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OPTIMAL CRITICAL REGIONS FOR PRE-TEST ESTIMATORS 
USING A BAYES RISK CRITERION* 

C.S. ROEHRIG 

Vector Research, Inc., and University of Michigan, Ann Arbor, MI 48106, USA 

Optimal critical regions for pre-test estimators are developed in the context of the normal linear 
regression model with a conjugate prior, where the criterion is Bayes risk and where the pre-testing 
involves a single coefficient. When prior information is neutral regarding the sign of the coefficient, 
it is shown that the optimal include-exclude decision involves no pre-testing. When prior 
information is weighted toward a particular sign, pre-testing is appropriate but the optimal critical 
regions are quite different from those associated with the traditional pre-test estimator. 

1. Introduction 

Consider the standard linear model 

y= Wa+&, 

representing T observations on the dependent variable y and the K explanatory 
variables W, where the random error term E is assumed to be N(0, a*Z) 
conditional upon W. Partition W into X and 2, where X consists of K, 
variables whose coefficients are of particular interest to the researcher, and 2 
consists of K, variables whose coefficients, in and of themselves, are not 
necessarily of interest. The model can then be written 

In addition to the estimation of p, the researcher is also concerned with 
making predictions using the estimated model. 

Although the ordinary least squares (OLS) regression of y on X and Z 
produces minimum variance unbiased estimators and predictors, there are 
conditions under which the mean square error of estimation and prediction is 
reduced by excluding Z from the regression in spite of y # (0) [null vectors and 
matrices are denoted by (O)]. Specifically, let 

&= + = (w’w)-‘wy, 
[ I 

&= & = '"';b,'"" 

[ I[ 1 

*Thanks to Bruce Hill, Ron Mittelhammer, and anonymous referees for useful comments and 
suggestions. 
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be the estimators of ar corresponding to the inclusion and exclusion of Z. 
Letting MSE denote matrix mean square error, it can be shown that MSE(&) - 
MSE(&) is positive semidefinite if and only if MSE(f) - yy’ is positive 
semidefinite, where MSE(+)= a*(Z’M,Z)-’ and yy’ is the MSE of (0) as an 
estimator of y, and where &I, is defined as I - X( X’X)-‘X’.’ Thus, whether 
the objective is to estimate /3 or to predict y conditional on X and Z, the key 
issue is whether p or (0) is the better estimator of y in terms of MSE. 

The problem, of course, is that the conditions under which it is best to 
exclude Z depend upon the unknown parameters y and u*. Therefore these 
conditions alone do not constitute a practical decision rule for the inclusion or 
exclusion of Z. One possible solution to this problem is to replace the 
unknown parameters with the unbiased OLS estimators of those parameters. 
Noting that a*(Z’M,Z)-’ - yy’ is positive semidefinite. if and only if 
y’Z’M,Zy/( K,a*) I l/K, [see Toro-Vizcarrondo and Wallace (1968, p. 561)], 
this approach leads to excluding Z from the regression when 3 5 l/K,, where 
fi is the usual F-statistic used to test for y = (0) (c?* is the usual unbiased 
estimator of u* using the residuals from the regression of y on W), 

The practice of including or excluding Z in the final regression based upon 
whether or not fi exceeds some critical value 6* defines a ‘pre-test’ estimator of 
ar given by 

where b = (X’X))‘X’y. The preceding analysis provides a motivation for using 
pre-test estimators and also suggests a critical value. However, studies of 
pre-test estimators reveal that there is no single critical value that is ‘best’ in 
terms of commonly used MSE criteria. For example, see Wallace and Ashar 
(1972), Feldstein (1973), Judge and Bock (1978), Learner (1978), and Judge 
et al. (1980) [Sawa and Hiromatsu (1973) and Toyoda and Wallace (1976) 
derive critical values that are ‘optimal’ in terms of ‘minimax regret’]. The mean 
square error associated with various critical values depends upon the unknown 
parameters y and a*, and no critical value dominates over the entire parameter 
space. Thus, it has been suggested that the proper choice of a critical value 

‘See Tom-Vizcarrondo and Wallace (1968, p. 561) or Judge and Bock (1978, p. 29) for a 
derivation of this result. 
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depends upon prior information regarding the unknown parameters. For 
example, Wallace and Ashar (1972, p. 177) suggest that ‘the stronger the belief 
that y # O’, the larger should be the critical value, and the critical value should 
be smaller ‘the stronger the prior doubts about the inclusion of 2 ‘. 

