,anda,= 
/3, = 0, to = 0, then 

foroddl. 

ProoJ: By Proposition 3.5, we may write OL Ig = CfiEL* modL f @) 0:. Let 
a E L *. Formula (3.2) shows that if n = (a, 0, 0), then OL In = OL, so that 
(OL I,) ICg-,ngj = OL lg. Using (3.2), this gives 

f Cp + ca) = (exp ni[cd(a, a) + %(a, ,u) + 2(a, caO + dPo)]) f(p). (3.8.1) 

If, in addition, ca E L, then L + p = L + p + ca gives f (u + ca) =fC,u). 
Therefore, f (u) = 0 unless one has mod 22 : 

0 = cd(a, a) + 2d(a, ,u) + 2(a, ca, + dP,) 

3 cd(a, a) + 2d(a, p) + bd(ca, ca) + ac(da, da) 

= 2d(a, p). 

Therefore, f@) = 0 unless a E L* and ca E L (or, equivalently, 
a E (L + CL*)*) imply that d(a,p) E Z. Therefore, f(p) = 0 unless 
dpEL+cL*. But also, f 01) = 0 unless cp E CL*. Since c and d are 
relatively prime, we find that f 01) = 0 unless ,u E L + CL *. 

On the other hand, we obtain from (3.8.1): 

f (ca) = (exp ni[cd(a, a) + 2(a, cao + dPo)]>f (0). 

Setting v(g) = f (0), we obtain (a). 
(b)(i) now follows from Proposition 3.5. 
It is easy to check (b)(ii) for c = 0. Assuming c # 0, we now compute v(g) 

in general in terms of Gauss sums. Note that: 

v(g) = ,m!i_m+m PL I,)@, 090). 

Putting 

(3.8.2) 

A=- l 
c(cr + d) ’ 
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one computes directly that: 

(OL lg)(z, 0,O) =j(~)-’ ec2nif 

x T- e”iac~1(u,‘)e-2nic-‘(U,BO) 

uoL%dcL 

x Y- e~il(y-cao-d00,y~cao-d40) 

YGCL 

(3.8.3) 

Using Proposition 3.4, one obtains 

-i- exil(y-c~o-d40,y-caa-d40) 

yerrtcl 

= IL*/L l-l’* (i/C2A)“2 s e -~Cic~21-L(y,y)e-2nic-‘(y.L~cao-d00) . (3.8.4) 
EL * 

Combining (3.8.2b(3.8.4), we obtain 

j(t)’ I(L + CL *)/L (I’* e2nifo v(g) 

= (CT + d)‘lz (-i sign c)t/* e~iC-‘(Bo.Caot d8o) 

x IL/(L ncL*)1-“2 x enic-l(w’.a-*bO). (3.8.5) 
PEL mod(LfvL*) 

In the situation of (b)(ii), the last sum may be evaluated by using 
Proposition 3.6: 

For odd a, (3.8.5)-(3.8.6) yield 

j(z)l v(g) = cc5 + #l* e2ni(a- 1W8 
r’:*‘“). 

For even a, Lemma 3.7 shows that I is even and (-1)‘12 IL*/LI = 1 mod 42, 
so that (3.8.5~(3.8.6) now yield 

v(g) = ( (-1)“2 IL*/LI 
a 1. 

Applying these formulas to find v(g-‘), and using v(g)-’ = v(g-‘) from 
(b)(i), we obtain (b)(ii). 1 

COROLLARY 3.9. Let g E G, be as in Proposition 3.8, and let p E L *. 
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Then 

0: Ig = v(g) C (exp ni[cd(a, a) + 2bc(a, p) 
C&EL’ 

cnmodL 

+ ab(,u, cl> + 201, aaO + bPo) + %a, cao + #o)l> %,+,,. 

Proof: Set n = (0, -,u, 0), write 0: Ig = (OL I,) Ig = (@IL I,) Itg-Ingj and 
compute using Proposition 3.8 and (3.2). I 

3.2. The Ring of Theta Functions 

For any m E Z, denote by Fh,,, the space of holomorphic functions f on Y 
such that 

fl,, =ffor all n E N, and flcO.O,lj = e -2nimlffor all t E IR. 

Remark. The space %,,, is the space of holomorphic sections of the line 
bundle ye”‘, where 9 is the line bundle constructed in Section 3.1. 

Let %=,@,,z 5,. This is, clearly, a Z-graded algebra over the ring 
@(Z+) = Th, of all holomorphic functions of r E X+ . Th is called the ring 
of theta functions. 

For p E U and a positive integer m, set 

OEJr, z, t) = e-*“‘“I x exp(ximr(y, y) - 27cim(y, 2)). 
pLtm-lw 

Oi,, is called a classical theta function of degree m (and characteristic ,u). 
Then Oi,, depends only on ,u mod mL., and for ,u, ,LI’ E L*, one has 

Oi,, E ?%,,, and 

(3.10) 

Remark also that taking L’ = L and ( , )’ = m( , >, we have 

Ot,Jf, z, t) = OL,‘L,,(r, z, mt). (3.11) 

LEMMA 3.12. Let z EZ+ . For m E Z, let Thh be the space of 
holomorphic functions f on Y, which are N&nvariant and satisfy 

fl ~o.o,t~ = e -2nimfffor all t E IR. Then: 

(a) Th;=C. 

(b) Th; = (0) for m < 0. 

cc) #&I iY,hsL* mod mL is a C-basis of Th’, for m > 0. 

601/53/2-5 
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Proof: If f E Th’,, then f is independent of 1, is holomorphic, and is 
periodic in z with respect to L + zL. Since U/L + rL is compact, f is 
constant. This proves (a). 

Now suppose m E Z, m # O,fE Th;. Usingflo,,,,, = e-2nimlf,flCa,0,0j =f 
for a E L, and f holomorphic, write 

f(t, z, t) = e-2nim’ T a ye* (y) e-2nity*z). 

Using f l~O,o,O) =f for /I E L, we find that a(y) e-nim-‘r(y*y) depends only on 
y mod mL. 

If m is negative and f # 0, this shows that the la(~)1 increase without 
bound, a contradiction (since Fourier coefficients must tend to 0). This 
proves (b). If m is positive, it shows that f is in the C-span of { O$,m Ii,, ( 
,D E L* mod mL}. These functions are linearly independent by Proposition 
3.3(a) and (3.1 l), which proves (c). fl 

PROPOSITION 3.13. The ring Fh of theta functions is a free module over 
@(R+)with basis {OL,,,)mEZ,m>O,,uEL* modmL}U{l}. 

Proof. This is immediate from Lemma 3.12. 1 

By Proposition 3.13, we may expand Ok,,, 0; C,m, as a linear combination 
of the Oi,,,,,,,. The coefficients are given by: 

PROPOSITION 3.14. Let ,u,,,u2 E L*, m,, m, E Z, m,, m, > 0. Then 

~~,.m,~~2,m2=CYELmod(m,+m*,L dy@E,+L12+rn,y,m,+m2 

where 

d,= OL m2u~-m~rc2+m~m2y,m~m2(m,+m2) (7,0,0>. 

ProoJ Write 

OEi,J7, z, t) = eC2”imi’ 1 exp(nim;‘r(miy, +pi, miYi +pj) 
YiEL 

- 2ni(miYi + Pi7 Z)). 

Reparametrize the resulting sum for @~,,m,@~Z,m2 by y = y1 - yZ, 
Y’ = m,yl + m2y2, and write the sum as C,, ~y~Em,Y+~m,+mz,L, obtaining 

v’o 
yz 

u,+~2+m,~~m,+mz(7,z,t) 

X exp 
( 
ni7 myr;2 (Y + m;‘Cr,--m;1~2,~+m;‘~u,-m;LEr2) . 

1 

This gives the desired result. 1 
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Let M be a positive integer. Denote by Th, the C-span of the functions 
@E,w P E L * mod mL. Using (3.1 l), we deduce from Propositions 3.4, 3.5, 
3.8, and Corollary 3.9: 

PROPOSITION 3.15. Let ,a E L *. Then 

@, 
( 
-’ z 

r ‘5’ 
,,y 

1 
= 1 L */mL ) - “’ (-ir)“’ 

x c exp[-2nim-‘Cyp’)] OEJ,m(5,z,t). 
@‘EL’ modmL 

PROPOSITION 3.16. The group G, preserves the space Th,. The matrix 
of any g E G, with respect to the basis {Oi,,, 1 p E L* mod mL} of Th, is 
unitary. 

PROPOSITION 3.17. Let A = (: j) E SL(2, Z), (AJ) E Mp(2, R), and 
choose a,, , &, E U, satisfying 

mbd@, /?) = 2m(a,, ,B) mod 22 whenever /I E L ; (3.17.1) 

mac(a, a) = 2m(a, PO) mod 22 whenever ca E L and ma E L *. 

(3.17.2) 

Fix to E R and set g = @,))(a,, PO, to). Then there exists v(m, g) E C such 
that: 

(a) For all ,u EL*, 

@i,, Ig = vh 8 & (exp ni[m-‘cd(a, a) 

ca modmL 

+‘2m-‘bc(a, ,a) + m-lab@, p) + 201, aa, + b/A,) 

+ 2(a, cao +dPo)l) @,+,,,,. 

(b)(i) 1 v(m, g)l = I(mL + cL *)/mL 1 -‘12, and v(m, g-‘) = v(m, g); 

(ii) ifmb 1~1’ E 2Z f ora11yEL,m-‘cJy~*E22fora11yEL*,and 
ao=j?o=O, tO=O, then 

for odd 1. 
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Remark. Define a “Laplacian” D operating on holomorphic functions on 
Y as follows. Let u1 ,..., u1 be an orthonormal basis of U,, and let 

Then for n E N, and A = ((z i),j) E Mp(2, [R), we have 

VW In = W IA (DF) IA = (CT + d)2 D(F iA). 

Moreover, Th, = {F E 3, ] DF = 0) for m # 0. This “explains” why Th, is 
invariant under G,, and allows one to prove most of the results of Section 
3.1 without appeal to the explicit expressions for the O”, . The details may be 
found in [50]. 

3.3. Some Facts about Modular Forms 

In this section, we summarize information on modular forms which is 
either used in the sequel or makes it more intelligible. 

Recall the action of the group X(2, IR) on the Poincare upper half-plane 
A?+: 

a5 + b 
Z=-. 

CT + d 

For NE Z, N > 0, define subgroups T,,(N) and r(N) of X(2, Z) by: 

ESL(2,Z)lc=O (modN) , 
I 

ESL(2,Z)Ib=crO,a=d=l (modN) 

Then r,(N) and r(N) are of finite index in r( 1) = SL(2, Z). 
Fix a subgroup r of finite index in r(l), a function x: T-r C with 

Ix(A)] = 1 for all A E I-, and a real number k. Then a function f: X+ + C is 
called a modular form of weight k and multiplier system x for r if: 

(i) f is holomorphic on Z+ ; 
(ii) if A = (z f;) E r and 7 E Z+ , then f(Az) = x(A)(ct + d)‘( f(t). 

We sometimes suppress the mention of one or more of r, x and k, and 
speak of “modular forms,” etc. 

Set T=(i :). Th en since r is of finite index in r(l), T’ E r for some 
positive integer r. Supposef satisfies (i) and (ii) above, and let C E IR satisfy 
x(T’) = eznic. Set I;(eZnirlr) = e- 2niCr’r’(7). Then F is a well-defined 
holomorphic function on the punctured disk 0 < ]z ] < 1. Hence, F has a 
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Laurent expansion F(z) = C nE r a,z” converging absolutely for 0 < 1 z 1 < 1. 
Therefore, we have the “Fourier expansion” or “q-expansion” 

f(7)= c a"e2"""+C'"/' = x a,q'"+w' for t E Z+ , q = eznir. 
?ZCZ PtsZ 

We call f meromorphic at iao if a,, = 0 for n sufficiently small, holomorphic 
at ice if a, # 0 implies n + C > 0, vanishing at ice if a, # 0 implies 
n + C > 0. Iff is holomorphic at ioo, we say that the value offat ioo is A PC 
(interpreted as 0 if C 65 Z). We say that f vanishes to order m at ioo if a,, # 0 
implies (n + C)/r > m. 

A cusp of r is an orbit of r on Q U (ice } under the action 
(z 2)s = (ar + b)/(cr + d), where a/O is interpreted as ioo for a E Q, a # 0. 
Then since Z( 1) acts transitively on Q U { ioo }, the set of cusps of r is finite. 
Sometimes we speak of the cusp a E QU {ice} of P, this means the orbit of 
a under r. 

Let f satisfy (i) and (ii), and consider a cusp a of I’. Let B = (z i) E r( 1) 
be such that B(ioo) = a. Then&(r) := (ct + d)-k f(Bt) is a modular form of 
weight k and some multiplier system x,, for B-‘TB. We say that f is 
meromorphic, holomorphic, or vanishes at a if f. is meromorphic, 
holomorphic, or vanishes at ice. 

A modular form of weight k and multiplier system x for r is called a 
meromorphic modular form, a holomorphic modular form, or a cusp form if 
it is meromorphic, holomorphic, or vanishes at all cusps of K If f (z) is a 
modular form of weight k and if (y f;) E GL(2, Q), ad - bc > 0, then 
f,(r) := (cr + d)-kf((as + b)/(cs + d)) is a modular form of weight k. 
Moreover, f. is meromorphic, holomorphic or a cusp form if f is. 

We shall use the following facts in the sequel. 

(a) X(2, Z) is generated by (A : ) and (y ;’ ). 

(b) r,,(2) is generated by (k : ), ( i y ), and ( ,’ !r ). 

(c) If p is prime, then T,,(p) has two cusps, 0 and ice. 

(d) A holomorphic modular form of weight 0 is constant. 

(e) Let 

rl(7) = e2nir/24 lJl (1 -e2Xinr), tEZ+, 

be the Dedekind q-function. It is a cusp form of weight l/2 and some 
multiplier system xt, for 5X(2, Z). We have x,(( A i)) = e2ni’24, 
x,(( y -ol 1) = ,-*ni/8. 

(f) Let U, ( ), etc., be as in Sections 3.1 and 3.2. For a, /I E U,, 
7 E &“+ , and F a function on X+ x U X C, define a function F(a, p; .) on 
,A-?+ by: 
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=F(t,--a + 7p,-g/3,-a + r/l)>. (3.18) 

Let A = (F j), (A,j) E Mp(2, W). Then 

F(aa + bP, ca + 4% As) =j(r)’ (F l(a ,j))(a, P; 7). (3.19) 

It follows that if F is a classical theta function and a,P E a, then 
F(a,/?; 7) is a holomorphic modular form of weight l/2 for some T(N) (see 
Proposition 3.17). 

In particular, the “structure constants” d, in Proposition 3.14 are 
holomorphic modular forms. 

(g) We will also need the following fact. 

LEMMA 3.20. Let d,, d, ,... be a periodic sequence of real numbers with 
period N, such that dj = dN-j for j = I,..., N - 1; set d = Cy=, dj. Then 
f(s) = qb nJ?=, (1 - qj)dj, where q = e21rir, is a modularform ifand only if 

b=g---& N$l j(N-j)dj. 
J-1 

(3.20.1) 

Proof. We use the Jacobi triple product identity (which is nothing else 
but formula (2.7) for g of type AI”): 

,g (1 -zljvj)(l -u’v’-‘)(l- uJ-luj) = \\‘ (-l).i u(1/*)j(j+1)u(1/2)j(j~1) 
.ieZ 

In this identity we let u = q’, u = qN-“, obtaining 

4 (*r-N)2/8N ,g (1 _ qNj)(l _ qNj-(N--r))(l _ qNj-r) 

= x (-l)j q(NI*)(j+(2r-N)12N)2~ 
jeZ 

(3.20.2) 

By (f), the left-hand side is a modular form if r E H. An easy computation 
now shows that for b given by formula (3.20.1) the function f(7) can be 
represented as a finite product of real powers of functions of the form 
(3.20.2) with r E Z and a real power of q(N7), and hence is a modular form. 
Conversely, iff(r) is a modular form for some b, then q’ is a modular form, 
where a is the difference between b and the right-hand side of (3.20.1); it 
follows that a = 0. 1 
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IV. THE THEORY OF STRING FUNCTIONS 

Section IV is the heart of the paper. Using the transformation properties of 
theta functions, we establish transformation laws for the numerator and 
denominator of the character formula and for the string functions. This, 
together with the fact that a string function multiplied by a “standard” 
modular form is a cusp form (which is also proved here), allows one in prin- 
ciple to compute any string function. We do this in a number of interesting 
cases, including “most” of the representations of level 1. -Furthermore, using 
a Tauberian theorem, we deduce from the transformation law the asymptotic 
behaviour of the multiplicities of the weights. At the end of Section IV we 
indicate how one can apply our technique to the general restriction problem. 

4.1. Theta Functions and Af$ne Lie Algebras 

Let g = g(A) be an affine Lie algebra, h its Cartan subalgebra, CQ,,..., a, the 
simple roots. Recall the space ii* = Ca, + ..a + Ca, and the positive-definite 
symmetric bilinear form ( , ) on 66 = Ra, + 0.. + IRa, (see Section 1.3). 
Recall the lattices M c M’ in 66 (see Section 1.6) and note that by 
Proposition 2.13, M* = p EJ M’ and M’ * = Pz M. Here and further on, 
given a lattice L c b& L * denotes the dual lattice with respect to the 
symmetric bilinear form ( , ). 

Introduce coordinates on Y = {h E $1 Re 6(h) > 0) as follows. Let Z+ := 
(x + iy 1 x, y E 07, y > 0) be the upper half-plane. For t E Z+ , z E ij* and 
t E C, define h = (5, z, t) E h by requiring that for all A E $*, 

A(h) = -2ni(& zrl, + z + ts). 

This allows us to identify Y with the domain Z+ x ii* x C. Then we are in 
the situation of Section III with U, = $;1;, L = M, ( , ) = ( , ), and shall freely 
use related notions from that section. 

We observe, in particular, that for I E h* such that m := n(c) is a positive 
integer, the functions 0, and Oi (defined by (2.16)) are in the above coor- 
dinates nothing else but classical theta functions of degree m and charac- 
teristic 1 (we use (2.16.1)): 

0, = oy,, ; 0: = oy,; . 

(Here Oy,)m is defined as in Section 3.2.) Note that 0; = C,ET,mOdT O,,,, = 
c y&f’modM Oiky,m~ 

Recall the Weyl groups W = FK T and W’ = mp< T’, and the groups 
N, c Gu, which act on Y (see Sections 1.6 and 3.1). We relate these actions. 
Recall that for a E b*,, 

t,(t, z, t) = (0, a, 0) . (G z, 0. (4.1) 
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We identify T and T’ with subgroups of N, c G, using (4.1). Let w act by 
automorphisms on G, by 

w*g=g for g E Mp(2, IF;‘), 

w . (a, P, t> = (w(a), wco), 4 for (a, /3,1) E N,. 

This defines a group w K G,, and we identify W and W’ with subgroups of 
w K G, using (4.1). Noting that w acts on Y by w - (5, z, t) = (5, W(Z), t), 

we have an action of @ K G IR on Y. Moreover, setting 

(flJ(L z, t> =f(w * (L z3 t)> for w E W, 

the right action of G, on functions on Y extends to one of wp< G,. We 
extend det: w-+ {f 1 } to a homomorphism det: w K Nn+ {f 1 } by requiring 
that det n = 1 for n E N,. 

Let Q” act on Y by h t-+ h + 2nia, a E Q”. It is easy to check that this 
coincides with the action of {(a, 0, t) E N, 1 a E M’, t E H ) on Y, so that we 
can identify Q” with a subgroup of N,. 

In the sequel, we shall use the subgroups F = T IX Q”, p = T’ K Q’ “, 
@‘= WK Q”, and @‘= W’K Q’” of the group WKN, (cf. 
Section 2.1 (G)). Note that 

We now-define and study certain spaces of theta functions on Y. Recall 
the space Th, of theta functions of degree m on Y defined in Section 3.2 and 
the space Th, spanned over UZ- by the OF,,,, p E M* mod mM. 

Then I? and I@’ preserve Th, and Th,. Put 

Thz = {f E Th, Iflu =ffor all u E f}. 

