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This paper examines the transition stages between steady states for an overlapping-generations 
growth model. Our procedure is based on eigenvalues and eigenvectors. For marginal parameter 
changes, we can generate exact ‘multiphers for the responses of state variables in each time 
period. Our solution technique is direct (rather than iterative), it yields an intermediate-stage test 
of stability, and it clearly reveals the need to interpret initial conditions carefully. We work several 
illustrative examples numerically. 

1. Introduction 

A number of recent papers use decentralized, overlapping-generations mod- 
els to explore the consequences of permanent changes in exogenous variables. 
For example, Summers (1981) investigates the steady-state implications of 
reductions in taxes on interest incomes; KotlikolT(1979) considers the long-run 
effect on national savings of a social security system [see also Samuelson 
(19731; Feldstein (1977) shows that a reduction in taxes on land rents can 
raise an economy’s steady-state capital intensity; Laitner (1982a) shows that an 
increase in the prevalence of monopolistic pricing can lower an economy’s 
long-run capital-to-labor ratio; and, Diamond (1965) shows that a larger 
national debt can adversely affect an economy’s ability to accumulate physical 
capital. In each case, the analysis centers on long-term results. However, the 
short-run effects of permanent or temporary parameter changes in such models 
are also potentially interesting, both because transitions to steady states may 
take many years and because the intertemporal general equilibrium focus of 
overlapping-generations models may enable them to capture some aspects of 
reality which simpler frameworks miss. 

If we are to study time intervals during which an economy moves between 
steady-state growth paths, we must be prepared to specify the manner in which 
private-sector agents form their expectations. In an overlapping-generations 
model with households living several periods, for instance, each family must 
predict income figures and interest rates over the remainder of its life span 
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before being able to choose its present consumption and saving levels. A 
popular method of modeling anticipation formation is to assume perfect 
foresight for all agents (or, in the case of a stochastic framework, to assume 
that people’s expectations are ‘rational’). This approach has the virtue of not 
requiring a behavioral apparatus justifying anticipations in the private sector 
which do not make use of all potentially available information. 

Auerbach, Kotlikoff and Skinner (1981) assume perfect foresight and study 
transition periods following tax changes. Their procedure is to specify arbi- 
trarily a finite (but very long) time interval for the transition in question. They 
then guess values for the economy’s state variables throughout the interval. 
Assuming people’s expectations coincide with the guessed values, the authors 
can derive an actual time path for the state variables. They adjust their guesses 
until the latter exactly equal the derived values. A fixed point for the guessing 
process yields a perfect foresight equilibrium. Lipton, Poterba, Sacks and 
Summers (1982) also present a way of dete rmining a solution. Discrete-time, 
perfect-foresight models usually can be rearranged into vector difference 
equations with split boundary conditions. Lipton et al. guess values for the 
missing initial conditions and simulate to the final state.’ The guesses are then 
modified until the simulated final state satisfies exogenous terminal boundary 
conditions. Because convergence of the algorithm may be difficult to obtain in 
practice, the authors propose dividing the total transition interval into seg- 
ments - multiplying the dimensionality of the difference-equation system. 

The purpose of this paper is to use eigenvalues and eigenvectors to study the 
transition phases between steady states for a perfect-foresight model resem- 
bling those surveyed in the first paragraph. Our approach does not require the 
a priori specification of termination dates for transitions, and it does not 
require an iterative solution procedure. It has the benefit of providing an 
interim-stage test for stability, which could save the effort of seeking a solution 
for a problem that does not have one. It also reveals clearly the interpretations 
we need to assign to various subsets of initial conditions. 

After describing our methodology and solution concepts, we illustrate our 
analytical procedures with several examples - we examine a permanent change 
in the overall rate of technological progress and a permanent adjustment in tax 
rates on interest and labor income. Although the dimensionality of our 
problem is rather large, we had no difficulty in calculating tables of results. 
Section 4 discusses the sensitivity of our outcomes with respect to variations in 
selected parameters. 

2. Transition-period multipliers 

This section presents our method for deriving characterizations of dynamic 
adjustment paths. We begin with a description of the economic framework of 

‘Again we must arbitrarily specify a time interval for the complete transition phase. 
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our analysis. As outlined briefly at the end of the section, there are a number 
of possible elaborations of the framework which would not fundamentally alter 
our computational difficulties. 

2.1. The economic framework 

We employ a slightly modified version of the life-cycle savings models of 
Diamond (1965) and Tobin (1967). We include an aggregate production 
function and a rudimentary government sector. 

Our model keeps track of individual households. Each begins with a husband 
and wife, raises two children, and ends after not more than N + 1 years. We 
normalize to a single representative family of each age at each time. House- 
holds are alike other than their starting dates: A family’s date of birth 
determines the level of technological progress manifested in its ‘effective’ labor 
supply. There are no bequests or inheritances. Tune is discrete. As in Diamond 
and Tobin, there is one output commodity produced in each period. The 
commodity is homogeneously divisible into investment, consumption, and 
government purchases. We normalize the good’s current price to 1 in every 
period. 