This paper is concerned with the relationship between prior information and 
the appropriate critical value for pre-test estimation. It proceeds by deriving 
critical regions that minimize the Bayes risk of the pre-test estimator under 
particular prior distributions on the unknown regression coefficients. It is 
important to note that even when these ‘optimal’ critical regions are used, the 
resulting pre-test estimator is only optimal within the class of all pre-test 
estimators. Compared with other estimators it may be far from optimal. 
Frequentists can complain that it is admissible, and Bayesians can point out 
that the posterior mean will have lower Bayes risk under a quadratic loss 
function. While this estimator is thus guaranteed to displease purists of either 
persuasion, it should prove interesting to those who are not in the habit of 
using Bayesian procedures in applied work, but who are willing to accept the 
basic correctness of the Bayesian viewpoint. The incorporation of prior infor- 
mation is much simpler than in the full Bayes treatment (it turns out that only 
prior information regarding the 2 variable must be specified) and the results 
can be presented in a familiar non-Bayesian fashion. It is hoped that even pure 
Bayesians might view these results as a nudge in the right direction to those 
who find the full Bayesian treatment to be too much trouble. 

The paper is organized as follows. Section 2 develops the relationship 
between the mean square error of the pre-test estimator of the complete 
coefficient vector (Y, and the mean square error of the pre-test estimator of y, 
the subset of LY associated with the variables to be included or excluded. It 
shows that the ‘best’ pre-test estimator of y is also the ‘best’ pre-test estimator 
of (Y in a mean square error sense, so that attention can be restricted to y. 
Section 3 derives a similar result for the Bayes risk of the pre-test estimator 
and develops a decision rule that defines the minimum Bayes risk pre-test 
estimator when Z is a single variable. In section 4 this rule is applied using 
conjugate priors. Section 5 provides a summary and conclusions. 

2. Some basic mean square error results 

The pre-test estimator to be analyzed here is less restrictive than that defined 
in (2) in terms of the form of the critical region. It is defined here as 

otherwise, 
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where A( e2, W) is a critical region that depends upon the OLS estimator of cr * 

and the explanatory variables W. The reason for this more general representa- 
tion of a critical region will become apparent in a later section covering the 
analysis of priors in which there is information regarding the sign of y. 

The following theorem relates MSE(&) to MSE(7): 

Theorem 1. 

MSE( 6) = 
c’( X’X)-’ + cMSE(T)c’ - cMSE(7) 

- MSE(y)c’ I MSE(y) ’ 

where c = (X’X)-‘X’Z. 

The proof of this theorem is given in the appendix. 

Next, let ti, and GII be pre-test estimators as defined in (3) corresponding to 
critical regions A,(e2, W) and A,,(e2, W), respectively. Then: 

Theorem 2. MSE(&!,) - MSE(d,,) is positive semidejinite ( p.s.d.) if and on& if 
MSE(yr) - MSE(yI,,) is p.s.d. 

Proof. Let D = MSE( VI) - MSE( yIII). Then, by Theorem 1, 

MSE( ~5~) - MSE( Crr) = [_I. 

Let a, and a2 be arbitrary vectors with K, and K, elements, respectively, and 
let a’ = (a;, a;). Then 

af[_s]a= (a;c-a;)D(a{c-ai)‘, 

which is non-negative for all (a[, a;) if and only if D is p.s.d. 

Theorem 2 shows that if one critical region is better than another in terms of 
the MSE of the resulting estimator of y, it is also better in terms of the MSE of 
the resulting estimator of the full coefficient vector a. Thus under the MSE 
criterion it is possible to restrict attention to 7. 

This result simplifies the problem of deriving the optimal critical value but a 
number of difficulties remain. First, if Z consists of more than one variable, 
MSE(T) will not be a scalar, and choosing between competing critical values 
requires the determination as to whether the difference between the associated 
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MSE matrices is p.s.d.* Second, even if 2 is a single variable, MSE(P) depends 
upon the unknown parameters y and a* and no single critical region is optimal 
for all y and CT*. 