Note that Th: = (fE Th, IflCa,o,Oj = f for all a EM’). In particular, 
Th: = Th, in the most interesting case k = 1. 

Furthermore, put 

Th,$ = ( fE Th, ( fl, =f for all w E I?‘}, 

Th; = (fE Th, I fl, = (det w)ffor all w E @‘). 

These are the subspaces of W-invariants and -anti-invariants of the action of 
the group w on the space Thl. Similarly we define the spaces Thi’, Thh’ 
and Th&, by taking p and W’ in place of fsaand I?. 
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Replacing Th, by i%, above, we have similar notions Sk, i?ri, i%A’, 
?h;‘. Since the actions of @ and @ on 5, commute with multiplication 
by elements of the ring B(Z+) of holomorphic functions of r E 8+, 
Lemma 3.12 yields: 

PROPOSITION 4.2. Let m be a po+tive integer. Then f @ 0 H f0 defines 
an isomorphism @(A?+) OC Th, N Th, of b&P+)-modules, and of @- and 
p-modules. Moreover, for any z E Z+ and any non-zero f E Th,, the 
restriction off to Y, = {z) X 6 * X Cc is non-zero. 

We next give bases for Th;, etc. 
Note that 0, I,,, = Ow-,CAj for all w  E W. For A E $* such that A(c) > 0, 

put (cf. (2.16)) 

A, := ,-(l~12/2~(C))8 c (det w) eW’l’; 
WEW 

Recall that the function A,(up to a “non-essential” factor) appears in the 
character formula (2.6). The “non-essential” factor is introduced in order to 
express A, as a finite alternating sum of classical theta functions. We fix a 
positive integer m. 

PROPOSITION 4.3. (a) Let A, A’ E t)*, with A(c) = A’(c) > 0. 

(i) 0, = O,, if and only if T(A) = T(lz’) mod C6; 

(ii) S, = S,, if and only if W(A) = W@‘) mod C6; 

s,= 1 W*J’ r owu,; 
wsw 

si= I w;1-’ c Ok,,). 
WEiF 

(iii) A,=Oifandonlyif(A,a)=OforsomeaEd”;A,=+A,,if 
and only if W(A) E W@‘) mod Cc5 or else A, =A,, = 0; 

A,= x (det w) OwCAj = c Net w) OwtA) ; 
WPW weWmodT 

Al, = c (det w) O:,,, = 
weiv 

(b) {O,~LEP’modTmodC6,~(c)=m}={O~,,~~~E*modmM} 
is a basis for Th, (resp. %,) over C (resp. @(SF+)). 
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(c) {0,(~EPmodTmodC6,~(c)=m}={0~,,~~E~modmM} is 
a basis for Thjj, (resp. 5:) over G (resp. @(2+)). 

(4 {Sd~EP+ mod C6, L(c) = m} is a basis for Thz (resp. ??I:) 
over C (resp. &%Y+ )). 

(4 kll~EP++ mod Cc?, L(c) = m} is a basis for Th; (resp. ??I;) 
over C (resp. 0(/Y+)). 

(f) rfll E P, and L(c) > 0, then epSISch,,,, =Al+JAp. 

(g) {A,+,/A, [JE P, modC&A(c)=m} is a basis of T7hz over 
p(Z+). ??I - is a free 5 f-module on one generator A,. 

ProoJ The conditions for O1 = O,, and SA = S,,, are clear from the 
definitions. The conditions for A, = 0 and A, = *A,, are clear from 
Proposition 1.9 and the definition of A,. The formulas for A, and S, follow 
from definition (2.16). (Similarly, the formulas for Ai and Si are clear.) 
This proves (a). 

(b) is immediate from Propositions 2.13 and 3.13, and O1 = Oy,, . 
(c) now follows from formula (3.10) and Proposition 2.13. By 
Proposition 1.9, P, is a fundamental domain for W on {LEP\ 
1(c) > 0) U C6. This and (c) imply (d). Similarly, the non-zero elements of 
{A, 1 A E P, mod 66, n(c) = m} form a basis of Th;, which by (a) 
implies (e). (f) is another form of (2.18). 

BY (e) and (0 F/A, is holomorphic for any F E 5 _ . It follows that 5 - 

is a free Fh+-module on one generator A,,. (g) now follows from (e) and the 
fact that k t--+ ,4 + p defines a bijection from P, onto P, + . 1 

Note that corresponding to (c), (d), (e), (g) we also have bases for 
Th;‘, etc. 

Remark. As in Section 3.1, we have a geometric interpretation of the 

spaces ?rjj, of functions on Y, and of the representation of wg I@/?- on 
i+$,, for which %f are the subspaces of invariant and anti-invariant 
functions. Namely, replacing N, by F in the Remark in Section 3.1, we 
obtain a holomorphic line bundle 9 over the family of abelian varieties 

b*/(iW + rM), r E Z+ . Moreover, %L is identified with the space of all 
holomorphic sections of the mth tensor power gp-” of the line bundle 9-l 
dual to 9, in a way consistent with the obvious action of w on 9. 

Similarly, one may realize 5;’ as the space of all holomorphic sections of a 
line bundle over the family of abelian varieties t*/(M + rM’), r E Z+ . 
(Using (y -i) E X(2, P), one sees that the line bundles for fh: and ?hh” 
are actually isomorphic.) 

Let Go denote the intersection of the normalizer of @ in w K G, with 
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G,; let N, = N, n G, and r = Mp(2, IF?) n G,. Then it is easy to check that 
No= ((a,P,t)EN,laEg*,BEg’*} and 

c=Omodk’Z,ac=bd-Omoda,Z . 
! 

Note that 0’ = e if k’ = 1, 0’ = 0” if k # 1 and 0: = e + 0” in all 
cases. It is easy to check that G, c G,, and 

G,=r K No unless a, = 2. 

Note also that r = Mp(2, Z) if k = 1. 
Put S = ((Y -;), T”*) E G,?. 

PROPOSITION 4.4. Fix a positive integer m. Then 

(a) Th, and Tht are invariant under G,, the group G, commutes with 
w on Thi, and the matrix of any g E G, with respect to the basis 
{Of,,, / ,u E M* mod mM} of Th, is unitary. 

(b) S preserves Th,, and its matrix with respect to the basis 
{Or,, / p E M” mod mMj of Th, is unitary. Moreover, S commutes with 6’ 
and exchanges Thi and Th;‘. 

Proof. A computation verifies that G, c G,, so that by Proposition 3.16, 
G, preserves Th, and is unitary with respect to the given basis. Clearly, 
gwg-‘w-1 E ?- for all g E G, and w  E @, so that G, preserves Thz and 
commutes with w  on it. This proves (a). Similarly, S E G, commutes with 
w, and S%-‘=S-Ii??= p, which along with Proposition 3.16 
proves (b). 1 

The action of S on Th, is given explicitly by Proposition 3.15. For B = 
((T ,“), j) E r, the action of B on Th, may be computed as follows. Choose 
Pa* such that mat 1 aI* E 2(a, p) mod 272 whenever ccr E M and 
ma E M*. Then g := B(0, m-‘/l, 0) is as in Proposition 3.17 (as one checks 
using the formula above for I’, k/M’ c M and Proposition 2.13(c)), so that 
the action of g on Th, is given by Proposition 3.17. Note that (a, p) E Z 
whenever a E M’, since then ca E M, a E M* and ac 1 al* E 22 (as one 
checks using Proposition 2.13(c) and the formula above for r>. Hence, 
pEP=M’* CM*, so that the action of (0, m-‘/I, 0) on Th, is given by 
formula (3.10). The result of these calculations is given by Proposition 4.5(a) 
and (c) below. 
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PROPOSITION 4.5. Let m be a positive integer and let ,u E M* = p 3 p. 

(a) Let B=((z f;),j)~r. Choose PEP such that maclal*- 
2(a, /?) mod 2B whenever ca E M and ma E M*. Let F = v(m, B(0, m-‘P, 0)) 
be the complex number defined in Proposition 3.11. Then: 

@Ll IB = E ,& (exp 7th -‘[(b,u+da,ap+ca+2P) 

camodmM 

- (w)l) @&+ca+B,m. 

(b) Choose a E $* such that / y I* E 2(a, y) mod 2H for all y E M. Then 
@r,Jr + 1, z - a, t) = e~im-‘trrl*e2’ri(a~r)O~,m(S, z, t). 

(c) qm (-$5,t+$q 

= IM*/mMI-‘I*(-is)“* 

X YIEM*~OdmM lexp --2~im-‘(kN)l @fc,m(5, z, t). 

(d) Let A E P, J(c) = m. Then: 

1 z (z,z> 
---,-,t+- 

5 r 2t 

= I&f*/mMI-‘I*(-ir)“* 

X -T 
hP'+T;nodC6 

K;‘ (det w) exp -2nim 
weiv 

-‘(w(n), 2)) 

I'(c)=m 

x A:,(z, z, t). 

Proof. After the preceding discussion, only (d) deserves comment. TO 
prove it, note that 

1 z (z,z> 
---,-,t+Zz 

r r 
E Th;- 

by Proposition 4.4(b). On the other hand, (c) gives 

1 z k z> 
-T,-J+22 

5 
= I~*/mMI-‘/*(-i~)‘l* 

x Y- 
WFF 

(det w)[exp -2xim-‘(w(l),,u)] Of,m(t, z, t). (4.51) 

vsM*modmM 
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Since Ai, = CwsW,modT (det w) O$,),,, if n’(c) = m, and since the Ai, with 
J’(c) = m form a basis of Th&- by Proposition 4.3(e) applied to the adjacent 
root system, one writes 

( 
1 z (z,z> 

A, ---,-,t+- 
r r 22 1 

as a linear combination of the A;,(r, z, t), picking out the coefficient of 
Ai,(r, z, t) as that of Oy,,m(t, z, t) in (4.5.1). I 

4.2. Transformation Properties of the Denominator A, 

Since we are interested mainly in the functions (cf. Proposition 4.3(f)) 

eeSAGch L(A) =A,+p& 

we want more precise information on the transformation properties of A,. 
Define a holomorphic function F(r) on G$?+ by 

F(r) = e *~~(li$v*g’r n (1-e 
Zni(a,A,+ mult n 

1 . 
asA+V+ 

Using the results of Section 1.4, it is easy to express F in terms of the q- 
function. The result is given in Table F. 

TABLE F 

Type XLk’ F(r) 

A$’ 

,4’2’ 
21-I 

0’2’ 1+1 
,+2’ 6 
0’3’ 

4 

11(r) 
I(h+ I) 

Introduce the following notations: 

D := 1 + 2 Id+ 1 (=dim 6); 

for n E P, of level m, set 

b(/i) := IF/(m + g)M1-1’2 n 2 sin “(~~fp”) ; 
rrd’: 
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for 1 E F+ , set 

xi(exp y) .= ,ILw Pet 4 e(w(A+p’)yY) 
. C,,,, I (det w) e(w(p’)Vy) (YE P>. 

PROPOSITION 4.6. 

(a) A,(r, z, t) = eC(~p~2’2g)6ep (1 - e-n)m”‘ta 
+ 

= exp 27G 
( 

I PI2 -r-(P;z)-gt 
2 ) 

X n (l-e 2zi(a,r+rAo) multa 
1 . 

LYEA, 

(b) For any B = (BO, j) E r, there exists a complex number up(B) 
such that 

A, IB = q,(B) A, and F(B,, 5) = up(B) j(,)O F(7). 

(c) A, (-gt+q) = IM’/MI-“2(-i)‘~tl(-it)“2 AL,(r, z, t). 

(d) Let A E P, be of level m. Then: 

=b(A) 1 xi, exp -2ni ‘+’ 
A’eP’+mod C6 ( ( 

m+,)) w4~+p~/‘w~J~ 9. 

A’(c)=m 

(e) For a E e* and p E c’ *, we have 

A, I(a,O,O) = (-l)(a,2a A, ; 

A, 1(o,4,0) = (-1)‘4J%4,. 

Proof. (a) is immediate from formula (2.7), the definition of A,, and the 
fact that 1 p I* = I PI*. We next prove: 

Th, = CA P and Th;- = CA;,. (4.6.1) 

Let g’ =p’(c). Then by Proposition 4.3(e), Th; = CA, and Th:: = CA;,, 
and moreover, Th; = (0) for m < g and Thk- = (0) for m < g’. But by 
Proposition 4.4(b), dim Th; = dim Th& for all m. Hence, 

proving (4.6.1). 

g’ = g, 
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Let B = (B,, j) E lY By (4.6.1) and Proposition 4.4(a), A, IB = up(B) A, 
for some up(B) E C. But (a) implies that 

from which one deduces F(B,t) = uJB)~(,)~ F(t). This proves (b). 
To prove (c), note that by (4.6.1) and Proposition 4.5(d) we have 

1 z (z,z) 
---,-,t+- 

5 r 25 
= ~(4.r)“~ A;,@, z, t), 

where 

c=pf*/gkq- “* c (det w) exp(-2nig- ‘(w@), p)) 
wsR 

= IM*/gMI-1’2 n (-2i sin Xgg-‘(cf,D)) 
a&f; 

by the Weyl denominator formula. Therefore, j”+‘c > 0 due to: 

0 < (a, A) < A(c) forall aEd; andAEP++. (4.6.2) 

(Since 8 is the highest root of d’+, we have 0 < (a, A) < (19, A) = 
A(c) - A@,) < A(c).) Finally, since the matrix of S with respect to the basis 
(Of,, ( ,u E M* mod gA4) of Th, is unitary (by Proposition 4.4(b)), we have 

/cl2 = 1 W/Tl/l W/T1 = IM’/MI-‘. 

Hence, c = (-i)“+’ IM’/MI-“2, proving (c). 
Finally, (d) is easily derived from (c) and Proposition 4.5(d). The first 

formula of (e) is clear. The second formula follows from (c) and the first 
formula for the adjacent root system using A, lC,,4,0j = A, (s~B,O,O~s-,. I 

Remark. Proposition 4.6(a) is another form of the Macdonald identities 
[29]. Proposition 4.6(c) for k = 1 is due to Looijenga [27]. 

4.3. Specializations of A, and the “Very Strange” Formula 

For y, zEijft, we define the associated “specialization” F,,,(z) of A, as 
follows. Let 

dy*’ = (a E A I (a,A, + z) = 0 and (a, y) E Z}, 

D,,, = I + lAY*Lj. 
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Note that A.“,’ is the set of all roots cf such that 
exp 2zi(a, r(AO + z) - y) = 1 for all z ER+. Clearly, Ayvz is a (finite) 
reduced root system, and 

is a set of positive roots. Motivated by the definition (3.18), we set 

Fy,,(r> = 
( 
A, n (1 -e-O --I 

) ,( 
t, sz - y, -+ (z, 52 - y)) . (4.7) 

aeAy 

Using Proposition 4.6(a), we obtain 

Fy,z(r) = (-l)l(-A+)nAy+‘I eni(y,2p-g;)errig~llp-gzl’r 

X ,,pwy,z (1 _e2ni(a.T(A0+z)-Y))mult~. (4.8) 
+ 

(The power of -1 is due to the fact that AY;” need not lie in A+ .) In 
particular, F,,, is holomorphic on A?+, and FY,z(t) # 0 for all r E X+ . Note 
that F,,,(z) is the function F(r) from Section 4.2. Similarly, we define F:,,(z), 
taking AL, in place of A, and A$y*’ in place of AY;‘. 

Let WY.’ c W be the Weyl group of Ay,‘, and let pyVz = $ C,,piz a. Then 
we have 

Xe ni(y,lw(p) -gz)enig-llw’(o) -gz127 
(4.9) 

This formula is essentially a special case of Proposition 4.34(d)(ii) in 
Section 4.9 (the proof is the same). 

We can now prove: 

PROPOSITION 4.10. (a) For B = ((” c f;),j)ET with c-Omodkh, one 
has: 

F QYtbz,cytdr 

(b) F,,,(-l/7) = K(--i)D’2 r(“2)Dy~zF;,-y(~), where K = 1 if k = 1, K = 
Ihf’/h.f-“* naEAYsl (2/1aj’) if k’ # 1, and K = n,., (2/ja)‘) if a0 = 2, 
whereS=(crEAY,tz(a+(a,y)g~A}. 
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(c) Ify,, E e* and .zo E @*, then: 

F Y+Yo,L+ro(5) = (-l)(YoJp7+wF’) 

x e~i~((Y,~~)-(Yo,~)+(Yo,~o,,F 
y,s+ 

(d) If y, z E Cf=, C&z,, then FY,Z(z) is a holomorphic modular form of 
weight fD,,, for T(N), h w ere N is the least positive integer divisible by k 
such that y, z EN-‘@*. 

Proof: For y’ -+ y and z’ -+ z and generic y’, z’, we have 

Fy;.Jt) = lim 
A,@, zz’ - y’, -$(Z’, zz’ - y’)) 

n ,,H$-2ni(a, z(z’ - 2) - (y’ - y))) ’ (4*10’1) 

Let B = (BO, j) E Mp(2, R), B, = (: i). Then the transformation law (3.19) 
gives, setting y, = uy + bz, z,, = cy + dz, 

= lim (A, le>(5,Lz’ - y’, -f(Z’, tz’ - y’)) 
rI ,Epyy9,io (-2;rli(a, t(zf -z) - (y’ - y))) * (4*10*2) 

If B E r, then (4.10.2) and Proposition 4.6(b) give 

~(~)-Dyo~zoFyo,~o(Bo~) 

= lim 
v,(B)A,(z, 72’ - y’, -$(z’, TZ’ - y’)) 

n aEq.20 (-2ni(a, r(z’ - z) - (y’ - y))) * (4.10*3) 

Moreover, it is easy to check that if, in addition, c E kZ, then a t+ C? - 
(a, z&6 defines a bijection of A?’ onto Ay,O*‘o. Hence, in this case we may 
replace A?‘0 by AY;’ and Dy0,Lo by D, r in (4.10.3). (a) now follows from a 

’ comparison of (4.10.1) and (4.10.3). 
The proof of (b) is similar, using Proposition 4.6(c) in place of 

Proposition 4.6(b), and using the facts that a w  a’, where a’ E A’ and a’ or 
a’” equals (5 + (a, y)6, defines a bijection of AY;’ onto A:L*-Y, and that K in 
(b) is IM’/MI-“2 JJosdY.2 (S/C?). (Note that a’ = a + (a, y)6 if k = 1, and 
a ‘“=E+(a,y)S if k’# 1’) 

To prove (c), note that: 

AY+Yo.=+zo = tzo(AYJ). 

To see this, one only needs to show that tzo preserves A; but this follows from 
Proposition 4.6(e) and the product decomposition of A, (cf. the proof of 
Proposition 4.27(a)). Now (c) follows by Proposition 4.6(e). 

Except for the assertion about behavior at cusps, (d) is clear from (a), (c), 

607/53/2-b 
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and Q’* c e*. Since each FY,Z(z) is holomorphic at the cusp ico by (4.9), 
we may show as in the proof of Theorem A(4) in Section 4.4 that Fy,L(r) is 
holomorphic at all cusps. This proves (d). m 

Remark. Some especially interesting specializations of A, are suggested 
by the results of Section 4.8. Besides F&r) = F(r), we also have 

-2 F-g-,;,,0(7) = (-ip p/ggMy s q’f(p) ’ ‘28; 
IET 

if k= 1, then 

F O,(h+l)-l;v(7) = rl((h + I)-’ 7Y> 

F -(h+l,-5V,0(7) = c-i> ‘b+‘(h + 1))‘2 v((h + 1)s))‘. 

These, together with (4.8) and (4.9), give nice identities. The first identity is 
(in an equivalent for_m) given by Macdonald [29, (8.16)] in the case when 
1 a 1’ = 2 for all o E A, while the others are his specializations 0 and Y. The 
identities of Proposition 4.30(d) also have beautiful specializations. 

Using Proposition 4.6(d), the same proof as that of Proposition 4.10 gives 

PROPOSITION 4.11. For A E P, of level M and y, z E JJf=, &xi, dej&e: 

ayz(7) = + ( l (z, 7z - y) 73 7z - yy - z . 
0 ) 

Then @ŷ .Z is a modular form of weight 0 with the transformation law: 

=b(A) 5- 
WEPTmod CS 

A’(c)=m 

X+/7 
-2ni---- 

mfg 

where b(A) and xi, are as in Section 4.2. 