As a simple illustration of this last point, suppose that 2 is a single variable 
and a* is known so that I’(?) (the variance of the OLS estimator of y) is also 
known. Define the pre-test estimator of y as 

= (0) otherwise, 

and define the ‘true t ’ [as in Feldstein (1973)] as ]y/ /ml. It has been shown 
(e.g., by Feldstein) that when the true t is less then one, the optimal critical 
value is infinite, while the optimal critical value is zero if the true t is greater 
than one. No critical value dominates over the entire range of the true t and 
therefore prior information regarding the true t is crucial to the determination 
of an appropriate critical value. A sensible approach is to specify a prior 
density for the true t, and then evaluate the Bayes risk associated with various 
critical values. The optimal critical value is defined as that which has the 
smallest Bayes risk among all possible critical values. The next section imple- 
ments a somewhat more general version of this approach. 

3. The Bayes risk of pre-test estimators 

Let the prior density of /3, y, and a* be denoted by h*(P, y, a*). Then the 
Bayes risk matrix for the pre-test estimator ~5 defined in (3) is R(&) = 
Eh*(MSE(&)), where E,, is the expectation with respect to the density h*. The 
objective is to determine the critical region that ‘minimizes’ R(b) given the 
prior density h*. 

As an initial simplification, note from Theorem 1 that M%(h) depends only 
upon a*, W and MSE(~). But MSE(T) is determined completely by the joint 
distribution of T and 6* which does not depend upon p. Therefore 
E,,(MSE(&)) = E,,(MSE(C)), where h is the marginal prior density for y and 
u * found by integrating h * with respect to fi. This means that in evaluating the 
Bayes risk of pre-test estimators, only the marginal prior density for y and u* 
needs to be specified. 

2The pre-test estimation literature typically deals with this problem by defining an alternative 
MSE criterion that is a scalar regardless of the number of variables represented in Z. Two such 
criteria are E!,((6 - a)‘( W’W)(& - a)) and E((ti - a)‘(& - a)), where the objective is to find a 
critical value that minimizes the given expectation. Judge and Bock (1978) and Judge et al. (1980) 
provide analyses of pre-test estimators under various MSE criteria including those mentioned 
above. 
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Now let gLI and d, be two pre-test estimators corresponding to critical 
regions A,(c?~, W) and A,(e2, IV), respectively. Then it can be shown: 

Theorem 3. R(&,) - R(d,,) is p.s.d. if and only if R(yI) - R(y,[) is p.s.d., 
where R(y) = E,,(MSE(y)). 

The proof is given in the appendix. 

This theorem is equivalent to Theorem 2 except that Bayes risk is substituted 
for MSE. It is important because it implies that the critical region with the 
smallest associated Bayes risk in terms of y also has the smallest Bayes risk in 
terms of IX. Thus consideration can be limited to evaluating the Bayes risk 
of 7. 

To simplify the problem of deriving the minimum Bayes risk critical region 
(i.e., the critical region with the smallest Bayes risk of all critical regions) only 
the case where Z is a single variable will be considered. The minimum Bayes 
risk critical region in this case is simply that region that minimizes R(v). The 
pre-test estimator associated with this critical region will be the minimum 
Bayes risk estimator and predictor, among all possible pre-test estimators 
defined in (3), by virtue of Theorem 3. 

While it is difficult to actually evaluate the Bayes risk associated with a given 
prior and a given critical region, there is a rather simple method for determin- 
ing the critical region that minimizes the Bayes pre-test estimator risk R(y). 
This method is based on the following theorem: 

Theorem 4. The minimum Bayes riskpre-test estimator critical region A*(h2, W) 
includes f if and only if I!!((? - Y)~; t, S2, W) < Ed; ?, S2, W). 

The proof is given in the appendix. 

This theorem states that to minimize Bayes risk within the class of pre-test 
estimators, Z should be included or excluded according to which decision 
minimizes the posterior expected loss. It is a special case of a standard theorem 
in Bayesian analysis [see Berger (1980, p. 109)]. 

Let yu and (y2)n be the posterior expectations of y and y2, respectively. 
Then Theorem 4 states that 2 should be included if and only if y2 - 2?y, + 
(y2)u<(y2)n. Adding (yn)‘-((y2)n to both sides of this inequality shows 
that this condition is equivalent to (T - yE)2 -C (~n)~ or l? - yul -C lyEI. Thus, 
this decision rule chooses Q or zero as an estimator of y depending upon which 
is closer to yE. This is a sensible result because yE minimizes Bayes risk (of 
course yn would be preferable, in terms of Bayes risk, to either p or zero, but it 
is not one of the choices associated with pre-test estimators). The implications 
of this decision rule are developed in the next section. 
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4. An application using conjugate priors 

Conditional upon W, y, and u2, f has the normal distribution with mean y 
and variance V(T) = a2(Z’M,Z)-‘, where M, = I- X’(X’X)-IX. Assume a 
normal-gamma prior for y and V(y)-’ such that the prior distribution on y, 
conditional upon W and u2, is normal with mean y, and variance V(y)/n*. 
Then the posterior expectation of y is 

yE = &yp + &y, 

where X, = n*/(n* + 1) and A, = l/(n* + 1) [see Learner (1978, p. 60)]. 
The decision rule derived from Theorem 4 states that Z should be included 

if and only if (p - yE)2 < (~n)~. If y # 0, this condition is equivalent to’ 

Y,/? ’ b * - 1)/(2n*). (4) 

If 9 = 0, the include-exclude decision is irrelevant. 

4.1. Case I: y, = 0 

Consider first the case of y,, = 0 which implies that prior information is 
neutral with respect to the sign of y (positive and negative values are equally 
likely). Then yE = T/(n* + 1) and by the decision rule presented in (4) the 
minimum Bayes risk pre-test estimator includes Z if and only if n* < 1. This 
result is noteworthy because n* is a parameter of the normal-gamma prior. 
The include-exclude decision is therefore unrelated to y and 8* as it is based 
completely on prior information. The optimal critical region A( 6 2, W) is either 
( - 00, + 00) or null depending upon whether or not n* < 1. 

This result has an intuitively plausible interpretation. The include-exclude 
decision can be viewed as choosing between two sources of information 
regarding y. Prior information centers y on zero with precision n*/V( y) 
conditional upon a2 and W. Sample information centers y on y with precision 
l/V(?), also conditional upon u2 and W. The decision rule developed above 
requires that the more precise information be used, because if n* < 1 the 
sample information is more precise than the prior information. 

The neatness of this result is due to the normal-gamma prior in which the 
precision of the prior information regarding y is dependent upon u2. This 
dependency means that the precision of both the prior and the sample 
information are subject to uncertainty (due to uncertainty about u2). But it 
also means that the precision of one relative to the other is known with 
certainty because the uncertain parameter u2 cancels out. 

3Thanks to Ron Mttelhammer for suggesting this simple representation of the basic decision 
rule. The derivation is in the appendix. 



10 C.S. Roehrig, Optimal critical regions for pre-test estimators 

Learner (1978, p. 80) expresses some reservations regarding this dependency 
of prior precision on a2 although he does point out a possible supporting 
argument. The position taken here is that Learner’s reservations are well 
founded. It seems unlikely that the relative precision of prior and sample 
information regarding y would be part of prior knowledge when u2 is un- 
known. The problem is that if the prior precision is assumed to be independent 
of u2, the relative precision then depends upon u2, and this complicates the 
analysis of decision rules unless u2 is known. 

If u2 is assumed known, and the prior distribution for y is normal with mean 
zero and variance V,(y), it is easy to show that ya = ?/((V(+)/V,(y)) + 1) 
which implies a decision rule that includes 2 if and only if V(T) < V,( y ). Thus 
when u2 is known, the decision is again based on the relative precision of the 
prior and sample information. This relative precision is known, conditional 
upon W, and therefore there is no pre-testing involved in the include-exclude 
decision. 

4.2. Case 2: y, z 0 

Now consider the case of y, f 0. In this case prior information suggests that 
one sign is more likely than the other. Before examining the include-exclude 
decision in this case, it is interesting to consider a modification of the pre-test 
estimator that chooses between 9 and y, rather than between T and zero. In 
other words, the alternative to including Z in the regression is to constrain its 
coefficient to be equal to the prior expectation of y. It is easy to show that the 
minimum Bayes risk pre-test estimator decision rule is identical to that derived 
in the previous section. If n* < 1, Z is included in the regression. If n* > 1, the 
Z coefficient is set equal to y,. The plausibility of this result is obvious in view 
of the preceding analysis. One chooses prior information or sample informa- 
tion according to which is more precise. 