Remark, Proposition 4.11 is related to the “Monstrous game” 14, 181. 
Roughly speaking, it shows that the linear span of the “Thompson series” 
corresponding to certain gradations of modules of level m and all elements of 
given period from the Cartan subgroup is invariant with respect to SL(2, Z). 

A nice application of Proposition 4.10 is the “very strange” formula (cf. 
Proposition 1.11 (e)). We recall this formula in a slightly different form. 

PROPOSITION 4.12. Let $= (so,..., s,) be a non-zero sequence of non- 
negative integers and let g(A) = OjeZ gj@) be the Z-gradation of the affine 
Lie algebra g(A) defined by deg e,= -deg fi=si, degb = 0. Set N = 
k~f=,aisi,bj=dimgj(~),andb=~iN_,bj.DefinezEi)* by 

(Z, ai) = ksi/N (i = l,..., 1) 
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Then 

(4.12.1) 

ProoJ: Note that (z +A,, a,) = ks,/N for i= O,..., 1. Hence, setting 
q, = e2nikrlN, we obtain 

W12kg)I~-cd2 Fo,z@) = 4 1 n (1 - q’;)b’. 
j>l 

Note also that the sequence bj, j > 1, is periodic with period N, and bj = bNej 
for 0 <j < N, by the structure of the root system A. Now (4.12.1) follows by 
Lemma 3.20, since F&r) is a modular form by Proposition 4.10(d). 1 

As a corollary to the “very strange” formula, we have for z E G*: 

2kgz = 
,&C&d kZS (” a)E’ 

(4.12.2) 

2khz = 
,,,&j kZ$ (” a “)” 

(4.12.3) 

To prove (4.12.2), rewrite (4.12.1) as 

mult(a)(a, z + A,,)(k6 - a, z + A,). 

(4.12.4) 

Equating the terms quadratic in z proves (4.12.2). Equation (4.12.3) is just 
(4.12.2) for A”. 

Now we deduce from the “very strange” formula an important inequality. 
Let J be the set of all j E Z such that j = o(O) for some automorphism o of 
the Dynkin diagram. 

PROPOSITION 4.13. Let z E C,,. Then: 

ID-!?I2 < IP12. (4.13.1) 

Moreover, equality holds if and only if z = ;ri for some j E J. 

-Proo& Equality holds in the stated cas_es since, by Proposition 4.27(b), 
W, c W acts simply-transitively on {p - gAj 1 j E J). 

Put /i=n,+z, so that (II, a) > 0 for all a E A+. Put 
S= (aEA”e mod kZS’ 1 kE > O}. Using the descriptions of A and A’ in 
Sections 1.4 and 1.5, formula (4.12.4) gives a,g-‘(lp12 - Ip -gz12) = 
Cnss (4,) (6 - E,A). M oreover, kc? > 0 and k(6 - 6) > 0 for all a E S, so 
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that the summands on the right-hand side are non-negative, proving (4.13.1). 
If equality holds in (4.13. l), then these summands all vanish, which forces 
zEQ’*; hence, by Proposition 4.27(b), z = /ij for some j E J. m 

Now it is easy to deduce an estimate for the characteristic s,,(A) of a 
weight A of the module L(A) (see Section 2.3). 

PROPOSITION 4.14. Let A E P, be of positive level m and let A E P(A). 
Then 

s*(A)>-++‘). g m+g 
(4.14.1) 

Moreover, equality holds if and only if A E mAj + C6 for some j E J and 
w(A) = A for some w E W. 

Proof. Since (mp - g/i)(c) = 0 and hence 1 mp - g/i 1’ = ( mp - g2 12, we 
have 

2sA(A) = m -‘(~A~‘-\A~‘)-(g-‘-(m+g)-‘)~p-gm-’/lj2. 

Proposition 4.14 now follows from Proposition 2.12(d) and (4.13.1). 1 

4.4. Transformation Properties of the String Functions 

Recall the string functions c’j defined in Section 2.3 for A E P, such that 
m :=A(c) > 0 and A E max(A) by 

c; = e*nis,t(a)7 y 
$2 

mult,(k - n6) e2rrinr. 

This is a holomorphic function of r E GY+ . 
Technically, instead of using string functions, it is often more convenient 

to deal with the functions c(L, ,u, m) (A., ,D E t*, m a positive integer), called 
virtual string functions, defined as follows. 

ForwEW,AEP+,A(c)=mandvEmax(A),set 

c(w(A + p), V; m) := (det w) ct. 

Put ~(1, ,u, m) = 0 if it is not already defined. It is easy to see that c()L, ,u, m) 
is well-defined for all I, ~1 E b*. Note that c@,,u, m) = 0 unless A E p and 
puELp+Qd 

Furthermore, since t&4 + p) = 3 + p + (m + g)y and tJv) = i + my for 
v E P(.4), the function c@,,u, m) depends only on A mod (m + g)M and 
.u mod mM. 
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Note that for w, w’ E @: 

c(w@), W’(P), m> = (det w> 44 P, m). 

Similarly, we define c’@,,u, m) for the adjacent affine Lie algebra; this 
function depends only on A mod(m + g) M’ and p mod mM’ (we use the fact 
that p’(c) = p(c) = g by (4.6-l)). 

Now we can rewrite the theta function identity (2.18) as follows: 

for any A E P=M’* and any positive integer m. 
To verify (4.15), put A’ = A + (m + g&4,, so that by Propositions 1.9 and 

2.13, there exists a unique A” E W(A’) n P, . If A” E P, + , then by 
Proposition 2.13, (4.15) is just (2.18) for A = A” -p. Otherwise, all 
c(&,u, m) are 0 by definition, and since ,(A”) = 1” for some i E Z, the sum 
on the left-hand side of (4.15) is ~e-~n’*s’2cmigt CH,EW (det w)e“‘(“‘)=O. 
This verifies (4.15). 

Similarly, for the adjacent root system we get 

(A;,)-’ s (det w) O$\j,m,.g= x c’@, ,4 m> 0r.h (4.16) 
weW @CM* mod mM’ 

for any A E p = M* and any positive integer m. 
By Lemma 3.12, the string functions are characterized as functions of 7 

satisfying the theta function identity (4.15). This immediately implies that 
the string functions are modular forms [ 181. Indeed, as we already 
mentioned, the string functions are holomorphic on A?+. Furthermore, by 
Proposition 3.3(b), 

for generic 7. Hence, (4.15) gives us a non-degenerate system of linear 
equations with indeterminates being the string functions, whose coefficients 
are modular forms. Therefore the string functions are modular forms of 
weight -fl. In this section we show that, moreover, the string functions are 
meromorphic modular forms, and we derive their transformation properties 
and estimate the orders of their poles at cusps. 

First, we introduce some notations. 
For m # 0, B = ((: i),,) E Mp(2, R) and a, ,u, /I E G*, set 

f (B; a, ,u; J?; m) = exp nim -‘[(up + ca + 2P, b,u + $a) - @, a)]. 
Let N be the least positive integer such that N 1~1’ E 22 for all y E M*. N 

is found in the following Table N. 
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TABLE N 

Type XB’ 1 N 

Ai” odd qz+ 1) 
even 1+1 

Bj”, .!I) 3 A 216 (2) I odd 8 

-2mod4 4 

411 2 

cl”, E’l’ 1 3 p’ 1+1 4 

EC’) 6 7 (q’, 0’3’ 4 3 

F(l) 4 3 A$‘, E’2’ 6 2 

Et” 8 1 

Recall the group r c Mp(2, F?) introduced in Section 4.1. 
Now we are in a position to prove our first main result. 

THEOREM A. Let g be an afjne Lie algebra. Let m be a positive integer 
and let p, p’ E p. Then the virtual string functions have the following 
transformation properties. 

(1) (a) c(,u,p’,m;-+)=iM*/(m+g)M’j-“’ 

X c 
ueM* mo~mt8’M’ 

(exp27ri[-(m+g)-l&v) 

u’EM’ mod mM’ 

+ m-‘(,u’, u’)]) c’(v, v’, m; 7). 

(b) rf a,, = I, then 

c(ill,P’, m; 5 + 1) = (exp ni[(m + g)-’ IPI2 

-m-‘l~‘12-g-’ IP12])c(~,p’,m;r). 

If a, = 2, then 

c&p’, m; 5 + 1) = (exp zi[(m + g)-’ IpI* -m-l Ifl’12 -g-l IPI 

+ 1~ -P’ -P12]) c(~p’, m; 5). 
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(2) Let B = ((z f;), j) E T, and choose p, p” E F satisfying 

(m+g)ac(a1’~2(a,p)mod22 zQ-caEM,(m+g)aEM*; 

m~d~a(~-2(a,/P)rnod2Z tycaEM,maEM*. 

Set 8’ = -u/J”, 

e = [exp -nim-lab IPN1’] 

X v(m + g, B(O,(m + g)-l/3,0)) v(m, B-‘-(0, m-‘p”, 0)). 

Then 

F (S) c (AN, m;S) 

= &(Cf + d)‘h+’ x x f(B;a,~;b;m+g) UCM’ a’EM* 
camod(m+s)M ca’modmM 

(3) If (: i) E T,(Nm) n T,(N(m + g)) and b = 0 mod a,, then: 

F (=Jc (P,/l’,m;=J=Eexpniub( (mtZg) --?) 

x (CT + d) I’+’ F(r) c(up, up’, m; r), 

where 

tfl is even, 

if1 is odd. 

(4) If a, = 1 (resp. =2), then F(t) c(p,p’, m; 5) (resp. 

VW 2’(1t ‘) c(p,,u’, m; T)) is u cusp form of weight 12, I (resp. fl(2f + 1)) for 
T(Nm) n T(N(m + g)) with trivial multiplier system (resp. multiplier system 

(6) ‘1. 
(5) The linear spun of all string functions for all highest weight 

modules L(A), A E P,, of level m is invariant under the projective right 
action of T,,(k’) defined by 
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Proof: Put ~‘=v(m+g,B(O,(m+g))‘/?,O)), &“=v(m,B-‘(O,m-‘P”,O)). 
To prove (2) we apply B 0 B- ’ = Z to the left-hand side of identity (4.15) 
and use Propositions 4.5(a) and 4.6(b). Using the fact that w commutes 
with B, we obtain, for p E p: 

-K- C(P, ill’, m> @$,m 
L’EM* mod mM 

= u,(B)-‘~‘[j o B-l]-’ x f(B; a,~;/% m + s> 
aEM* 

ca mod(m+glM 

2 (detw)O~(,,+.,+,).,+, . 
WEW )I B-1 

Now we expand the resulting expression using (4.15) again, obtaining 

~,(B)~‘d[jo B-‘1-l s S(B;a,~;;p;m+ g> 
CXEM’ 

ca mod(m+n)M 

X \‘ 
AL c(w + ca + p, p”, m) qy!,, . 

u”cM* mod mM B-1 

We apply Proposition 4.5(a) to expand Of,,,, IBm, in this expression 
obtaining 

up(B)-%‘e”[j 0 B-‘1 -I c f(B;a,~;b;m+ g> 
aEM’ 

cm modtm t g)M 

X 5’ (c(a~+ca+p,~“,m)oB-‘) 
u”EM* mod mM 

X ,,zM f(B-1;a”,~“;P”;m)O~~u”-ca,,+4,,,m. 1 
ca”mod mM 

We replace, in the last expression, the summation 

-Y 
*“EM’ 

ca”mod mM 
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by the summation 

IM*/(mM + cM*)l-’ 
a”cM* mod mM 

Finally, we reparametrize the resulting sums by a’, ,u’ EM* mod mkf, 
where a’ = aa” - bp” and y’ = --~a” + &” +/?“, and use the fact that 
f(B-l;aN,~“;/?“;m)= [exp-nim-‘abIBIII*]f(B;a’,y’;p’;m). Then we 
obtain the equation 

c 
P’EM’ mod mM 

=Eu,(B)-‘[joB-‘]-‘IM*/(mM+cM*)I- 

X c f(& a’,p’;P’; m) 
a’,~ ‘EM’ mod mM 

X [c(a~tcat~,a~‘tca’t8’,m)oB-‘]0~,,,. 

We match the coefficients of C$‘,,,,, ,u’ E p, on both sides, as permitted by 
Proposition 4.2, and note that the summand depends only on ca’ mod mM. 
We obtain 

c&p', m)= Eo,(B)-'[jo B-'1-l 

x c f(B;a,p;P;m+ g)f(B;a',p';P;m) 
a,o'EM' 

ca mod(m+g)M 
crr’mod mM 

X [c(a~tcat/?,u~‘+ca’t/I’,m)~B-‘1. 

We multiply both sides by F, and then compose them with B. Recalling 
that by Proposition 4.6(b), 

F = q#W(+' F'(r), 

we obtain (2). 
To prove (3), choose j3 =/?” = 0 (which satisfy the hypothesis of 

(2)), so that by Proposition 3.17(b), E = v(m t g, B) u(m, B-l) = 
u(m + g, B) v(m, B) is as given in (3). This proves (3). 
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The proof of (la) is similar to that of (2). We expand the left-hand side of 
identity (4.15) using Propositions 4.5(c) and 4.6(c), obtaining, for ,U E p: 

c 44 P’, m; ~1 @F;lc,m(~, z, t> 
w’EM* mod mM 

= ii*+’ I&f*/(m + g) &f’ 1 -112 

X c exp[-24m + g)-‘(.4,4] 
~1 ‘EM* mod (m t g)M’ 

X 
i 
AL;’ 1 (det w) Oz;V,j,m+g (S-’ . (r,z, t)). 

wew 1 

We expand the right-hand side using identity (4.16), obtaining 

i”+’ IM*/(m + g)M’I-1’2 L EM m~cm+a)M exp[-2xi(m + g)-‘(,4N)l I * 

X c c’ 
P”EM* mod mhf 

p’, ,u”, m; - +I O”;“,,,(S-’ + (z, z, t)). 

We transform this expression using Proposition 4.5(c), obtaining 

i”+’ W*l(m + g)M’l-“* L( EM m~(m+g)M, ew-2ni(m + g)-‘@,@)l I * 

x =v 
ta”EMt&dmM 

c’ 
i 
p’, p”, m; - +) (-ir)“* IM*/mMI -‘I* 

x c exp[2zim-‘(p”, ,u”‘)] Oc,,,,m(r, z, 2). 
u”‘eM* mod mM 

Here we used that O’?!v,m(r, -z, t) = @:,,(7, z, t). 

We match the coefftcients of Or,,,,, ,L’ E p, to obtain 

( 1 
c cl,@, m; -- 5 1 

=I&f*/(m + g)&f'1-"2 I&f*/m&f-I'* (M'/&fI"* i'6+'(-iz)-'/2 

X c exp 2xi[-(m + g)-‘(p, v) + m-‘(p’, v’)] 
u&f* mod(m+g)M’ 

v’EM’ mod mM’ 

x c’(v, v’, m; z). 

This proves (la). The proof of (lb) is similar, using (4.15) and 
Proposition 4.5(b). 

We now prove (5). If a, = 2, (5) is immediate from (1) since (A :) and 
(y -h) generate SL(2, Z). If a, = 1, (5) follows from (2). 



INFINITE LIE ALGEBRAS AND THETA FUNCTIONS 213 

Finally, we prove (4). By (3), v(r) := F(r) c(p, ,u’, m; r) is a modular form 
of weight 1 d, 1 for r’ := I’(Nm) n T(N(m + g)) and multiplier system E given 
in (3). To compute E(A) for A = (z i) E r’, one uses standard properties of 
the Jacobi symbol. If Q,, = 1, then 2 1 1 or 4 1 N by inspection of Table N; 
these imply that E(A) = 1. If a, = 2, then one finds that e(A) = ($-)‘. Put 
19(z) = CnsH ezin2’. Then 0(t) = ~(r/2)-~ ~(5)~ ~(2t))~ by (3.20.2) so that 
~(r)~‘(‘+ ‘) = F(r)B(r)’ if a, = 2. By Proposition 3.8b(ii), B(Az) = 
(%)@(cr + d)“%( r 1 a, = 2. This suffices to prove (4) except for the ) ‘f 
assertion about behavior at the cusps. 

Let H(t) =F(t) if a, = 1, H(r) = q(~)‘~(‘+~) if u. = 2. Then H(r) is a 
modular form for T,(k’). Since H(r) vanishes to order 1 p1*/2g at the cusp 
ioo of T,(k’), I,u~(~) := H(r) c@, p’, m; r) vanishes at the cusp ia, of I” by 
Proposition 4.14. Similarly, (la) and Proposition 4.14 applied to the adjacent 
root system show that vo(t) vanishes at the cusp 0 of r’. If k’ = 1 (resp. 
k’ # l), then the set of cusps of I’,,(k’) is {ice } (resp. {ia, 0)); therefore, 
every cusp of r’ lies in the T,(k’)-orbit of ioo or of 0. This along with (5) 
proves (4). I 

Remark. It is also possible to prove (1) and (2) of Theorem A by using 
Proposition 3.3(a). 

4.5. The Matrix of String Functions 

Given a positive integer m, let P, (m) = {A E P, mod@6 I n(c) = m}. The 
string functions c: @I, 1 E P’$“‘) are characterized as elements of @(G?+) 
such that for /i E Py’, we have 

A,‘A A+&?= 2 csb 
let-y’ 

Thus we may regard (c:)~,~~+;) as the matrix of the @(X+)-linear 

isomorphism from ?r;+ 8 onto Thz defined by F I- A; ‘F. 
Introduce the function 

,qr) = e2niRr JJ (1 _ e2ninr)mult n6, (4.17) 
n>1 

where R=IDl*/2g(h+ 1) if k=l and R=lp1*/2g(g+ 1) if kf 1. Using 
Proposition 1.11 (a), (c), (e), we deduce that 

G(r) = tlW’ if k’=l, 

G(t)= fi r,~(~lcz,/‘r) if k’# 1. 
i=l 

Explicitly, we have the following Table G. 
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TABLE G 

Type Xi” 

XI” or A $’ 
A’2’ 

21-l 

p 
it1 

Ei2’ 
0’3’ 

4 

G(r) 

VW’ 

v(e-1 G5) 

v(r) @r)‘- l 

r(r12 ?7w2 

v(7) v(37) 

Let G’(r) = eZniR” n,,, (1 - e2ninr’k’)mu’t’ns’, where R’ = 1 jJ’ 12/2g(h + 1) 
if k= 1 and R’=Ip’12/2g(g+ 1) if kf 1. 

Remarks. (1) R’ = n/24k if g is of type Xi’). 

(2) F(r) = G(r)htl if k = 1 and P(r) = G(r)g+l if k’ # 1. 

PROPOSITION 4.18 [36]. For any positive integer m, det(ci),,.,,,,Y, = 
G+;” 

Proof Put b = ) Py’ 1, and let H(s) be the determinant in question. For 
7 Ej%‘; 3 L%,+A&w+ ,m, is linearly independent by Propositions 4.2 and 

4.3(e), so that H(r) # 0. For any B E T,,(k’), there exist (B, j) E Mp(2, m) 
and g E G, n (B, j)N,. Hence, by Proposition 4.4(a), H(r) is a modular 
form of weight - fbl for T,(k’). Since G(r) is a modular form of weight fl 
for T,,(k’) by inspection, we conclude that A(t) := G(t)b H(r) is a modular 
form of weight 0 for T,(k’). We must show that A(t) = 1. 

Put H’(r) = (det c~“)~,~+~,. By Proposition 4.4(b), H(-l/r) = 
C’7-‘1’2’b’H’(t) for some C’ E G, and by inspection, G(-l/r) = 
I W/MI - ‘j2(-iz) (1’2)1 G’(r), so that for some C E C, 

A - + = CG’(@ H’(T). 
( 1 

Put s = S(m, g) = C~Ep,m, s,(/l). Since ~~(4) < So@) for all A E 
max(/l)\M+l), H(r) is of the form qs(l + JJn>,, cnqn), so that H(r) vanishes 
to order S at the cusp ice of T,,(k’). Similarly, H’(r) vanishes to order S’ := 
k’-‘S(m, gadj) at the cusp ice of T(k’), since the isomorphism @ of 
Section 1.5 taking the adjacent root system A’ to the root system of the 
adjacent afftne Lie algebra gadj multiplies lengths by k’ 1’2. Hence, A(t) 
vanishes to order bR + S at the cusp ice and to order bR ’ + S’ at the cusp 0 
of I-,,(k’). 