When the allowable decisions are either to include or exclude Z, and the 
prior expectation of y is not zero, the choice is no longer between prior and 
sample information because the prior expectation is not one of the choices. In 
this case the decision rule associated with the normal-gamma prior is given in 
(4). The resulting conditions for the inclusion of Z are somewhat complex but 
have a logical interpretation. 

First consider the case in which t has the expected sign (i.e., y,/? > 0) and 
prior information is precise relative to sample information (n* > 1). Then the 
decision rule is to include Z if and only if ITI < kjy,l, where k = 2n*/(n* - 1). 
This result is striking because, viewed conditional upon S2, it is equivalent to 
including Z only when the t-statistic is smaller (in absolute value) than some 
critical value. This is of course directly opposed to the usual rule of including Z 
when the t-statistic is large but the common sense of the rule is easily 
demonstrated. Suppose that both y and yr, are positive. If p is small (relative to 
yp) it will lie between 0 and yn and will therefore be preferable to 0 as an 
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estimator of y. As T becomes larger and larger relative to yp, the ‘strong’ prior 
will eventually result in y moving farther from yn than yr IS from 0. 

If the sign of p is as expected but the prior information is relatively 
imprecise, the decision rule is to always include Z. On the other hand, if the 
sign of T is unexpected with a relatively precise prior, the rule is to always 
exclude Z. Only in the case where the sign is unexpected and the prior is 
relatively imprecise is Z included for large IT]. 

The results of this section have been derived under the assumption that the 
prior density for y can be precisely specified. Given the difficulty in perfectly 
specifying one’s prior information [see Hill (1975)], it would be interesting to 
examine the robustness of this pre-test estimator with respect to errors in the 
specification of the prior. Berger (1982) demonstrates that Bayesian robustness 
is generally improved through the use of more fat-tailed priors such as the 
Cauchy, rather than the commonly used normal priors. The advantage of the 
fat-tailed prior is that when prior and sample information come into conflict, 
the fat-tailed prior leads to relatively more weight being given to the sample 
information. This in turn provides robustness with respect to n&specification 
of the prior. A complete analysis of this issue is beyond the scope of this paper. 
However, to achieve a degree of robustness in practice, it is only necessary to 
be aware of situations in which prior and sample information are in conflict, 
and to reexamine both prior and sample information in such situations. 

5. Summary and conclusions 

This paper has been concerned with the normal linear regression model 
y = Wa + E = Xb + Zy + E, where the inclusion of Z in the final regression 
depends upon whether or not the OLS estimator f falls in some critical region 
defined in terms of 8’ and W, The objective was to determine what critical 
regions minimize Bayes risk under normal-gamma priors for (/3, y, a2), where 
the Bayes risk is R(&) = Eh*((6 - (u)(& - a)‘), & is the pre-test estimator of (Y, 
and h* is the normal-gamma prior for (p, y, a2). The key results are the 
following: 

(1) R(k) depends only upon the marginal prior for (y, a2). Thus to evaluate 
R(&) it is not necessary to specify the prior for /?. 

(2) When Z is a single variable, the critical region that minimizes R(y) also 
minimizes R( ~5) in the sense that for any other critical region, R( 5) exceeds 
the ‘minimum’ by a positive semidefinite matrix. 

(3) The critical region that minimizes R(7) is defined to include f if and only 
if ]y - yr] < (yEJ where ye is the posterior expectation of 7. 

(4) When prior information is neutral with respect to the sign of y, the 
include-exclude decision should be based entirely upon prior information 
(and knowledge of W) and thus no pre-testing is required. 

(5) When prior information is not neutral with respect to the sign of y, 
pre-testing is appropriate but the optimal critical region is quite different 
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from that implicit in the common rule of including Z when the absolute 
value of the t-statistic exceeds some critical value. 

A central parameter in the determination of these optimal critical regions is 
the relative precision of the prior and sample information. Under a normal- 
gamma prior for (y, a*), the precision of the prior information is n*/L’( 9). 
The precision of the sample information is simply l/V(p). Thus the relative 
precision is n*. For those who are not happy with a prior whose precision 
depends upon V(y), it is useful to consider a normal prior with expectation yP 
and precision l/V,. If a* is known, the relative precision is also known, and is 
simply V( y )/I’, = u */(( Z’M, Z) . VP). If there is relatively little prior informa- 
tion regarding u*, it seems sensible to use v(q)/V, = c?~/((Z’M~Z). VP) as an 
approximate to the relative precision. Then, for example, if there is no prior 
information regarding the sign of y, one would regress y on X and Z, for 
purposes of observing v(v), and then include Z in the final regression only if 
Iq<p) < VP. 

Appendix 

A. 1. Proof of Theorem 1 

Note that 

MSE(d) = [q]. (A.l) 

It will prove useful to note that fi = b - cp, where b = ( X’X)p’X~ and 
c = (X’X))‘X’Z. Therefore, 

fi-/3=(b-/3-cy)-c(T-y). 64.2) 

The expectation and variance of b are 

E(b;W)=P+cy, V(b; II’) = u2(X’X)-‘, 

which combine with (A.2) to yield 

MSE@) = E(@ - P)(P - P,‘) 

= u2(X’X)-’ + cMSE(y)c’ 

-E((b-P-cy)(Y-y)‘c’;W) 

-cE((~-y)(b-B-cy)‘;W), 

(A-3) 
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and 

E((B-P)(P-u)‘;W)=E((b-P-cy)(~-y)’;W) 

-cE((M)(Vy)‘;W). (A.4) 

The following lemmas help simplify (A.3) and (A.4): 

Lemma A.I. b, y, and S2 are mutually independent. 

Proof. Note that 2 = Xc + M,Z so that y = Xfi + Zy + E = X(/? + cy) + 
M,Zy + E = Xfi* + Z*y + E. The OLS estimators of p* and y using this form 
of the equation are b and T, respectively, and therefore b and ? are indepen- 
dent of s2 by a well-known theorem. Furthermore, b and 9 are themselves 
independent because they are normally distributed and uncorrelated (by virtue 
of the orthogonality of X and Z*). 

Lemma A.2. E((b - p - cy)(p - y)‘; W) = (0). 

Proof. Note that 7 is fixed [at either f or (0)] conditional upon W, f, and e2. 
Therefore, E((b - /3 - cy)(p - y)‘; W, q, 6’) = E((b - /I - cy); W, y, S*) 
~(7 - y)‘= (0) by Lemma A.1. 

Combining (A.l), (A.3), (A.4), and Lemma A.2 yields 

MSE( 5) = 
o=(X’X)-’ + cMSE(T)c’ - cMSE(7) 

- MSE(y)c’ 1 MSE(y) ’ 
which proves Theorem 1. 

A.2. Proof of Theorem 3 

In the proof of Theorem 2 it was shown that 

MSE( 6,) - MSE( hIr) = [$j--+]? 

where 

D = MSE(y[) - MSE&,). 

Therefore, 

R(&,) -I?(&,) = Eh(MSE(&J) - Eh(MSE(Q) 

= [--1; 
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where R( 0) = E,,( yI) - Eh( yII) = R( yI) - R( TIII). Following the steps found in 
the proof of Theorem 2 it is easily demonstrated that R( GI) - R( yIII) is p.s.d. if 
and only if R(D) is p.s.d. and the theorem is proved. 

A.3. Proof of Theorem 4 

Define 

gt(p, e2; W, y, a’) = joint density of + and rj2 conditional upon W, y, and a2, 
g2( ?, e2, y, a2; W) = joint density of q, I?~, y, and a2 conditional upon W, 

g3(?, a2; W) = marginal joint density of p and e2 conditional upon W, 
g,(y, u2; p, b2, W)= g,/g, = joint posterior density of y and u* conditional 

upon y, h2, and W. 

Then 

~(7) = E&-Y)’ = E&,(7-y)“). 

Note that in Es,(P - Y)~, p is ftxed and is either p or (0) depending upon 
whether or not 9 E A(e2, W). Therefore R(y) will be minimized by choosing 
A(a2, W) such that it includes 9 if Es,(T - y)2 < Eg4(yp - Y)~, and the theo- 
rem is proved. 
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