If gadj is isomorphic to g, then S = k’s’ and R = k’R’, so that bR + S = 
k’(bR’ + S’). Since ioo and 0 are the only cusps of T,(k’) by (c) of 
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Section 3.3, this shows that either A(r) or A(r)- ’ is a holomorphic modular 
form of weight 0, so that A(T) is constant by (d) of Section 3.3. From the 
expansion A(r) = q bRfS(l + Cn,O a,q”), we now conclude that A(r) = 1, 
and that b-IS = -R. If gad, is not isomorphic to g, then g is of type A $’ I or 
Djyl, and one checks directly that b-‘S = -R, so that again A(r) = 1. m 

Since b-‘S = -R, from the proof, we have: 

COROLLARY 4.19. Put h,=h ifk= 1 and h,=g ifk# 1. Then,forany 
positive integer m, 

Remark. In the limit as m -+ co, Corollary 4.19 asserts that the average 
value of the square of the distance from ,u E 5; to IV@) is (h,+ l)-’ [PI*. 

We now consider the matrix (di),,,,,,?, inverse to the matrix (c~)~,~,~~, 

of string functions. It is the matrix of the isomorphism FE-+ A,F from %i 
onto ??r;+* defined by: 

A&= c d$A,,+,. 
A EPy 

For 1 E P, with n(c) = m > 0, write 

A,,@* = r 
A EP m&k mod T  

a;@,, 

A(c)=rn+g 

with ai E @(A?+), and match coefficients of e-2ni(‘*r) to obtain 

a; = -s Wet w) q 
1KXU2/2m+ IwOl*/*g- l~l*/*(mtg) 

L 
IET 

WEW -- 
t(a) + W(P) =?L 

= c &(I- t(A)) q (m(mtg~/2g)l~m+g)-~K-m-L~l~ 

tsT 

= c &(t(A) - ;i)q ~m~mtg~/2g~l(mtg)-~O--m-‘X12 
, 

IET 

where E(c() = det w  if ,u = w(p), and E(P) = 0 if ~6 W@). Clearly, we have 
for A, A E Py’: 

W(d) di = c aA+o 
WE W/TWA 

(m(m+g)/*g)I(~tp7/(m+g)--iilm12 (4.20) 
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Fix p E M*. Then by the product formula for A,,, we have for each A E P 
with A(c) = m > 0: 

F- 
IEP IIk& mod T  

e2nim-1(B,X)al 
AfP 

A(c)=m 

= e2nim-k3,K) 
4 

(g(mtg)/2m~lg-1~-~mtg~-'~~tp712 

x,J (l--e Znim-*(a,i3t5(A+p)) multa 
) - 

+ 

Similarly, for each 1 E P with A(c) = m > 0, we have 

(4.20.1) 

-v 

A+pEPm%~mmodT 

e-2ni(m+g)~1(~,X+p7aI\ 
A+P 

(n+P)(c)=m+g 

=e -Zni(m+g)-'(b,XtFl (mg/2(m+g))lg-'p~m-'X12 
9 

X n (l-e Zni(mtg)-'(a.Btrl) multn 
> * 

l%EA, 

(4.20.2) 

These formulas show that the di are closely related to specializations of A,. 
If we take /? = 0 in (4.20. l), we obtain for A E Py’: 

r d;: = q(g(mtg)/2m)lg-‘p-(m+g)-‘(~+p712 

as+ 
x n (1 -qm-lb,Atp))multae 

aed+ 
(4.20.3) 

If max(,4) = W(A), then d; = CIEp, di and c; = (di)-‘, so that (4.20.3) 
gives many of the results of the next+section. 

Finally, we show that dzAo is often given by a product. Suppose that 
M = 0, which is the case if k # 1, or if k = 1 and all a E d have the same 
length. Suppose that A E P, A(c) = m > 0, and that /i E M, which is the case 
if dTAo # 0. Finally, suppose that the greatest common divisor of m and g is 
l.Choosea,bEZwitha(m+g)+bg=l.Then 

T(A + p) n W(p) = a(m + 8) F(p) + bg(J + P) + g(m + g)M 

= (m + s> VP> + k&f + PI, 

and we obtain, since &(a~) = s(up)e@) for all p E i? 

d TAO = c(ap) c (det w) q ~m~~m+g~l2~lg-'~~p~tb~m+~~-'~~+p7l* 

WEW 

= &@P) 4 
(mg~m+g)/2~lg-~~+b(m+g)-*(~tp7l* 

x n (l-9 
m(a,(mtg)Ao-b(X+p7) multa 

1 . 
LZGA, 
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The results of this section are due to the second author. A detailed 
account of these and some other results will appear in [36]. 

4.6. Explicit Computation of String Functions 

Recall that each /i E P, is labelled by a vector of integers 
(A(ho),..., A(h)), SO that /i =a;‘A(d)d + Cf=on(hi)ni, where the /ii are 
fundamental weights, and /i has level lev(/l) = zfEOaiv/i(h,) (see 
Section 2.2). If /i(hJ = Ni, n(/zi) = ni, we often write cr$;::: for cl:, 

EXAMPLE 1. Suppose that M = Q, that is, that k # 1 or else k = 1 and d 
has only one root length. Then Proposition 4.27(b) in Section 4.8 shows that 
(/i EP, IA(c)= I}= {/lj]jEJ} +GS and that the Aj (jEJ) are 
incongruent modulo Q + C6. Therefore, all non-zero string functions ct for 
n E P, of level 1 are equal to c(r) := c::(r), which has level 1 since a: = 1. 
It follows from Proposition 4.18 that 

c(t) = G(t)- ‘. 

In other words, for ,4 E P, of level 1 we have ([ 171, [ 181) 

1 mult,(/i - nd) q” = n (1 - qj)-m”‘tis. 
n>0 .i>l 

As a result, by (2.18), ch,(,, can be written as follows: 

e-“/2’tAtZ”Ch -c ye.Mt;C en,+ Y-(1/2)1 VI26 
if lev(A) = 1. 

In particular, in the case k = 1 (i.e., for g of type Al”, D{“, or Ej”) we have 

ch,(Ao, = c e~o+~-(1/2)l~12S n (1 -e-js)‘, 
FM I i>l 

which is proved in [ 17, p. 13 1 ] by a more complicated method. Note also 
that these formulas are used in [7] for an explicit construction of the “basic” 
representation 2,(/i,). 

EXAMPLE 2. Let g be of type B I”, I> 3, with simple roots numbered as 
in 

\ 
oJLO- . . . --o-o. 
all a2 a3 (11-I “I 

Then all A E P, mod C6 of level 1 are 11,, li 1, and A, ; the maximal weights 
of the corresponding L(A) are W-conjugates of either A, or A, - 6 when 
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/i = /i,, or A,, when II = II,. Hence, the non-zero string functions c’j of level 
one are 

Al- A0 Al- Aa 
cA, - cAo’ cAo - cA,~ c;;* 

The initial powers of q in the expansions of the ci, i.e., the characteristics 
.sA(i) of 1, are 

CA,. Al. 21+ 1 1 21+ 1 l-1 -48; c$: 
1 

- - A, 
48 

; 
c,,,: 

-. 
24 

Set A(r) = r/(r)‘+’ ~(22)~’ c::(r). Then A(r + 1) =A(r), and using 
c”,$-7-l) = (-it)-“*2-“*(c~: -c;;)(r) from Theorem A(l), we find 
,4(-r-‘) = A(-(r + 2)-l), so that 

A 

Since these generate r,(2), 
(A Y) Or (-; -Y)* 

A if E r,(2)* 

From the leading terms above, one checks that A(z) is holomorphic at the 
cusps ice and 0 of r,(2). Hence A(T) = constant. The constant is I since 
mult,,@ /) = 1. Therefore, 

c”np> = q(z)-‘-’ ry(2T). 

Replacing r by -l/r in this formula and using q(- l/r) = (-ir)“*y(r), we 
obtain 

c:: p) - Q(5) = r(z) -‘- ’ q(2/2). 

Replacing r by r + 1 in this formula, we obtain 

c;;(t) + c^,$) = q(2/2)-’ q(r)*-’ 11(22)-l. 

These three equations determine all string functions of level 1 for Bi”. 
We can now deduce from (2.18) simple expressions for the characters of 

two Bj”-modules: 

CysBe 
A,+y-(1/2)ly12S--(y,A,)6 

ChL(A,, = nj,, (1 _ e-jS)‘(l - e-(‘j-‘)“) ’ 

c l re Ao+y-(l12)lyl~S 

ch,oo, + chL(A,-(l,2)6) = nj,, (1 _ e-(L)16)(1 _ e-is)f-*(l _ e-*k3). 
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EXAMPLE 3. Let g be of type Al”. For m, n E Z, define: 

E(m, n) = exp 2ai 
m-n+2 

8 
for n even, 

n+l 
c(m, n) = exp 2zi - 

4 
for n odd. 

Then the following formulas hold: 

level 1: c:; = q!(t)-‘, 

level 2: c:: = r(z)-* v@), 

level 3: c;: = q(r)-2 q3'40 n (1 - q3"), 

flffl(5) 

level 4: c;; = q(r)-* I-’ ~(125)~; c:; - c;4” = ?j(2r) - 1, 

level 5: c;; = (-1)P q(t)-’ c 4m, 4 4 
(7mz+5n2)/560 

m  s-(5) 
n=Zp+2(7) 

7m2+5n2=4(16) 

(herep+q=r+s=5 andp=rmod2), 

level 6: 

level 7: 

c:: = a(~)-” r(2r) r(3r) 1(67)-l 1(12r), 

c:; + c;: = q(~)-~ ~(25) ~(67)~ 21(125)-l, 
51 

C51 -c;: = v(r)-‘, 

c:; = v(r)-3 q3/** 
“zo~,,7, (l- qn) “J,?, (l- q3n)T 

c;; = r](r)-3 K- 
e2nim/6 (m2t21n2)/4 

4 7 
m&n(*) 

level 8: c:: = r1(q3 4(24 r1(105), 

62 
c62 (1 - q4y, 

n&l(s) 

level 9: 4,” -c;; = q(T)-’ q-*/33 
nE*E5uI) (l- q”)-l 

x “=*E3(*,) (1 -b’X 

c;; + 2c;; = r(7)-3 x 4m, n) 4 
(llm2+n*)ll76 

9 
nE2(11) 

llm2+n2~4(16) 

607/53/2-l 
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level 10: c:: = &f(t)-3 r7(2?) r/q?)-’ ~(107)*, 

c;; = q(t)-” q29’40 n (14”) n (1 -q3% 
n&l(5) n ** Z(5) 

91 
c91 - c;; = q(t)-’ r7(22) q-l’15 rn5, (1 - q4T’, 

c:: - 2c;: = v(r)-3 f c C-1) 
(m-n)/2 q(m*t 6nZ)/120 

9 
m?~7(10) 

10.0 
c10.0 

a,2 634 4.6 
- c10.0 + c10.0 - CIO.0 + cl;:: - c,i:A” 

=q-(7)-3f s 
(-l)(w)/2 q(2m*t3nW240v 

mnsl(lO) 

The method of proof is essentially that of Example 2. We use the transfor- 
mation law for string functions under 5X(2, Z), together with the calculation 
of the first few terms in the q-expansions of the string functions using 
Theorem D from Section V. These computations and the fact that a modular 
form vanishing at the cusps to sufftciently high order is zero allow us to 
verify our formulas. The formulas were suggested by computations using q- 
expansions. 

From these formulas and Theorem A we deduce the following additional 
ones which, together with knowledge of the fractional parts of the sA(L) and 
the equality c:: = ctg, due to the outer automorphism of A+ , determine the 
string functions for the levels 1, 2, 3, 4, 5, and 6. One may do the same for 
levels 7, 8, 9 and 10, but we omit the result for brevity. 

level 2: 20 
c20 - c:; = rl(q2 v(g), 

level 3: c;; = q(t)-* qZ7“+0 n (1 - qy, 
n&2(5) 

30 
c30 - c;!j = q(z) -* q1’120 n (1 - qn’3), 

n&1(5) 
21 

c21 -c;; z r(r)-2 qJ’40 JI*, (1 - qn’3)y 

level 4: c;; + c;; = q(r/2)-‘, 

CT;; - 2c:; + cg + 2c:; - 2~;; = q(r)-’ q(t/6)-’ q(t/12)‘, 

level 6: 33 
c33 -c:: = v(7/3) @7/3)-l v(z)-~ r(4r/3) @7), 

c:; - 2~;: + c;: = ~(2r/3)~ q(t)-’ ~(42/3)-’ r](2r), 
60 60 60 

c60 + c42 - c24 
60 42 42 42 

-CO, + c60 + c:: - c24 - CO6 

= dC3 VW) VW)* WW’. 
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EXAMPLE 4. Let g be of type A . il) We determine the ci for A with 
lev(A)= 1,2,3: 

level 1: 

level 2: 

c:;; = q(r)-*, 

c:;o” = q(r)-4 q(2t) ql’*O n (1 -q2n)9 
nff 1 (mod 5) 

c;yy = q(t)-” q(2r) q9’20 n (1 -q2?v 
n&fl(modS) 

nff God 5) (I - qn’2)’ 

110 
Cl10 - cg = q(r) -4 ?/qr/2) q9’80 n (1 - qn’*), 

nff2tmod5) 

level 3: 4:: -c;g = qqq- rj(35)-‘, 

c::o” + c;:; + c:g = v(t)-’ ?f(r/3)-‘, 

c:;: = T,+-~ ~(29~ ~(32)~ t,7(65)-‘, 

c:;; - 3c:yy + 2c;;; + c;:: - c;$ = ~(t)-~ q(~/2)~ ~,@/3)* v(r/6)-‘. 

EXAMPLE 5. Let g be of type A:*‘, with simple roots numbered as in 

Then we have 

level 1: c:; = q(r)-‘, 

level 2: c:,” = q(t)-’ q(22) q(42)-’ q”‘O 
n&f I ! , ,  5) (’ - q4n)’ 

cg = q(r)-2 Y/f22) q(4g-l q9”0 n (1 -q4?, 
nff*(mod5) 

c;,” + c;; = q(r)-* t/(7/2) q(r/4)-’ q1’16’ 
n&l~odJI (’ -qn’4)’ 

c;: + c;; = r(r)-2 q(t/2) q(t/4)-’ q9’160 
&2ljTImodI) (’ -qn’4)y 

level 3: cl:, = 2v(t)-* 57(6z)-’ q(125)*, 

c:; + 2c;; - c:; - 2~;; = q(r)-* t7(2/6)-’ q(t/12)*. 
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Together with the initial powers s,(A) of q, these determine the ct for A of 
levels 1, 2, 3. 

EXAMPLE 6. Let g be of type Gil’, with simple roots numbered as in 

Then the c: for lev(A) = 1 are determined by: 

c;: = q(r)-3 q3/40 n (1 -q3”h 
)1& 1 (mod 5) 

c;; = r(z)-3 q2”40 n (1 -P), 
n & 2 (mod 5) 

n (1 -cP3), 
n fi 1 (mod 5) 

(1 - qn”). 
n~+Z(mod5~ 

EXAMPLE 7. Let g be of type Fi”, with simple roots numbered as in 

O-0 -0-0-0, 
a0 =I a2 a3 a4 

Then the ct for lev(A) = 1 are determined by: 

c;: = r/(7)-6 q(2r) ql’*O n (1 -q2”), 
n k-i 1 (mod 5) 

c;; = v(7)-6 r](2r) q9’20 
n&;od 5) (’ - q2nh 

c;; - c;; = r(s)-6 q(r/2) q”*O 
n&f !iod 5) (’ - qn’2)’ 

4 : - c;; = v(T)-~ rj’(@!) q”” 
.,,2;,,5) (’ -qn’2” 

We now outline some methods of computing string functions (and 
therefore also characters). 

(1) One may use explicit constructions of representations. For instance, 
Example 2 may be verified by using spin representations (cf. [23,47]). In 
this connection, one may consider the restriction of a highest weight module 
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to a subalgebra (see, e.g., [23, Section 3~1, which is related to the idea of 
“dual pairs”). 

Conversely, the results and methods of this paper (which rely on the 
character formula) may be applied to representation theory. For example, 
formula (4.20.3) verifies a conjecture from [48, p. 971.. Another example is 
the following result of the second author. 

THEOREM [49]. Let g be an afJine Lie algebra, and let A E P, satisfy 
A(C)= 1. Put Ix= {i E II [a,[’ < la,1*}, Q#= Z6 + CiclXZai, gx= 

Put T# = IV‘ n T, where w# is the subgroup of W generated by 
{? r:c%‘n Q#}. Then we have the following decomposition of L(A) into 
irreducible g#-submodules: 

where t(L#(A)) := OaPQ# L(A)lc,, +a). 

If M = 0, so that r# = 0, the Theorem is essentially Example 1, which was 
first verified in [ 171, [ 181. Examples 2, 6 and 7 are essentially the cases Bj”, 
G:” and F:” of the Theorem. As in [7], it should be possible to construct 
the modules L(A) of level one by using the Theorem. 

The proof of the Theorem uses the asymptotics of weight multiplicities 
(Proposition 4.21). 

(2) One may specialize the character formula. For example, if /1 E P, 
and max(/i) = W(A), then ciS,A, = AA+p, and ci may be computed by 
using the “principal” specialization (cf. Section 4.7) as in [ 171. 

(3) One may use the “star” formula of Section 2.1(E) (cf. 161). This 
amounts to regarding the matrix C of string functions of given level as the 
inverse of the matrix D, as in Section 4.5. For example, Examples 1, 2, 6 and 
7 may be verified using Proposition 4.18 and formula (4.20.3). This seems to 
be a good approach to the string functions of level one for Cj”. 

(4) One may use the partition function K, as in the proof of Theorem D. 

(5) One may use the theory of theta functions and modular forms, as in 
Section IV. All of the examples above may be verified using this last 
approach. 

4.7. Asymptotics of Weight Multiplicities 

We shall determine the leading term in the Fourier expansion of 
r”‘ci(-l/t) at r = ioo. Using a Tauberian theorem, this will yield an 
asymptotic formula for the weight multiplicities mult,(L - n8) of the g- 
module L(A) as N-+ +a~. 
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We shall employ the important specialization: 

-2nkp = (gt, tp, 0). 

PROPOSITION 4.21. Let A E Q* satisfy m := A(c) > 0. Then we have, 
uniformly for Im r -+ + 00 : 

(a) 0,(2niz-‘p) * IM*/MI-1’2 ($) 1’2; 

(b) A,(2k-‘p) - IM’/Mj-1’2 ( .pz, 2 sin(n(a, 2)/m) 
+ 

xe nig-lm-‘lp’l*r. 
> 

(c) c:: (- +) ‘v “01(Q) (m(,p, g))“2 n1 sin(n(~n$;y);)+ g)) 

X (-i7)-“2 e- ni(g-l-(m+g)-1)li’12r 
2 

ifA E P, and A E max(/l). 

Proof. An easy calculation gives 

0,(2niz-‘p) = W(r’, t’jf, fr’(l g-‘p/’ - \lul”)), 

where 7’ = -gmr - ’ and ,u = g-‘j?- rn-‘z. Proposition 3.4 now gives (a). 
To prove (b), put h,, = e(lA12’2m)sA,, = C,,,,, (det w) eWCA’, so that we 

have the identity: A,(aA) =Al,(aA). Applying this with L =p and 
a = 2niz-‘, we obtain 

A,(2nir-‘p) =A, 
( 
-m7-‘, -t-‘/i, - +m,-l 

ilfl’-l~l4)* 

Applying Proposition 4.6(c), we obtain from this: 

XA;, m 
( 

-l7, -mm’2 1 
7 ----7-l 

2 WP12 * 
1 

(b) follows from this and the product expansion of A;,. 
To prove (c), note that by Proposition 2.12 (or by a little thought), there 

exists p E Z, such that /1 - p6 lies in the convex hull of W(L). Then for all 
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n E Z + , L - nd lies in the convex hull of W(A - n6) and A - (n + p)6 lies 
in the convex hull of W(1 - ns), so that by Proposition 2.12(c), 

mult,(A - n6) < mult,(J - n6) < mult,(A - (n + p)6). 

This implies, since multiplicities are positive, that 

c~(2Kir-‘p)/c~(2xis-‘p) N 1 (4.21.1) 

for rEilR+, Im r -+ +co. Since c;(r) and c;(r) are meromorphic modular 
forms, we deduce by considering q-expansions that (4.21.1) holds uniformly 
for Im r+ +a. 

Recall that by (2.18), 

A,‘A,+,= v 
usA?i?+CS 

c;O P’ 
rmodmu+c8 

Evaluate both sides of this equation at 2zir-‘p asymptotically for 
Im r+ +a, using (a) and (b) and the fact that by (a) and (4.21.1), the 
1 &mM( summands of the right-hand side are asymptotic to ~20,. (c) now 
follows because 

vol Q= ]Q/kf]-’ IM*/M]“*. I 

Remark. Proposition 4.14 may be proved using Proposition 4.21(c). 

Now we need the following special case of a Tauberian theorem of 
Ingham [43]. 

PROPOSITION 4.22. Let G: [0, +a~)- IR be a non-decreasing function. 
Suppose that there exist c > 0, d E IR and N > 0 such that for s = u + it 
within each fixed angle 1 t I < ru, 0 < r < +a, one has 

e -” dG(u) N cs-deN’s 

uniformiy for s + 0. Then for u -+ +co, one has 

G(u) - fn -l/2cjj-‘l/2”d+ 1/2)U(1/Z)(d-1/2)e2(Nu)‘~2~ 

Now let AEP,, A(C) = m > 0, L f max(A). Detine a function G: 
[0, +co) -+ F? by G(0) = 0, G(u) = mult,@ - [u]6) for u > 0. 

Then Proposition 2.11 shows that G is non-decreasing. We have 

e -Us dG(u) = (1 - ems) esAtAjs ct 
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Propositions 4.21(c) and 4.22 now combine to prove the following 
asymptotic formula for the weight multiplicities of the g-module L(A): 

THEOREM B. Let g be an afJine Lie algebra. Let A E P, , A(c) = m > 0, 
A E max(A). Set: 

b = vol(a) (,(,g+ g)) I” aGh, sin(‘(;n~o$$r)+ g)) . 

Then for n -+ +oo, we have 

mult,(A _ nd) - 2- l/2a(1/4)(1+ “bn-“/4”‘+3)e4n(a~)“2. 

(4.23) 

(4.24) 

EXAMPLE. Let g be of type A \I), let A=(m-N)A,+NA,EP+ be a 
weight of positive level m, and let IE = (m - n) A ,, + ~4,. Then 1 E P(A ) + Z6 
if and only if n = N mod 22. 

If n=Nmod 22, then we have, asj-,+co, 

mult,(A - jS) - 
sin(z((N + l)/(m + 2))) 

2(m + 2)j 
exp (n ($1 l”). (4.25) 

For m = 1, we recover the asymptotics of the classical partition function p: 

1 
mult,,(Ao - jS) = p(j) - ~ e 

4fij 

n&m* 

Remark. By Proposition 1.1 l(d), we have the following expression for 
the constant a defined by (4.23): 

dm 
a = 24k(m + g) ’ 

where d is the dimension of the simple Lie algebra of type X,, such that Xp’ 
is the type of the affine Lie algebra g. For example, if X = A, D or E, then 

d=(g+ l)n, 

and we obtain in this case: 
n 

a=24k 
if m=l. 

On the other hand, Proposition 2.27 shows that, if A E h* is of level 
m # -g and a is defined by (4.23), then the representation of g’ on L(A) 
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gives rise to a projective representation of Der(g’) on L(li) in which the 
derivations d,, n E Z (cf. Section 2.9, map to operators D, satisfying 

[D,,D,,]=(n’-n) D,,,, +6,t,-.2kan3&,,,). 

(The second term on the right-hand side has been simplified by adding a 
multiple of IL(*) to Do.) 

So, the same constant Q appears in a completely different situation! We do 
not know an explanation of this coincidence. 

4.8. Three Remarkable A, and Three Remarkable Elements of a Compact 
Lie Group 

Both Proposition 4.6(c) and the characterization (4.6.1) of CA, exploited 
in its proof will be generalized in Proposition 4.30. For this we need 
Proposition 4.27 below. 

Recall from Section 4.1 the subgroup N, of N, normalizing @, and put 

T,= {t,,lYE@*}. 

Note that T, = { (0, y, 0) 1 (0, y, 0) E N,} contains T and is abelian. Moreover, 
twt-‘w-l E T for all t E T, and w  E W, so that each coset of p* mod M is 
W-invariant. We extend the action af of W on ii* to the group T,, W by - 
putting af(t,),u = p + y for y E Q’ * and ,U E ij *. 

Recall the set J of all j E I such that j = a(O) for some automorphism (T of 
the Dynkin diagram. We have (cf. [46]): 

PROPOSITION 4.27. (a) The following conditions on y E b* are 
equivalent: 

(1) t,E T,. 

(2) A,, ItyE (CA,. 

(3) tdA) = A. 

(b) Let W, = T, W, WJ = {w E W,, 1 w(A,) = A+ }, p0 = wn T,, Wz. 
Then: W,,= Wi K W= WP( T,,; Wi =tg-,FWOt;-l,p; the set Q1*nCaf 
coincides with {;r, 1 j E J}, and af( Wt) acts simply-transitively on it. 

Proof: We first prove (a). (1) implies (2) by Proposition 4.4(a) and 
(4.6.1). Assume (2). Then Proposition 4.6(a) shows that for any a E Are, 
there exist J? E Are and a positive integer m such that for all h E $, a(h) = 2xi 
implies P&h) = 2nim. But then /I = mt,a, and by a similar argument, 
m’t-,P E Are for some positive integer m’. Hence mm’s E Are. Since 
ArenZa= {a,--(r) we must have mm’= 1 and so m= 1. Hence, t,a= 
p E Are. This proves that (2) implies (3). Assume (3). Then (y, a,)6 = 
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ai - tr(ai) E Q, 0 Q i Q I, so that (y, ai) E Z, 0 < i < 1. Thus y E Q*. Since t, 
also preserves A”, a similar argument shows that y E Q”*. Hence, y E Q* r7 
Q”* = (Q + Q”)* = Q’*, proving that (3) implies (1). This proves (a). 

To prove (b), note that W and T, are normal subgroups of W,, . Since T = 
W n To and W = W K T, we obtain W, = W K To. Moreover, the 
conjugation action of W, is trivial on To/T. By (a), W,, preserves A and 
W(p), so that Wz = {w E W,, 1 w(p) = p} and W,, = WW:. Since Wn 
Wt = { 1 } by Lemma 1.2, we obtain W, = Wi K W. 

Define maps 

A (wJ = af(wJ0, B(Y) = t-J 

C(p) = ti if W E wn t,TW;, D(W) = tg&iql,. 

A maps W,+ into C,, n Q’ * since af( W,+ ) preserves C,, and Q’ *. B is an 
injection since C,, is a fundamental domain for af(W). C is well-defined 
since W n TW,i = { 1 } and W,, = TW$ r. Since W$ f7 T,, = { 1 } and W, 
acts trivially on T,-,/T, C is an injective homomorphism. If WE W,, then 
clearly D(W) p = p, and moreover, D(W) = t,#, where t,E T,, since 

gy=P-w(p)=p-w(p)Ep-T,W,t(p) 

=p - T,(p) = go’*. 

Hence, D(W) E Wz. D is obviously an injective homomorphism. 
If w0 E Wt, write w,, = t,P,, where t,E To and B E I?? Using wO(p) = p, 

one easily computes that DCBA(w,) = DCB(y) = DC(t- yT) = D(m) = w,, . 
Thus DCBA = I, so that since B, C, and D are injective, A, B, C, and D are 
bijective. 

Let Y = {;rj 1 j E J}. To prove (b), it remains to show that Y = 
Q’* n C,,. Since 0 =;i, E Y n (Q’* n C,,), since X is af( WJ)-stable and 
since af( Wt ) acts transitively on Q’* n Car, it suffices to show that X c 
Q’* n C,,. If a, = 2, then .Y = {0}, so we may assume that a, = 1. Ifj E J, 
then aj = a_0 = 1 and_ a,!= ai = 1, so that aj = a]! cnce ajaj f aJ~aJ~. Hence, 
if j # 0, (A/, 0) = (A], C’= , ,a/aY)=a,!=l,and (Aj,a,)=(Aj,aY)=6ijfor 
1 < i < 1. This shows that xj E Q’* n Cat, so that we have shown Y c 
QI* n C,,. This proves (b). 1 

We note a consequence of (a): 

g@*c& and h@ * c @‘. (4.28) 
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Indeed, y E Q’ * implies A, &E Up by-(a), so that p+ gy = t@) E 
tJW(p)) = W(p) cp+ Q. Hence, gQ’* c Q. Similar reasoning applied to 
A” gives ho’* c Q”, proving (4.28). 

Finally, we note a consequence of (b): 

(4.29) 

Remarks. (1) It follows from Proposition 4.27(b) that: w, acts simply- - 
transitively on {p - g(‘i ) j E J}; each coset of Q’ * mod M intersects CT,, in a - 
unique point; the abelian groups Q’ */M, TO/T, qO, W,+ and W,/W are 
canonically isomorphic. 

(2) One can show that J= {i E 116 - atat E A}. 

(3) 0 -h k ne can c ec 7 case-by-case that Q + g&* = Q n Q* if k’ = 1, 
andQ+hQ”*=Q”nQ”* ifk# 1. 

We can now turn to: 

PROPOSITION 4.30. (a) For A E P, + , the following conditions on ,I are 
equivalent: 

(1) There exists a lattice L c ij*, such that 

(pEE+L+CC6) W,=(l))= w(A)+c6. 

(2) 1 + C6 contains a positive integral multiple of one of the 
elements: p; kp”; p + Aj for k # 1 and j E J; p” + Aj for k = 1 and j E J; 
2(p” -A,) for a, = 2. 

(b) Let IEP++ have level m and let L’ be a lattice satisfying 
condition (1) of (a). Then: 

CA, = (FE Th; 1 FJ(,,,,, = e2ni01*X)F forall yEL’*}. 

Define a lattice L as follows: L = no”* for ;1 E np + C6; L = nQ* for 1 E 
np”+@6; L=nM for 1En(p+fl,)+C6 or ~En@“+Aj)+@6; L= 
n(xOEa Za)* for 1 E n(p” - A,) + C6. Then A and L satisfy condition (1) of 
(a). Let A =p + m/i,, let Wa = WK {tvl y E L*}, and define a character E 
of W’ by: e(wty) = (det w) e-Zni(ySX). Then the stabilizer of A in WL- is trivial, 
and: 

1 z (z,z) 
---,-,t+- 

7 7 27 

= IL*/MI-l/2(-i)l~tl(-i7)ilZ e-(l/2m)1A12S CA E(w)ew(*). 
WEW 

(4.30.1) 



230 KAt AND PETERSON 

(c) Let&mandLbeasin(b),anddefineEA:;i+L+(-l,O,l]by 

Then: 

cl@) = det w if ,u = w(A), w E w; 

E*(P) = 0 zy ,u 65 W(A). 

EA(p) = IL/mMI-"* lJ 2 sin *. 
ad; 

In particular, 

n y--= 
2 sin d+ 4 )L/mMI’I*. 

L&r; 
(4.30.2) 

(d)(i) A,” = ,-(1/*h)lPv12~ eOvnmEA, (1 _ e-U)mUltVOa 

(ii) If k = 1, then 

A,v+~~ = e 
-(l/*(/l+ l))lb"I26 0" 

e ( n (1 -e--")) T  e'*O. 

&AT: ;;'7 

(iii) If k # 1, then 

A 0+*g 
= e-(l/*(g+ l))lPl*6 eP ( fl (1 - e--)) 1 e’? 

QEA’: IET 

For the proof we need the following: 

LEMMA 4.31. If A+C6=P++ n (A + Q + CS), then A + @6 contains 
one of the elements: p; p + Aj for M= 0 and j E J, kp” for Dj:‘, and Bi”, 
1> 2; 2p for A\“. 

ProoJ Clearly, 1 E P, + but 1 f a 6E P, + whenever a is a dominant root 
for a subdiagram of the Dynkin diagram. A computation using this proves 
the lemma. I 

Proof of Proposition 4.30. To prove (a), we first show that (1) implies 
(2). Assume (1); then we may take the lattice L in (1) to be 

c - WE W P(J - WA) c 0 and we may assume that J. is not divisible in P, + , so 
that the greatest common divisor of the pi :=n(h,), iEI, is 1. niEi= 
A -rj(il) E L for all i E I, so that since L is W-invariant and g is a long root 
of A, n,gE L for all i E 1. Hence, kQV = CWsw Zw(@ c L. We now assume 
a,, = 1; the case a, = 2 is treated similarly. Since L = JY,EzL n Za, L is w- 
invariant, and k@ c L, we have L = 0 or L = ke”. If L = 0, then (2) holds 
by Lemma 4.3 1. If L = k@‘, then for all i E 1, q is an indivisible element of 
a” and (1, ai) 3 = 1 - ri@) EL = k@‘, so that (1, ai) E kZ for all i E I. 
Hence in this case 1 E kPy + , and (2) follows from Lemma 4.3 1 applied to 
A”. Thus (1) implies (2). 
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We next verify (1) for the 1 listed in (2) and the corresponding lattices L 
listed in (b), so that (2) implies (l), and moreover (1) holds for the L and L 
in (b). It is easy to check that A+ L + C6 is a W-invariant subset of 
{y E P(&c) = A(c)}. Moreover P, + is a fundamental domain for W on 
F E Pip(c) > 0, W,, = { 1 } }. Hence, it suffices to check that (A + L + (cd) n 

+ + = A + Cd. For A = p, {,D E P, + I&) =g) =p + ci verifies (1). If 
A4=Q andjEJ, then {pEP++lp(c)=g+ 1, pEE+Aj+M}=p+Aj+ 
C6 by Proposition 4.27(b), verifying (1). The same argument applied to A” 
verifies (1) for J=kp” and A=pv+Aj. The case L=2@“-A,,) is left to 
the reader. 

The characterization of CA, in (b) is clear. 
We next check that for A, L, W’, and A as in (b), the stabilizer of A in 

W’ is trivial. This is equivalent to the assertion that w  E w  and 
p’ - w(P) E I(c)? * imply w  = I, which we proceed to check. If Iz = np, then 
A(c)L * = gM’, so that the assertion amounts to the fact that the stabilizer of 
P’EP\+ in W’ is trivial. If I = nkp”, similar reasoning applied to A” 
verifies the assertion. Suppose k # 1, j E J, and L = n@ +b), so that 
@)L. * = (g + l)M*. If p’ - M@) E (g + l)A4*, then since p’ - R@) E 

v Q’ = Q = M’, and since (g + l)M* nW = (g + 1)M’ by (4.28), we 
obtain A ,, + p’ - w(A 0 + p’ ) = 2 - w(F) E (g + 1)lw’; since the stabilizer 
ofA,+p’EP:+ in W’ is trivial, this forces w  = 1, verifying the assertion. If 
k = 1, j E J and A = n(p” + A,), similar reasoning applied to A” verities the 
assertion. The remaining case is left to the reader. 

Put A ’ = A, Is, and let E be as in (b). Then the characterization of (CA, in 
(b), together with M’ c L*, implies that 

CA’= (FE Z%,l FI,=s(W)Ffor all wE W’}. 

In particular, E is a character of W”. Put 

Since A E P’ and mL* c M*, we have A” E Th,, and it is easy to check 
that A” I,,, = E(W) A” for all w  E Wa. Hence A” = CA’ for some C E C. To 
find C we proceed as in the proof of Proposition 4.6(c), using the fact that 
the stabilizer of A in W’ is trivial. We obtain 1 Cl = IL*/M(“* and C-r = 
(--QD’* IM*/mMI-“* nacKi 2 sin(@, a)/m), so that by a comparison, 
(4.30.1) holds, proving (b), and (4.30.2) holds. It is easy to check that the 
function 

v H JJ (2 sin nv(c)- ‘(a, F)) 
ad; 

is W-anti-invariant and vanishes precisely on the “walls” (v, a) = 0, a Ed. 
Combining this with (4.30.2) and (1) for A and L proves (c). 
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Finally, we prove (d). Part (d)(i) is just Proposition 4.6(a) applied to A”. 
Part (d)(iii) is immediate from Proposition 4.6(a) and Example 1 of 
Section 4.6. (Note that d(iii) holds whenever M = 8.) Part (d)(ii) is (d)(iii) 
applied to A”. 1 

Remark. There are similar product expansions of A, for all ,I from 
Proposition 4.30(a2). 

Now we deduce a nice application to compact groups. 

PROPOSITION 4.32. Let G be a connected simply-connected compact Lie 
group with simple Lie algebra g, and let H be a Cartan subgroup of G with 
Lie algebra 9. We identifv it, and i$* using the Killing form 4 of g. Let W be 
the Weyl group, P c I?* the weight lattice, A c 13* the root system, A, a set 
of positive roots, 0 the highest root, p = i Cnsd + a, p” = Cnsd+ (a/#(a, a)), 
h = 1 + @(S, p”) the Coxeter number of g, g = $(e, 0))‘. 

Consider the following subgroups of H: 

r, = {exp 47cU 1 A E P}, r,={aEHI(Ada)h=l}, 

I- h+l=(aEHIah+‘= 1). 

y, = exp 4nip, yh = exp 2nih ~ ‘p “, 

Y h+ 1 = exp 27ri(h + 1))’ hp”. 

These elements of H are regular (i.e., have centralizer H). Moreover, we 
have: 

(a) Each regular element of T, (resp. T,, or T,,, ,) is W-conjugate to y, 
tresp. Yh Or Yh + 1). 

(b) Let a be a regular element of H, F the subgroup of H generated by 
W(a). Suppose that W(a) is the set of regular elements of T. Then a is W- 
conjugate to one of y,, yh, yh + , . 

cc> If r=r,,Y rh Or &+l, and tf a is a regular element of T, then: 
det(l- Ad&a)) = Irl. 

(d) For any irreducible representation 71 of G over C, tr rr(y,), tr n(y,), 
and tr rc(yh+r) are 0, 1, or -1. 

(e) The center of G is the set of all elements of G with maximal 
distance from the conjugacy class of y, in G in the invariant metric induced 
by -9. 
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(f) Let vol G be the volume of G under the invariant measure induced 
by -4. Then: 

(vol G)* = (8n2)dim G J(4nip), 

where J is the Jacobian4 of exp: g -+ G. 

(4.32.1) 

Sketch of proox Let X be the type of g, and let 6 be the affine Lie 
algebra of type X”’ (cf. Section 1.7). Let Q” c it, be the coroot lattice, so 
that 2ziQ” = Ker(exp [J, and let Q* = (x E ih 1 a(x) E Z for all a E d 1. By 
Propositions 1.10 and 4.27(b) applied to 5, the cosets in P/$Q” (resp. 
Q*/hQ”, Q*/(h + 1) Q”) with trivial stabilizer in W are those intersecting 
W(P) (rev. WP “)9 WV) + (h t l)Q*). Putting r;+, = 
{a E H 1 Ad(a)h+’ = 1 }, it follows that the regular elements of ri+, are just 
the elements of Center(G)W(exp 2zi(h t l)-‘p”), and that the regular 
elements of r, and r, are just the elements of W(y,) and W(yh), respectively. 
Since a t+ (ah+‘, a -“) defines the decomposition ri+ r = Center(G) x r,, + , , 
(a) is now clear. 

Let a and r be as in (b), and put L = (1/(2ni))(exp [J,‘(r) c @. Let a = 
exp 2nix, where x E L, so that the stabilizer in W of x t Q” in L/Q” is 
trivial. Then x t ,4, satisfies condition (1) of Proposition 4.30(a) for i, so 
that a is W-conjugate to yp, Y,, or an element y of Center(G) yh + , . In the 
latter case, we have yh+, = yeh E r. This proves (b). 

For (c) we may assume by (a) that a is one of the elements y,, yh, or 
yh+ i. Then (c) follows from (4.30.2). Part (d) follows from a comparison of 
the formulas in Propositions 4.5(d) and 4.30(b). Part (e) is immediate from 
Proposition 4.13. 

To prove (f), let ,uG and p, be the invariant measures on G and H with 
total measure 1, inducing Euclidean measures ps and pI, on g and h; we 
denote each of these measures byp. Denote by ,u’ the invariant measures on 
G, H, g, and $ induced by -4. Then (c) implies 

F’(H) = cr’(b/27riQ”) 

= (8?12)(1’2)dim”lrp 1”’ = (87r2)“‘2’dimH n 2 sin 2@(a, p). (4.32.2) 
aSA+ 

Let F be a continuous real-valued class function on G such that 
F(exp x) = en@(xVx) for x E g near 0, and IF( g)l < 1 for g E G, g # 1. 

Then we have asymptotically as n --f t co: 

F” dp’ - ennO(x,x) dp!(x) = n-(1/2)dimGa (4.32.3) 
ll 

‘J(x) = det((1 - emadX)/adx), so that J(47cip) = mIach (sin 2n#(p, a))/2lr#(p, a). 
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Moreover: 

_ 1 WI - 1 i, enalmh) 
,I,A (1 - each)) h(h) 

= c (det w)j enrcmvl,h)e(P-wPm) dp(h) 
WEW b 

= s (detw)e- (4nn)m’tb(P-wP,P-wP) . 

1 

enrr@(h,h) &(h) 

WEW b 

= 
I 

enrc@(h,h) &(h) n (1 _ e-(2nn)-‘~(-)) 

h aed+ 

- ~-(1/2)dimGiU/($/27TjQV)-1 n ?!k!$, 

asA+ 

so that by (4.32.3) we have 

p’(G)=,d(H) n La 
(IEA + @(‘y P) 

(4.32.4) 

Combining (4.32.2) and (4.32.4), we obtain (4.32.1). 4 

Remarks. (a) Propositions 4.32(a), (c), (d) for rp and I’,, were originally 
proved in [25], and 4.32(d) for yh+, in [21] (note that (J,,, in [21] should be 
replaced by its hth power). Proposition 4.32(f) is given in another form in 
[42]. Formula (4.32.4) is given in another form in [45]. 

(b) One can show that the lattices L of Proposition 4.30(b) are 
characterized by: (i) L is a lattice in fi*,; (ii) A + L + 66 is W-stable; (iii) 
(,u E A + L + 661 W, = { 1 } } = W(A) + C6; (iv) L is maximal with respect to 
(i). (ii) and (iii). Similarly, the groups r of Proposition 4.32(c) are charac- 
terized by: (i) r is a subgroup of H; (ii) r is W-stable; (iii) The regular 
elements of r form a single W-orbit; (iv) r is maximal with respect to (i), 
(ii) and (iii). This allows one to state Propositions 4.30(b, c) and 4.32(c, d) 
without reference to cases. It would be interesting to prove them without 
reference to cases. 

4.9. Restriction of a Highest Weight Module to a Subalgebra 

In this section, we describe the behavior of highest weight modules under 
restriction and deduce that certain “generalized string functions” are 
modular forms. 
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Recall the definition in Section 1.1 of KaE-Moody algebras. We modify it 
slightly as follows. Given a symmetrizable generalized Cartan matrix A = 

Caij)i,jel~ we require of the triple (9, fl, n”) only that $ is finite-dimensional, 
that ff” = {hi}is, c $ is linearly independent, that n = {cx~}~,, c $*, and that 
Ctj(hi) = ai, (i, j E I). 

The Lie algebras thus defined are called generalized Ka&Moody algebras, 
and also generalized aj%ze Lie algebras if the Cartan matrix A is a direct 
sum of afline Cartan matrices. This definition is convenient for certain 
applications, where a homomorphism of semisimple Lie algebras does not 
carry over to a homomorphism of the corresponding direct sums of affme 
Lie algebras. 

Most notions from Sections 1.1 and 2.1 carry over to this context without 
difficulty. Moreover, we still have the character formula, the complete 
reducibility and the separation of @-orbits by characters (Propositions 2.9 
and 2.10). An important difference is that Y may be empty. We define a 
standard form to be an invariant symmetric bilinear form ( , ) on g such 
that: (hi, hi) is positive rational for all hi E II”; (g,, go) = 0 if a, /I E Q (= 
free abelian group on n) and a + /3 # 0 (this condition is redundant if 
YZ0). 

Let g and go be generalized KaE-Moody algebras. We have notions of 
Cartan subalgebra h, set of simple roots LI, “complexified” Tits cone Y c h, 
imaginary cone Z c $*, the domain Y, c Y where all ch,(,,, (A E P,) 
converge, etc.; we have similar notions v, iI*, Y”, Z”, Yg,, etc., for go. 

Let X: go + g be a homomorphism such that 

@I”> = $; z(YO)n Y#0; *II* n n*(z) = 0. (4.33) 

Here and further on, rr* denotes the pullback map from functions on h to 
functions on ho. 

We first show that for /i E P,, L(A) is isomorphic as a go-module to a 
direct sum of modules L’(p), p E P”+ . L(I1) is ho-diagonalizable since 
X(T) c h, so it suffices to verify conditions (i) and (ii) of Proposition 2.9 for 
the go-module L(A). Suppose that f? is not locally nilpotent on L(A). 
Choose k E P(A) and u E L(A)A such that a(fF)” Y # 0 for all n E Z, . For 
nEz+, choose I,, E P(A) such that the L(II),n-component of rrdfi”)“u is 
non-zero, so that rr*(&) = n*(A) - na?. Since the sequence n - ‘A,, , n > 1, is 
bounded, it has a limit point p in $ *. Then n*(jI) = -a:, but /3 E -Z by 
Proposition 2.4(e). This contradicts II0 n n*(Z) = 0. Hence, f; is locally 
nilpotent on L(A), verifying (ii). Similarly, e? is locally nilpotent on L(A). 

To verify (i), choose d E Y” such that n(d) E Y and a(d) & iR for all 
aEd’, so that d E w(c) + rJl& for some w  E W”. Put m = @uEw(dpj g”,, 
E = min(Re w($)(d)) i E I”} > 0. Since z(d) E Y, {Re A(n(d))/A E P(A)} is 
bounded above, say by B. If u E L(A), and NE + I(n(d)) > B, then 

607/53/2-a 
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7~(tn)~n = (0), so that m acts locally nilpotently on L(A). Using the operators 
(exp ep)(exp -fl)(exp ep) on L(.4) (cf. Proposition 2.4(b)), we deduce that 
nt acts locally nilpotently on L(A). This verifies (i). 

An argument similar to the one above verifying (ii) shows that the 
ad rc(ep) and ad z(fF) are locally nilpotent. 

Since ch,t,, converges on n(Y”) n Y, # 0, the weight spaces of L(A) as 
an v-module are finite-dimensional. In particular, for A E P, and p E P”+ , 
the multiplicity mult(/i : p) of Lo@) in L(A) is finite. For p = w(p’ + p”) - p’, 
where WE IV’ and p’EPO,, set mult(/i :p) = (det w) muI+4 :p’); for 
c1 E v*, set mult(rl :p) = 0 if it is not already defined. 

Put d,= {a E d 1 z*(a)=O}. Then d,, is a (finite) root system since 
n(h”) f3 Y # 0, and A 0+ = A, n Ay is a set of positive roots. Let W,, c W be 
the corresponding Weyl group, p,, = i Coed,+ a, etc. Define a polynomial D, 
on h* by 

Do@) = n ~(a”>/Pda”). 
asAOt 

PROPOSITION 4.34. With the assumptions and notations above, we have: 

(a) rc(Q”) c Q”; z(Zov) c Z”. 

(b) For every w” E w”, there exists w  E W such that x 0 w” = w  0 TC on 
$“; l$ w0 is of order 2, we may take w  to be of order dividing 2. 

(c) If the kernel of 7c is contained in the center of g”, then the pullback 
to go of any standard form on g is a standard form on go. 

(d) For all A E P, , we have on CO n z-‘(YJ # 0: 

6) x mult(,4 :p) e” = z*(ch,o,) 11 (1 - e-a)mu”oa. 
aeFP* OEAo, 

(ii) y (det w) D,(w(A + p)) eTV”“(” to)) 
WE wo\w 

=7l * aGo+ (1 -epa))’ L (det w) ew(““‘) 
W’EW i 

(iii) 7t* ( n (1 -epo)mu’tn) ~~O*mult(ii:~)e’ 
asA +\%+ 

= ( wEs,w (det w) D,(w(A + p)) e”*‘“‘A tD)-0t) 
’ 0 

ProoJ To prove (a), note that n*(W(P+)) c W”(P”,) since, for all 
,4 E P, , L(A) as a go-module decomposes into a direct sum of L’(p) with 
,u E Py , and moreover, 
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Zv(resp.QV)={hEh)~(h)~O(resp.EZ)foralllEW(P+)}, 

Zov(resp. Q’“) = {h E h” 1 A(h) > 0 (resp. E Z) for all d E wO(pO,)}. 

To prove (b) and (c), we need the following lemma. We omit its standard 
proof. 

LEMMA 4.35. Let W be the Weyl group of a Kac-Moody algebra g. Let 
w E W be of order 2. Then there exist real roots /3, ,...,p,, satisfying 
pi f /?j 65 A U { 0} for i #j such that w = r4, 9 +I r4,. In particular, every 
standard form on g is positive-definite on {h E $ R( w(h) = -h} = 
WY + a*- + lRp,v. 

We prove (b) only for a fundamental reflection rp E IV; the proof in the 
general case is similar, using Lemma 4.35 applied to go. Recall from Section 
1.1(E) the associated c E Aut(g’), and let 

c = (exp ad n(ep))(exp ad x(-f p))(exp ad x(ep)) E Am(g). 

Then c o rc = z o f;, Moreover, since r? preserves the reductive Lie algebra 
90 := b + /LA o g, and c’ is the identity on go, there exists g in the adjoint 
group of go such that gc preserves h and w  := (gc)l,, has order dividing 2. 
Then w  o II = c 0 x on $“, and using Proposition 2.10 we obtain w  E W. This 
proves (b). 

To prove (c), let ( , ) be a standard form on g. If hp E i7’“, then 
z(hg) E Q” by (a) and w(z(hy)) = -n(hT) for some we W of order 2 by (b). 
By Lemma 4.35, ( , ) is positive-definite on iRz(hp), and (z(hp), z(hp)) is 
rational since z(hp) E Q”. Since hp does not lie in the center of go, z(hp) # 0 
by the hypothesis of (c). Hence, (z(hP), n(hg)) is a positive rational number, 
proving (c). 

Finally, we prove (d). Part (i) follows from the character formula for go. 
Part (iii) follows from (i), (ii), and the character formula for g. By the Weyl 
dimension formula, we have 

TC* .!!,+ (1 -e-a))’ x (det w) e”‘(‘)) = Do@) err’(‘) 
i WEW, 

for any A E P; (ii) follows from this. m 

Remark. Let R = z*(A+)\{O} c $“*, and suppose that R lies in an open 
half-space of ho*, that the kernel of n lies in the center of go, and that 
rr(n”,) c n,. Let KR be the partition function for R, where a E R is counted 
with multiplicity 

-mult’(ar) + C mult(p). 
4EA+ 

s’(D)=a 
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Then an equivalent form of (d)(iii) is 

valid for all A E P, and p E y*. This formula was obtained by G. 
Heckman in the finite-dimensional case, by a different method. 

Now we turn to the case of a generalized afline Lie algebra g. Given h E h 
and A E h*, we define the “symbol” I[h] E G, which is a rational function of 
A(hJ and a,(h), i E I, as follows. We extend the functionf: T+ C, defined by 
f(t) = i(h - r(h)), in the obvious way to the Zariski closure T- T Oz C of 
the translation group T in End,(h). One can show that if n(Ci) # 0 for all 
canonical central elements ci and 6(h) # 0 for all imaginary roots 6 of g, then 
f(t) has a unique critical point, say t,. We let A[h] be the stationary value 

f (td- 
For example, if g is an atfine Lie algebra, thenf(tJ = A(h - t Lh)), where t, 

is defined by (1.6) for all y E ii*, and we have, provided that A(c) # 0 and 
W) f 0, 

a formula which is independent of the choice of the standard form ( , ). 
We note the identities 

and A(h) - Jqh] = L(w(h)) - 4W)l, 

valid for all w E W. 

PROPOSITION 4.36. Let go and g be generalized afine Lie algebras, and 
let x: g” --) g be a homomorphism such that n(b”) c b. Suppose that d E Y” is 
such that n(d) E Y and a(x(d)) E Q for all a E A. For A E P, and ,u E P”+ , 

Put 
ec (I) = qA -i;’ 

wry* 
mult(A :p’) q-v’(d), 

p’(hp)=~(hp),i~I” 

A =~W))- (A +P>[WI +P[W)I + (P +PWl -PVI. 
Then: 

(a) If A f P, and ,u E P”+ , then there exists a positive integer N such 
that et(z) is a modular form of weight 0 and trivial multiplier system 
for T(N). 
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(b) There exists a modular form H(t) such that H(t) e;(t) is a cusp 
form for all A E P, and ,u E P”+ . 

Proof We first check that fZPnz*(Z) = 0, verifying (4.33), so that 
Proposition 4.34 applies. To see this, suppose that cry E lP, 6 E Z, r E C, 
and ra: = z*(s). Then (a*(&)(&‘) = d(rr(hy)) = 0 since a(&) E h n [Q, Q], so 
that 2r = rc$(h~) = (z*(6))@:) = 0. Hence r = 0, showing that fp n 
n*(z) = 0. 

Let c , ,..., c, E h and cp ,..., co E h” be the canonical central elements. Since m 
Q”nZ”=~;=, Z+cj and Q=‘“nZov=J7;==, Z+cz, Proposition 4.34(a) 
shows that n(c;) E CJ=, Z, cj, 1 < k ,< m. Clearly, we may assume that 
n(ci) # 0, 1 < k < m. 

We next reformulate the character formula, the identities defining the ci 
and di, and Proposition 4.34d(i) in terms of I[h]. This reformulation is 
necessary since the theta functions A, and S, are not defined in our context. 

For il E P such that A > 0, 1 ( j < n, put Py’ = {A E P+ 1 A (Cj) = n(Cj), 

I \< j < n}, and define, for A E Py’ and h E Y, 

A,[h] = x (det w) e”‘(‘)[“l, 
WEW 

S,[h] = 2 eA”hl, 
A’E W(l) 

where e(,~)=det w  if &hi)= w@)(hJ, iE1, for some w  E W, and E(,D)+O 
otherwise. Similarly, we define AO,[h], etc., for 9’. 

If Q is an affine Lie algebra, then ci[h] and di[h] coincide with the 
corresponding functions defined earlier, while A,[h] and S,[h] differ from 
earlier versions by a simple exponential factor. 

Then we have the identities: 

e -A(h’ch,o,(h) = (e-(AtP)lhlAA,+,[h])/(e-“‘h’A,[h]), (4.36.1) 

A,t.~hl/A,[hl= x cm S,JhL (4.36.2) 
.keP+nmax(A) 

A,PlWl= c d~~~l’b+,[~l~ (4.36.3) 
A df’ 

A mod(I: Chi) 1 

c mult(/l :p) eUch) = e-P”[hlA”,,[h] Ch,,&(h)). (4.36.4) 
pSP0 
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Now fix n E P, and p E P”+ . We assume that /i(ck) > 0, 1 < k < n, since 
the proposition reduces to this case. We shall derive a formula for e,“(r), 
assuming that ,U E Pyn*(“)) (since otherwise e:(r) = 0). 

Let W2={~EW~wo7r=nowo on ho for some WOE IV], W,= 
{w E W 1 w  0 rr = n on v). Then W, is a subgroup of W, W, is a finite (since 
n(d) E I’) normal subgroup of W,, and W,/ W, is canonically isomorphic to 
w” by Proposition 4.3(b). Define a function (, ) on T x T by: (t, t’) = 
(A - t(/i))(n(d) - t’(?r(d))). It is easy to check using (1.6) that ( , ) is a 
positive-definite Q-valued symmetric H-bilinear form on T, Let T, = T fl W,, 
T, = {t E TI (t, t’) = 0 for all t’ E T2}. Clearly, T, is a subgroup of T and 
j T/T, T,l < co. It is easy to check that W, normalizes T, and WV, n T, = ( I 1, 
so that W,T, is a subgroup of W of finite index. We shall need the 
following: 

LEMMA. 

(a) T, = (I E T ( A(n(h) - t(n(h))) = Ojbr all h E CiE10 Chp}. 

(b) If t E T, and w E W,, then (A - t(A))(n(h) - w(n(h))) = 0 for all 
A E P(A) and h E 3”. 

Prooj: If w  E W,, choose w” E W’ such that w  o Y-L = 7c o w” on 0”. Then 
for all h E ijo, t E T, and ,l E tj”, we have 

(A- @)KNh) - w(O))) (4.36.5) 

= A(n(h’) - t-‘(n(h’))), where h’ = h - w”(h). 

(a) follows from (4.36.5) since, as one sees using (1.6), the span of the 
possible h’ in (4.36.5) for h = d and w  E T2 is Cislo @hp. Note that in the 
characterization of T, in (a), the expression n(h) - t(n(h)) lies in xi= i Cc, 
since x(h) E Cie, Chi by Proposition 4.34(a). Hence, if 1 E P(,4), then (a) 
holds with /i replaced by A. Along with (4.36.5), this proves (b). 1 

It follows from (b) of the lemma that if 1 E P(A) and h E ho, then 

wG)[+>l= -~[+>I + G>I4h)l (4.36.6) 

+ w(n) [n(h)1 forall tET,, WE W,. 

Therefore, 

Ce Wl)[Nh)l = e-.+(h)l Ce 
fbI)In(h)l 

Ce 
W(A)[R(h)l . (4.36.7) 

lET, tET, WEWZ i 
WEW* 
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Moreover, one easily computes using the isomorphism W,/W, E Wo that 

c 
ewmw = 1 W,I 1 pf/ol)( e~In(*)l-**(~)I*lS~*(~)[h]. (4.36.8) 

WEW* 

Choosing coset representatives wr ,..., W, for W, T,\W, it follows from 
(4.36.7) and (4.36.8) that 

(4.36.9) 

where 

F:(h) = 1 WA/ -I 1 W,l I W&w,cljj( e-rc’(wJA))[hl 2 etn’r(*)[lr(lr)l. 
/ET, 

On the other hand, putting 

A(h) =fl(O)) - (A +P)leh)l +P[e)l -P”[hl, 
it is immediate from (4.36.1), (4.36.2), and (4.36.4) that 

z mult(/l :p) epth) = eA@’ 5 cM~)l ~;@I SA[4h)l. 
UEPO IsP+nmax(A) 

(4.36.10) 

Substituting (4.36.9) into (4.36.10) and using (4.36.3) applied to go, we 
obtain 

v 
llEP0 

mult(A : ,u) e”“’ (4.36.11) 

= K- 
p $&A,, 

eA'h)tcu+PD)IhlE~(h)e-(U+P~)thlA~+p"(h], 

L mod($ chp)l 

where 

It follows from (4.36.11) that for all p E P>n*cA)), we have 

e:(7) = I$(-2nird). (4.36.12) 

To prove (a), we will show that the factors of the summands of 
Ec(-2zird) are modular forms of appropriate weights. Fix 1 E P, f7 max(li) 
and r E Z, 1 < r ,< s. It follows from Theorem A that ci[---2nim(d)] is a 
modular form of weight -f rank T for some I’(N). Remark (f) of Section 3.3 
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shows that diztCWr(*)) [-2nird] is a holomorphic modular form of weight 
$ rank To for some T(N). Remark (f) of Section 3.3 also shows that if S, is 
the stationary value of tw,(A)[rr(d)] for t E T, := T, Or G, then 

is a holomorphic modular form of weight 1 rank T, = i(rank T-rank T,)= 
+(rank T - rank To) for some T(N). To show that FL(-2nird) is a 
holomorphic modular form of weight i(rank T-rank rO), so that 
Ei(-27&d) is a modular form of weight 0, we have to show that S, = 
rc*(w,(A))[d]. Let S and S, be the stationary values of fw#)[rc(d)] for t E f 
and for t E T, := T, BP C, respectively. Then (4.36.6) shows that 

s = -w,(n)[?r(d)] + s, + s,. 

On the other hand, S = 0 by the definition of A [B], and using the definition 
of T,, we easily obtain 

s2 = W,@)[@)l - ~*(w,(~))l4. 

Hence, S, = n*(w,(l))[d] as required. Except for the assertion about the 
multiplier system, whose proof is omitted, this proves (a). Since 
dorc*cwrc’t))[-2zird] and FL(-27rird) are holomorphic modular forms, (b) 
f&ows from Theorem A(4). 1 

As an example, we consider in more detail the decomposition of the tensor 
product of two g-modules L(/i) and L(A’) where g is an afftne Lie algebra 
and A,/i’ E P, , using the diagonal inclusion g c g @ g. Due to 
Proposition 2.9 this tensor product decomposes into a direct sum of modules 
L(/1”) where A ” E P, and /i”(c) =/i(c) + /i’(c). Hence there exist non- 
negative integers mult(ll, /i ’ ; /i “) such that 

ch u*2,chw,, = F- 
/I=+ 

mult(ll. /i ‘; A”) ch,+, ,,). 

Introduce the generating functions 

c(A,A’;A”) = F‘ 
lG/i’f c6 

mult(/i,/i’;~)e-‘S,‘+S.l,-r.“” 

(note that s~_,,~ = s* - n). Then as in Section 4.4, one can prove: 

PROPOSITION 4.37. (a) If A, /i’, A”EP,, A(c)=m>O, 
/1’(~)=m’>Oand/i”(c)=m+m’,thenc(/l,~’;II”)isamoduZurformof 
weight zero for T(N(m + g)) n r(N(m’ + g)) 0 T(N(m + m’ + g)). If 
a,= 1, then F(t) c(A,A’;A”) is a cusp form; if u, = 2, then 
rl(r) ‘(*‘+I) c(A,A’;A”) is a cusp form. 
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(b) The spun of the c(A, A’; A “) with Jixed A(C), A’(C) and A”(c) is 
stable under T,,(k’). 

Proof. Only the assertion on behavior at the cusps deserves proof. For 
A E max(li), write 

A *,+pSA=Ce(~,A’;A”)A,,,+,, 
A ‘1 

where e(J, /i’; A “) E 8(X+). By Proposition 3.14 and Remark (f) in 
Section 3.3, the e(L, li ‘; A”) are holomorphic modular forms. Since 

c(/i,/i’;/i”)=~c~e(~,/i’;/iN), 
A 

Theorem A(4) completes the proof. 1 

Let AEP,. Then for n > 0, the symmetric group S, acts on the nth 
tensor power 0” L(4) of L(4). For any irreducible S,-module V, the 
subspace (0” ~!,(/i))~ of 0” L.(A) transforming according to V is g-stable, 
hence decomposes into a direct sum of irreducible highest weight modules. 
We may then form generalized string functions for this decomposition, which 
are again modular forms of weight zero. 

EXAMPLE. Take n = 2, so that S, has two irreducible modules V, and 
V- (V, is the trivial module). Write ch, and ch- for the characters of the 
modules (L(4) @ L(A)),+. Then (cf. (2.10.2)) 

ch, + ch- = ch;,,,, 

(ch, - d-)(h) = ch,,,&h). 

In the case g = A’,” and n = II ,,, a computation using 
the following illuminating result: 

these formulas,yields 

where 

E a,qk = fi (1 + q-l). 
k=O k=l 

(Note that in the related result [ 17, p. 134, Example (a)], the roles of azk and 
uZk+ , have been inadvertantly reversed.) 

We now give another example, which shows that for restriction to a finite- 
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dimensional subalgebra the situation is different-the generalized string 
functions are no longer modular forms. 

Let g be an affine Lie algebra, fi the simple finite-dimensional subalgebra 
corresponding to d. Let A E P, , A(d) = 0, be of level m > 0, and consider 
the g-module L(A) restricted to fi @ Cd (direct sum of ideals). For 1 E P+ , 
denote by F(A) the irreducible g-module with highest weight A. Let L(A) = 
0 n>O L(/i)), be the eigenspace decomposition with respect to a;‘d. Set 

4*(q) = C (multiplicity ofF@) in L(A)-,) q”. 
n>O 

In order to calculate Ql(q), q = e-a, recall that 

(4.38) 

where c;l is a string function and 

By the Weyl character formula, tin(q) is the q-series, which is the coefficient 
of emAoeAtP in (jJwsw (det w) ewCp) ) chL(A). Hence, the pth summand of 
(4.38) gives a contribution to $n(q) if and only if ji = A + p - w@- mod mM 
for some w E l?! But then c,” = c;+,-,,,(~+~~~, and we obtain 

Now suppose that the type of g is XLk’, where X = A, D or E, and consider 
the “basic” g-module L(A,). Then there is a unique non-zero string function 

ch7 ‘0 = qS”ob(q) for L(A,), where 

qq) = n (1 - qj)-mWa 

i>l 

(see Section 4.6, Example 1). 
Hence, by (4.39), Qn(q) = 0 if ;1 &M, and for ;1 E A4 we have 

= b(q) q 
(l/*)lnl~+(~+f5,a 

2 (q- 

(l/*)(l+iT,a) --4 (1/2)(A+p,a) 
)* 

+ 

We thus we arrive at the following formula: 

9,(q) = b(q) q”‘*‘* (1 - q@.+F;‘“‘) if AEhfnF,. 
+ 
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In the case k = 1, this formula was deduced in [ 181 by a more complicated 
method. 

4.10. Appendix 4: On Independence of Fundamental Characters 

We state here a result of the second author, which is the precise version 
(b) of (a) below, which in turn is a theorem of I. Bernstein and 0. 
Schwartzman [2]. The proof follows theirs in considering a Jacobian of theta 
functions; it will appear in [35]. 

For F a holomorphic function on Y = &“+ x h x C c $, define the partial 
derivatives 

a,(F)(h) = I$ t-‘[F(h + thi) -F(h)]. -+ 

Then the Jacobian of A,j+,/A,, 0 < j < 1, is 

We have x E f?hg, so that / = b(r)A,, where b(7) E 8(X+) (by 
Proposition 4.3(e)). Also, the Anl+P/AP, 0 < i < I, when restricted to Y,, 

generate fi + Iy, if and only if b(7) # 0. 
We have: 

THEOREM 4.40. (a) [2] For any 7 E Z+ , f% + IY, is a polynomial 

algebra on I + 1 generators 0, ,..., O,, where Oi E fh&v I,,,. 

(b) [35] Suppose that g is not of one of the types Ei”, Ei”, Ei”, Ek”, 

Fi”. Then i?h ’ is a polynomial algebra over a(&-,) on generators A,,;, ,/A,, 
0 < i < I. Moreover, b(t) does not vanish on X+, and is given up to a 
multiplicative constant in Table J below. 

Remark. The proof is case-by-case, and uses the theory of modular 
forms. We do not know if b(z) vanishes on R+ for the excluded types. 

In Table J we list the type X, (U of the algebra g, a positive integer A4 
associated to g, and a product expansion of b(z) valid up to a multiplicative 
constant. In the product expansions, F, denotes the modular form 

F,=q (s&f)-‘(M-2rP 

x rrrF*dM (1 - 4”) rI (1 - !f)- 
n=-rmcdM 

n>1 n>1 
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TABLE J 

Type Xik’ Modulus M b(r) 

A I”, c;” 1 

Bj” 2z+ 1 

Dj” 1 

G”’ 2 9 

A$’ 21+ 3 
A (2) 

21-l 21+ 2 
0’2’ 

1+1 21+ 2 

0’3’ 4 36 

rlw’ 
~(r)‘-~ F;‘Ff times: 

F:Fr + 1 if1 = 2r, 

FJ;, 1 ifI=2r+ 1. 

q(z)‘-4 times: 

F;1Fr + 1 if I = 2r, 

F:ifI=2r+ 1. 

v(r) F4 

VW-‘F,,, 

v(r)‘- ’ F,F, + , 

‘1P)‘-’ F,Fl+, 
v(r) r(2r) - ’ r1(3r) ’ 

x ~(42) ~(65)~ r7(9r)’ ~(12r)-’ 

x q-49/72 
.;,.~,,,, (l -q”)rl 

n> I 

V. THE PARTITION FUNCTION AND HECKE “INDEFINITE" 
MODULAR FORMS 

In Section V we find explicit formulas for the partition function K of the 
affine Lie algebra of type AI” using methods developed in [34]. This allows 
us to compute the string functions directly using the multiplicity formula 
(2.8). In the simplest case, the afline Lie algebra of type Ai”, these functions 
multiplied by the cube of the v-function turn out to be modular forms 
associated to indefinite binary quadratic forms. In conclusion we collect the 
main results of the paper in the case A\“, obtaining various identities for 
modular forms and elliptic theta functions. 

5.1. The Partition Function K for A j’) 

Let g be the affine Lie algebra of type A, . (l) Let b be the Cartan subalgebra 
of g, A c $* the root system, A+ the set of positive roots, {a,,,..., al} the set 
of simple roots, numbered as in 
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Let W be the Weyl group of g, generated by the reflections roO,..., ra,, which 
we denote as usual by r O,..., rI. Let w be the subgroup of W generated by 
r, ,..., r,; we regard w as the Weyl group of the root system d of type A ,. Let 
Q be the lattice in h* generated by a,,,..., a,, and let Q be the sublattice 
generated by al ,..., al. Define functions ni, 0 < i < 1, on Q by 

a=n,(a)a,+~~~+n,(a)a, for aE Q. 

Note that {a,,,..., a,,p} is a basis of h*. We define o E GL(h*) by 

U(aJ = ai+ I y O<icl; 

uta,> = ao; U(P) = Pm 

Then CJ normalizes W, so that we may define the group W, := (cr) D( W, 
where (0) is the subgroup of GL(h*) generated by u. Note that W, is the 
group W, of Proposition 4.27(b). Then A, Q, and Q + p are W,-invariant. 
We define a “shifted” action of W, on Q by w . a = w(a + p) --p. This 
induces an action of W, on functions on Q by (w . f)(a) = f(w-’ . a), and 
hence an action of the group ring G [ W,] on these functions. 

Recall the partition function K, defined on Q. Then on Q, K is the usual 
Kostant partition function ford, . 

We introduce the following polynomial function on Q [34]: 

Herewedefine(“,)=n(n-l)...(n-k+l)/k!fork>O,(”,)=l,(“,)=O 
for k < 0. Note that if a E Q gives a non-zero summand, then we must have 
n,(a) > 0 and n,(a) - n,-,(a) + Z- r > 0 for 1 < r < 1. Since these and 
n,(a) = 0 imply 0 < n,(a) < (‘;‘) for 1 < r < 1, the sum defining F is actually 
finite. 

For motivation, we mention that F(P) coincides with the Kostant partition 
function for A, on the set of all /? E Q satisfying n,(P) > n,- ,(/?) > .a. > 
nl(P)>O [34]. We set: 

K’ = (1 + r,)(l - r,-lrJ .+. (1 - (-1)’ r, ... r,). K. (5.1) 

The crucial observation is that the function K’ is “simpler” than the partition 
function K. So, we first give an effective algorithm for computing K’ and 
then express K in terms of K’. For that we need the following two lemmas. 
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LEMMA 5.2 [34]. If/l E 0, then K’(P) = F(P). 

Define a function K” on Q by 

v K”(y)eY= n (1 -ea)-m”‘ta, 
YEQ aeA+W+ 

i.e., this is a partition function for which parts from d, are not permitted. 
Then clearly, K(P) = C,EnK(a) K”(/3 - a) for /3 E Q. If w E w and a E Q, 
then K”(w(a)) = K”(a), so that: 

K(w ./I) = s K(a) K”(w. p - a) 
lrea 

= s K(a) K”(w-‘(w . /I - a)) 
aeg 

= x K(a) K”(P- w-’ . a) 
acg 

= 1 K(w. a)K”(/?-a). 
CYEQ 

Along with formula (5.1) and Lemma 5.2, this yields: 

LEMMA 5.3. For p E Q, K’(P) = C,EnF(a) K”@’ - a). 

For kEZ +, 9Ef-G 191 < 1, set ~dq)=C,~,EdI,dk)q” and p(q)= 
nn,, (1 - q”). Recall that both functions are intimately connected to 
classical modular forms, namely, setting q = e2sir, we have: Ek(r) - 1 = 
yko,,-,(q) for k > 1 and some constant yk, where E,Jt) is the kth Eisenstein 
series (see, e.g., [39]), and q(r) = q”24a)(q) is the Dedekind q-function. 

Now we can give an algorithm for computing the function K’. 

PROPOSITION 5.4. There exists a polynomial R, in 1 f 2 indeterminates 
such thatfor /3E 0 and 191 < 1, one has 

Proof. We shall prove this as an equality of formal power series in q. 
The convergence is clear by the argument of Lemma 2.3. 

For a E c*, regard ea as a function on 6. Let D be the linear constant- 
coefftcient differential operator on 6 such that D(e”) = F(a) ea for a E b*, 
so that F(a) = (D(e”))(O). (In other words, F is the symbol of the differential 
operator D.) 
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If P E Q, Lemma 5.3 gives 

nIlo K’(P + n4q” = (D (eb c K”(y + nd)q”e-y)) (0). 
Yd 
n>0 

But from the description of the root system of an afflne Lie algebra g from 
Table I we obtain 

C K”(y + nd) q”eey= (p(q)-’ n (1 -q”ea)-l. 
Yd ash 
n>0 n>1 

Hence, we have, for p E 0, 

‘T K’(P+nd)q”= 
“TO 

e’q(q)-’ n (l-qq”e”)-’ 
)) 

(0). (5.4.1) 
sex 
n>1 

On the other hand, for a E $* we have 

log n (1 - q”e”)-’ = 5 r L (q”@)’ = x q” :n d-l&“, 
n>1 n>1 ry1 r n>1 

and in particular, 

-1% rp(q) = -s nt;, 4” c d-l. 
din 

Therefore we obtain 

“!, (1 _ q”e”)-‘(l - q”e-Y 

= rp(q)-* exp r q” c d- ‘(.&d’2)a - e 
ny1 -(d/2)a)2) * 

(5.4.2) 
din 

Introduce 

G := C q" C d-' C (e(d/*)a -,-(d/Z)a)Z. 
n>1 din ad, 

Then (5.4.1) and (5.4.2) yield 

P(S) ‘(‘+‘) nTo K’(P + nd) qn = (D(e” exp G))(O). (5.4.3) 
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Let D’ be the polynomial in the derivatives off such that D(exp f) = 
D’(f) exp f. Then we obtain 

(We4 exp G))(O) = PM + G))(O) 

= R’(n,(PL WQ u,(q), ads>9 U,G?)Y) 

for some polynomial R’. This follows from the fact that G and its derivatives 
of odd order vanish at 0, and its derivatives of even order are multiples of the 
uZk- I(q), k > 1, at 0. Since F(p) d oes not involve n,(P), neither does R’. Now 
the Proposition follows from (5.4.3) and the well-known fact (see, e.g., [39]) 
that for k > 2, uzk- 1(q) is a polynomial in a,(q) and a,(q). 1 

For 1 < 1< 4, R, is given below; in the formulas, we have set m, = mi(P) = 
ni(~+p)=ni(/l)+fi(Z-i+ l), l<i<I. 

R,= 1; 

R,=m,; 

R, = & (3m, - 2m,)(4m: - 1 + 24a,(q)); 

R,= & (4 - mJ(3 m3 - 2m2)(6m: - 15~2, m2 + 10mz - 4) 

+ $M1(3m, - 2m,)(4m~ - 6m,m, + 4m: - 3) u,(q) 

+ ~M3m3 - 2mJ(u,(q) + 36o,(q)*). 

In order to recover the partition function K from the function K’ we need 
three more lemmas. For 1 < i < 1, we introduce the following elements of 
W,: 

wi’ = r,rlel *-* r,-i+l; wi=uw;; t, = w!-i+ 1 I I * 

LEMMA 5.5. 

(a) Zf l<i< j<I, then w:w~=w~w~ and tiWj=Wjti. 

(b) ti = tx,-,+l for i = l,..., 1, where t, is defined by formula (1.6). 

In particular, t,(a,) = a,, + 6, ti(aIPi+ 1) = al-i+ 1 - 6, and ti(aj) = aj for 
j#O, Z-i+ 1. 

The proof consists of a straightforward calculation, which we omit. 

For 0 < i < 1, define functions K”’ on Q inductively by 

K(O) zz K KU) = (1 - (-l)i w;l). K(i-1) for 1 <i < 1. 
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LEMMA 5.6. For 0 < i < 1, 

K”‘=(l+w;-‘)(l-w;-‘)***(l-(-l)‘wi’-’).K. 

In particular, K”’ = K’. 

Proof. The lemma is clear for i = 0. Suppose it is true for i - 1. Then 
since (a-’ . K)(a) = K(o . a) = K(u(a)) = K(a), we have a-’ . K = K, so that 
w; ’ .K=wj-‘.K. Using this, and wiwi=wiwi for l<k<i from 
Lemma 5.5(a), we obtain 

K”) = (1 - (-l)iw;‘). K”-” 

= (1 - (-1)’ w;‘)(l + w;-‘) .e. (1 - (-l)i-’ w;:;). K 

=(l+ w;-’ ) . . . (1 - (-l)i-l w,‘:,‘)(l - (-1)‘~;‘). K 

=(l+wi-’ ) ..a (1 - (-l)i-’ wf<,‘)(l - (-l)i wf -‘). K. m 

COROLLARY 5.7. For 0 < i < 1, if a E Q and n,,(a) < 0, then K”‘(a) = 0. 

Proof. By Lemma 5.6, it sufftces to note that for w E w and a E Q such 
that no(a) ( 0, we have (w . K)(a) = K(w-’ . a) = 0 since n,,(w-’ . a) = 
no(a) < 0. I 

LEMMA 5.8. For 1 < i < 1 and a E Q: 

(a) K”-“(a) = c (-1)“’ K”‘(wl . a) 
n>0 

= - x (-l)“i K”)(wl. a). 
n<O 

(b) x (-l)“i K”‘(wl. a) = 0. 
ncz 

(c) &-l)(a) = T 

ki,..?,>O 

(-lp+‘.‘+hp ($I . . . wfi(a +p) -p), 

In each sum above, only a finite number of summands are non-zero. 

Proof: For k E Z’, k= (k, ,..., k,), set w(k) = w:‘... wil. Fix a E Q. We 
first show that n,(w(k) . a) < 0 for all but a finite number of k E Z’, so that 
by Corollary 5.7, the sums in question are finite. 

For k = (k, ,..., k,) E Z’, write k,=(l-s+ l)q,+r, for l<s<l, where 
qs, rs E Z and 0 < rs < I- s + 1. Set t(k) = ty’ ... tyl, Q(k) = w;l .*. w;‘. Then 
by Lemma 5.5(a), w(k) = t(k) l(k). Set y(k) = cf= r q,;il-,+ r. Then by 
Lemma 5.5(b), t(k) = tHk,. For lkl-+ ~0, Ir(k>l + co and d(k) takes on only a 
finite number of distinct values. Since (p, 8) = 1 + 1 > 0 and n,(6) = 1 > 0, 
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formula (1.7) shows that n,(w(k) . a) < 0 for all but a finite number of 
kEZ’. 

To prove (a), note that by definition, 

K”‘(a) = K”-“(a) - (-l)i K”-“(wi . a), 

so that 
K”-“(a) = I(“)(a) + (-l)i ly”-“(wi. a), 

and hence, by induction on N, 

N-l 

K”-“(a) = C (-l)“i K”‘($ . a) + (-l)Ni K”-‘)(w~. a). 

n=O 

Since K”‘(wN i . a) = K”-“(WY. a) = 0 for N large, this proves the first part 
of (a). The second part follows similarly from 

-K”-“(a) = (-l)i K”‘(w;’ . a) - (-l)‘K”-“(~~7’ . a), 

and (b) is immediate from (a). 
Finally, (c) follows from the first part of (a) by downward induction 

on i. I 

Set T, = (t:‘...t:‘Jk,,...,k,fZ+}, @= {wff... ~:~)O<k~<f-i for 
1 < i < 1}, and define a character x of W, by ,~(a) = 1, x(w) = det(w) for 
w E W. Then since K”’ = K’ by Lemma 5.6, Lemma 5.8(c) and its proof 
yield, for i = 1: 

THEOREM C. For the afJine Lie algebra of type A j”, one has, for a E Q, 

K(a) = x x(t4) K’ @$(a + P> -P). 
IET+ 
@E@ 

Remark. One can show [34] that if n,(P) > n,- ,(/3) + no@) for 1 < r ,< 1, 
then K(P) = K’(P). This, together with Lemma 5.2, implies a remark 
preceding Lemma 5.2. 

5.2. Formulas for K in Low Ranks 

Theorem C, along with Proposition 5.4, gives explicit formulas for the 
partition function K. 

For example, let I = 1. Then 

~+={~,a,+~,a,I~,,~,E~+,1~,--n,I~l}\~O~; 

A’;m = {mln E Z, n > l}, where d=a,+a,; d, = {a,}, 

and mult a = 1 for all a E A. Furthermore, we have: @ = { I} and T, = 
(tk j k E Z, }, where t(a,) = a0 + 6, t(al) = a, - 6, t(p) = p - a,, x(t) = -1. 
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We also have: R, = 1 and therefore K’(P) = pO’(n,(P)). Here p““(n) is 
defined by 

zz p(d)(n) 4” = ffQFd for I41 < 1, 

i.e., pcd’(n) is the number of partitions of n in positive integral parts of d 
different “colors.” 

Theorem C and Lemma 5.8(b) now give: 

PROPOSITION 5.9. For the afJine Lie algebra of type A’,“, one has for n,, 
n, E z: 

(a) K(n,a, + n,a,)= c (-1)‘~‘~) (k + l)n,- kn, - 
k(k + 1) 

k>O ( 2 , 

(b) K(n,a,+n,a,)=- ‘T (-l)kp’3’ (k+l)n,-kn,- 
k(k + 1) 

2 . 
k?O 

Note that for use in computing K(n,a, + n,al), (a) is best suited if 
n, > no, while (b) is best suited if no > n,. 

Remark. Let 1 = 1. Then the proofs simplify considerably. One has: 
F(a) = 1 = K’(a) for a E e, and so Lemma 5.2 is trivial. Lemma 5.3 and 
Proposition 5.4 mean that K’(/3) = C,,,K”(p - a)_= p’3’(no(jI)). These 
facts follow easily from the description of A + and A+. Finally, K’(a) = 
K(a) + K(r, . a) and K(a . a) = K(a), so that setting t = or,, we obtain the 
following form of Proposition 5.9(a): 

K(a) = 1 (-l)k K’(tk . a). 
k>O 

Now let I = 2. Then Theorem C and Proposition 5.4 give: 

PROPOSITION 5.10. For the aDine Lie algebra of type A$“, one has,for 
no, n,, n2 E z, 

Woao + alal + e2a2) 

= c (n,-no+2k+1+1) 
k,1>0 
x p@‘((k + I+ 1) no - kn, - In, - l(k + I+ 1) - k(k + 1)) 

- c (n,-n,+2k.+1+2) 
k,l>O 

xp(*)((Z+ l)n,+(k+ l)n,-(k+I+ l)n, 

-(1+ l)(k+I+ 1)-k(k+ 1)). 
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Finally, we note that (see [34]) for any affrne Lie algebra, there exist 
formulas for the partition function, derived using its “hidden” symmetries, 
similar to those given above. However, except for those for algebras of type 
A I’), they seem relatively intractable. 

EXAMPLE. Consider the affine Lie algebra of type A\*‘, with simple roots 
numbered as in 

a0 a1 
OGO) 

and 6 = 2a, + ar. Then the positive roots, all of multiplicity one, are given 

by 

a,+k& (k+ 1)6, --a,+(k+ I>4 

a, + 2k6, -al + 2(k + l)S, where kE L,. 

For k > 1, e, ,..., ek E Z, define a function pcel’ .ek’: L + Z by 

x p”l” ‘ek)(n)qn= n (1 -q”)-enmodkfor 141 < 1. 
nc2 nar 

Forp=n,a,+n,a,EQ, we have: 

wp) + K(r,dl3 + P) -PI =P’Z’23’(n,), 

w> + wov +P> -P> =P’53’(n,). 

Applying these formulas alternately, we obtain: 

Woao + nlal> 

= F7 p’2’23’((2k + 1) no - 4kn, - k(3k + 2)) 
ky0 

- K- p’53’((k + 1) no - (2k + 1) n, - j(k + 1)(3k + 2)) 
kT0 

= -q- 

kT0 

p'53' (-kn, + (2k + 1) n, - $k(3k + 1)) 

- \- 
ky0 

P’2123’ (-(2k + 1) n, + 4(k + 1) n, - (k + 1)(3k + 1)). 

5.3. Hecke “Indefinite” Modular Forms 

Let U be a two-dimensional real vector space, let L be a full lattice in U, 
and let B be an indefinite symmetric bilinear form on U such that B(y, y) is 
an even non-zero integer for all non-zero y E L. Set L * = (y’ E U 1 
B(y, y’) E Z for all y E L}. Let Go be the subgroup of the identity component 
of the orthogonal group of (U, B) preserving L and fixing L */L. Fix a 
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factorization B(y, y) = l,(y) I,(y), w  ere h I, and I, are real-linear, and set 
sign(y) = sign II(r) for I,(y) # 0. 

ForpEE*, set 

r3L,p(z) = C sign(y) en’rB(y*y). 
YEL+II 

my,??>0 
ymod Go 

This is a cusp form of weight 1. More precisely: 

(1) l$Jr + 1) = eZiB(~,~V1&), 

0 1 
L.U ( 1 -- =-- 

r d& “.,S,,, ~2niBcu~“‘~L,“w* 

The span of the S,,, is stable under SL(2, Z). 

(2) Let NE Z, N > 0 be such that NL?(y, y) E 22 for all y E L*. Then, 
if (z j) E L’,(N), there exists a E E C of absolute value 1 such that for all 
PEL*, 

= e(ct + d)(exp niabB(,u, ,u)) 8,,,,(r). 

These results are due essentially to Hecke [9], who treats by a general 
method the case where B is an even multiple of the norm on the integers of a 
real quadratic field. For this reason we call the functions 0,,, Hecke 
indejinite modular forms. 

For a treatment of this from the point of view of the Weil representation 
see [26], and from the point of view of the theory of Galois representations 
and Artin L-functions see [38]. 

5.4. String Functions for AI” 

First let g be of type A, . (‘) LetnEP, beoflevelm=A(c)>O,andlet1 
be a maximal weight of L(A). Recall the string function defined in 
Section 2.3: 

c;(r) = qsAc(‘) C mult,(A - sS) qs, 
s>o 

where t E Z+ , q = ezrrir, and s,,(A) is the characteristic of A, which in our 
case can be computed by 

s*(A) = n,(A - A) + 
M+Pl* IQ’ W2f42). 

2(m+Z+ 1) 2m 

607/53/Z-IO 
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Substituting the expression for mult,(A) given by (2.8) into the definition 
of ci, and rearranging using absolute convergence, we obtain 

P(S) [(I+ 2) p(g = qsA\(m x (det w) S(w(A + p) - (A + p)), (5.11) 
WPW 

where 

S(P) = (o(q)‘“+ 2, z K(P + SS) qs. (5.12) 
S>O 

Set U=ij&@i;& introduce the lattice L = M @ A4 c U, and define a 
quadratic form B on U by 

B((K 7’)) = (m + I+ l)(Y, Y> - m(Y’? Y’). 

Then B((y; y’)) E 22 for (y; y’) EL. We will need the following formula: 

-no(qq(~ + P> - 1) - P> 

= -n,(A - A) - l/i+p1* IQ” 
2(m+l+ 1) +2m 

++B((y+y’+(m+l+ l)-‘(x+P);y+m-‘I)). (5.13) 

To prove this, rewrite the left-hand side as n,((A + p) - ty+&4 + p)) - 
no@ - t,(L)) - n,(A - A), and apply (1.7). 

Now let g be of type A r . (I) Then a := a,, 6 and p form a basis of h*. The 
simple roots are a, = 6 - a and a, = a, and the fundamental weights are 
/l,=fp--fa and A,=$+ia. We have E=a, 8=0, P=+a, x0=0, 
A, = ia. The lattice M is La. The normalized symmetric bilinear form ( , ) 
on h* is defined by (a, a) = 2, (a, p) = 1, (p, p) = 4, (p, 6) = 2, (6,s) = 
(6, a) = 0. 

Define s, t E CL(t)*) by 

s(a) = -a, s(6) = 6, s(p) = p - a, 

t(a) = a - 6, t(d) = 6, t(p) = p + a - 6. 

Then t = t, ,,2Ln, defined by (1.6). W, is the semidirect product of the finite 
Weyl group W = ( 1, s} and the free abelian normal subgroup generated by t. 
The subgroup W of W, is generated by s and t2. 

We have L = Za @ Ha and U = lF?a @ Ra. Hence, identifying L with Z2 
and U with R2. we have 

B((x, y)) = 2(m + 2) x2 - 2my*. 

Clearly, B does not vanish on L\(O). 
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The lattice dual to L with respect to B is 

L*= 
1 

2(m + 2) 
EO& 

Define an element a of the identity component SO,(U) of the orthogonal 
group of (U, B) by 

a((x,y>)=((m+ I)x+m.v,(m+++(m+ 1)~). 

Then a generates the subgroup Gh of SO,(U) preserving L, and a2 generates 
the subgroup G, of Gh fixing L*/L. 

For p E L* mod L, we recall the Hecke indefinite modular form BL,iu(t) 
defined in Section 5.3. We proceed to show that am c;(t) is one of the 
4 Jr). 

SetU+=(uEU(B(u)>O}.ThenF:={(x,y)EIR21-IxI<y~IxI}isa 
fundamental domain for GA on lJ+ , and F Us(F) is a fundamental domain 
for G, on CT+. 

LEMMA 5.14. Let g be of type A\“, and let /3 = nDaO + n,a, E Q be such 
that either n, ( 0 or n , < 0. Then: 

(a) S(p) = x (-l)k q-%(tk(4+p)-o), 
k>O 

(b) s(p) = - 1 (-l>k q-‘@(4+“-p)e 
k<O 

Proof. Since t = tC,,2jn, (1.7) gives 

no(tk(P+p)-p)=(k+ l)n,-kn,-k(k+ 1)/2. 

In particular, no(tk(P + p) -p) = no(tk’(P + p) - p) if k + k’ = 2n, - 2n, - 1, 
so that 

-T (-1)kq- nouw+P)--P) = 0. 
k';Z 

Hence, (a) and (b) of the lemma are equivalent. 
Since noGO or nl<O, either noGO and n,<n,, or else n,<O and 

n,<n,. If nogO and n,<n,, then (k+ I)n,-kn,-k(k+ 1)/2<0 for 
k E Z + , and Proposition 5.9(a) yields 

w-9 = YJ(d3 c w  + s4 qs 
S>O 

=~(q)~ x x (-l)k pt3’ (k + l)n,- kn, - 
k(k + 1) 

2 +s qs 
s>O k>O > 
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= 1 (-l)k (o(q)3 c p”’ (k + 1) n, -kn, - 
k>O S>O c 

k(k + 1) 
2 

= c (-l)kq -(k+l)no+kn,+k(k+l)/2 

k>O 

= s (-l>k q-nouWo)--P) 

k>O 

This proves the lemma for noGO and no<n,. If n,<O and n,<n,, a 
similar argument using Proposition 5.9(b) gives the proof. 1 

Let A EP,, m =/l(c) > 0, and let i E P,, 1 E max(.4). Then by (5.1 l), 
we have 

q(r)3 c;(z) = ql’8+sn(A) 
I 

-T- s(t’“(A + p) - (A + p)) - 
n>0 

+ c s(t’“(ll + P) - (A + PI) 
n<O 

- F- S(t2”s(A + p) - (31 + P)) 
“TO 

- 1 S(t2”s(A + p) - (1 + P)) 1. 
fl<O 

To the first and third sums we apply Lemma 5.14(a), and to the second and 
fourth sums we apply Lemma 5.14(b). This is allowed by the fact that 
w(/i +p) - (A +p) - 6 6Z Q, for all w E W, which follows from 
Proposition 2.12(b). Then using formula (5.13), we obtain an absolutely 
convergent expansion: 

v(d3 4w = (z. - zo) (4 

n>0 n<o 

n>O HSO 

xc7 
(1/2)B(((kl2+n)a-(m+2~~~~~+p7;(k/2)a+m~~~~) 

Apply B((y; 7’)) =B((--y; y’)) to the second summand, and combine to 
obtain 

?f(?)3 C,“(T) = c (-1)2k sign(k + a) 
k,no(l/2)Z 
k=nmodZ 

k>Inlor-k>lnl 

xq 
(1/2)B((ku t (m t 2)-1(x+i3:na t m-‘lX)) 
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Break the sum into two parts, according as k is integral or half-integral, and 
to the second apply B((y; 7’)) = B((-y; y’)), obtaining 

q(t)3 c;(r) = c sign(k + 4) x q 
,1/2)B,,&a+,m+2)-‘,~+~:nn+m-‘X~~ 

k,neZ 
k>lnlor-k>lnl 

+ L’ sign(k - f) x q ,1/2)8,,ka-,m+2)-‘,;C+~;na+m-~~~~ 

k,nsif I/2 
k>lnlor-k>lnl 

Write (m+2)-‘@+p)=Aa, m-‘~=Ba. Then f>A >0 and j>/B>,O. 
Using these, and assuming A > B, we may combine the sums above to obtain 

tf(~)~ C;(T) = x sign(x) q(1’2)B((x*y)), 

where the sum ranges over 

((x,~)~Fl(x,y)_(A,B)or (i-A,$+B)modZ’}, 

or equivalently, over 

{(x, y) E F I (x, ,v) = (A, B) or ~((4 B)) mod z2 I. 

Since F U a(F) is a fundamental domain for G,, we have obtained 

w3 cm = e~,,,m+z)-l,~+~:m-LL) 

is a Hecke indefinite modular form. 

that 

It remains to remove the restriction A > B. Write (m + 2))‘(u(A) +p) = 
A ‘a, m-‘a(A) = B’a. Then A + A’ = B + B’ = i. Hence, if A < B, then 
A’>B’and we have 

VW3 44 = r(7)” cIm> 

= eL,,A.‘a;8’&) 

= bi-Ao;&8a)@) 

= &,(&4*:-p+&&~ 

= %,a,Aa:8nd~) 

= L,,Aa:8d~)’ e 

Thus ~(7)~ ‘$7) = er,(,m+2)-l,~+p7:m1X)( 7 in all cases, and we have proved: ) 
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THEOREM D. Let Q be of type Al”. Let A E P, , A(c) = m > 0, and let 
,I E P, be a maximal weight of L(A). Then 

is a Hecke indefinite modular form. 

Remark. By Theorem D, the ci are closely related to the real quadratic 
fields Q(dm). Note that every real quadratic field is of this form. 

5.5. Some Applications 

In this final section we display various identities for modular forms and 
elliptic theta functions. Some of these formulas are classical, and many seem 
to be new. All of them appear naturally in the framework of the represen 
tation theory of the simplest affine Lie algebra AI” and are very special 
cases of our general theory. This section can be read independently of the 
rest of the paper. As usual, q stands for eznir where Im r > 0. 

(a) Fix a positive integer m. For integers N and n with N = n mod 2, put 

e;(r) = K- (m+Z)X~-mY~ 

(X.75 LQ2 
(signx)q , 

-IXl<Y<lXl 

d;(t) = c (+1/2”k+N q(m(mt 2)/8)(klm+(Nt l)/(m+Z))* 

kcZ 
ksinmod2m 

By Theorem A(4) and (5.15) below, the e(r) are cusp forms for 
r(4m) n r(4(m + 2)) with the trivial multiplier system. The e(5) appear (in 
a different form) in Theorem D, which says that for 0 <N < m and 
nrNmod2, 

(5.15) 

Here v(r) = q1’24p(q), where (p(q) = JJrEI (1 - q”). 
From Propositions 2.12(b) and 2.19 and Theorem B we deduce that for 

O<n, N<m, n-Nmod2, we have 

where 

~(~)~3~~(r)=qb(l+bIq+b2q2+~~~), (5.16) 

b = - $ + zrn++‘;; 

and 

1 + b,q + b,q’ + e.. = q(q)-‘@ + c,q + **a), (5.17) 



INFINITE LIE ALGEBRAS AND THETA FUNCTIONS 261 

where ci > 0; moreover, 

b sin X(N + l)/(m + 2, 
k- 

nd(Zm/fm+Z))k 
2(m + 2)k e 

(5.18) 

for k-+ co. 
Comparing (5.15) with the computation in Section 4.6 of string functions 

of low level, we derive a number of identities. Among the prettiest are (from 
m = 1, 19:(125); m = 2, 19:(8z); m = 4, @(48r) - f?:(48~); m = 8, 8:(2~), 
respectively): 

1(125)2 = C (-l)k+’ qlWk+ I)*-(61+ Wl/2, (5.19) 
k.leB 

k>ZIII 

~(85) ~(165) = 2 (-l)k q’2k+ 1)z-32’2, (5.20) 
k,/cH 

k>31/1 

11(24) 1;1(96r) = x (ml)“‘+ W2q8’3k+ 1)*-3(2/f I)*(1 _ q24’2k+ I)), (5.21) 
k.leZ 

Zk>/>O 

r1(4t) n(2Or) = \’ 
k17;B 

(-l>k q15(2k+ I)*-(2/+ Wl/4. 

Zk>lSO 

(5.22) 

Identity (5.19) appears (in a different form) in Hecke [9]. Arithmetic 
properties of r@) ~(16r) were studied in detail in [32]. 

For E = 0 or 1, introduce the matrices C, = (e) and D,= (d:), where n, 
NE {kEZjkr&mod2, O<k<m). Then: 

det Co = det C, = v(t)” + i if m is odd; 

det Co = ~(t)~+~ ~(25))’ and 

det C, = q(t)“-’ q(2t) if m is even. 

Co Do = Do Co = r(t)’ I; C, D, = D, C, = ~(5)~ 1. 

(5.23) 

(5.24) 

These formulas may be easily deduced from (5.15) and the results of Section 
4.5 (see [36] for details). Note that (5.19) and (5.20) are the simplest cases 
of (5.23). 

Introduce the following elliptic theta functions: 

On,Jr, z) = C qmk2e-2nimkr, 
ks Zt n/2m 

An,,J7, z) = On,,,,(7, z) - O-,,,,,,(T, z) = -2i c qmk2 sin 2nmkz. 
kc Z+n/Zm 



262 KAr: AND PETERSON 

We have the following division formula: 

A 
N+13m+2(79 z, = q(7)-” 
A 1,2(7~ Z> 

057) On,m(7 2) 3 * (5.25) 
Q(ni2m 

nHmod2 

This formula is (by (5.15)) a special case of the “theta function identity” 
(2.18). Indeed, we have in the notation of Section 4.1: 

On,J7, z) = 0 mno+n~79 ZP; 0); 

‘4,,,(7, z> =4/12,+n~(7? m  0). 

Note also that the (particularly important) function A,,(T, zp, 0) = A 1 ,2(7, z) 

is, up to a constant factor, the Jacobi elliptic theta function 6,(7, z): 

Ap(7, zp, 0) = -i6,(7, z) = -2i $ (-l)k enirCk+ “2)2 sin((2k + 1) 712). 
k=O 

(b) It is easy to see that Proposition 5.9 is equivalent to the following 
identity: 

n (1 - qkz)-I(1 - qk+lz-y = (p(q)y c (-l)k q 
(1/2)k(k+l) 

1 -qkz 
. (5.26) 

k>O ksZ 

This expansion is valid for 1 q j < 1 whenever both sides are defined. Note that 
(5.26) is precisely the partial fraction decomposition in z of the left-hand 
side for fixed q. This expansion appears, in a different form, in [40, 
Section 4861; we thank G. Andrews for pointing out this reference to us. 
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