Consider the family i E (0, 1 , . . . , N} years old at time 1. We use the 
following notation: c(i, t) is the family’s current quantity of consumption; 
$(c(i, I), i) is its age-i utility; I(i, t) is its (exogenously given) ‘effective’ labor 
supply; r, is the net-of-tax interest rate on savings carried from period t - 1 to 
I; w, is the current net-of-tax wage rate for ‘effective’ labor units; and a(i, t) 
gives the family’s beginning-of-period asset holdings at time r - the assets 
having been carried over from period I - 1. Tax rates reflect all tax revenues 
minus transfer payments from government other than retirement benefits. The 
latter receive special treatment because of their magnitude and timing: we 
increase the labor supply figures of older families to reflect retirement transfers 
(including social security) from government. Let i(i, t) be the version of I(i, t) 
augmented by such transfers. 

Starting at age i and time f, our family above chooses c( j, t +j - i), for all 
j=i ,...,N, to solve 

N 

(1) 
subject to 

a(j+l,t + 1 +j-i)= (1 +r,+j-i).a(j,t+j-i) 

+w,+j-i’i(j,t+j-i)-C(j,t+j-i) 

for all j = i, . . . , N, (2) 

a(N,t+N-i)ZO, a( i, t) given. (3) 
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We assume that as a function of c, cp( c, j) is twice continuously differentiable, 
strictly concave, and strictly increasing. To rule out negative values for c, we let 

p$u(c, jpac = co. (4 

If the rate of technological progress is not zero, we also need (for the existence 
of a steady state) preferences to be homothetic - which implies that +( 0) must 
be a member of the Bergson (or isoelastic) class [see Katzner (1970, p. 31)]. 
Notice that because there are no inheritances, 

a(O,t)=O forallt. (5) 

We can easily relate household and aggregative variables. If L, is the 
aggregative ‘effective’ labor supply available for production at time t, 

L,= ; r(j,t). (6) 
j-0 

We assume labor-augmenting technological progress at a fixed rate y, and we 
assume government retirement benefits will be raised for successive generations 
at the same rate. Thus, 

r(i,t+l>=(l+y).l(j,t), 

i(j,t+1)=(1+y)-i(j,I), (7) 

L ,+i=(l+y).Lt forallt. 

If K, is the aggregate physical capital stock at the start of period t, and if D, is 
the national debt, 

K,+ D,= i a(j, t). 03) 
j-0 

We assume physical capital used at time t must have been manufactured (and 
financed) at time t - 1 or before. Capital depreciates at a fixed proportional 
rate A. Thus, if I, is time-t gross (physical) investment, 

K r+l=l,+(l -X).K,. (9) 

The time-r capital-to-labor ratio is 

k, = K/L,. (10) 
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Let q be gross aggregate output at time t. We assume there is an aggregate 
production function #( .) with 

The production function is homogeneous of degree 1, twice continuously 
differentiable, strictly increasing, and concave. 

Our government sector is also streamlined. There is a proportional tax with 
rate r,,, on labor earnings and a proportional tax with rate rr for interest 
income.’ Competitive factor pricing implies 

w, = h(K,, L,)*O -d, (12) 

‘,= [~1(K,,L,)-hl.(1-7,). (13) 

The government can run a deficit. To allow long-run steady-state growth for 
the economy, as in Diamond (1965) we assume the deficit grows at rate y. 
Thus, there is a constant 6 such that for any t the time-f government deficit will 
be 6. (1 + y)‘. We have 

D,=6.(l+y)‘-1+6*(1+y)‘-2+ .** =&(1+y)‘/y. (14) 

The government finances D, with one-period bonds issued at time t - 1. We 
treat government spending as the residual category in the government budget 
constraint and assume the latter spending does not (directly) affect household 
utility-maximization calculations or the aggregate production function. 

2.2. The complete economy 

We now characterize the growth of the economy as a whole. As stated above, 
all agents have perfect foresight. 

We first transform our variables to remove long-run trends. Let 

0; = Q/(1 + Y)‘, (15) 

K: = q/(1 + y)‘, (16) 

a*(i, t) = a(i, t)/(l + y)‘, (17) 

1;: = L,/(l + y)‘. (18) 

‘AI the close of this section we comment on the feasibility of using a progressive tax structure. 
Section 3 experiments with several values for 7W and TV. 
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If a superscript T denotes a transpose, define 

x,= (II,*, a*(l, t) ,..., a*@‘, t))T~ RN+‘. (19) 

[Recall eq. (5).] Let p be the vector of parameters for the complete model - 
including production and utility function coefficients, y, r,,,, rr and 6. 

We summarize our economic model as follows. For any vector p, given 
x,-i and anticipations about k,, . . . , k,+N-l, households at time f - 1 can use 
eqs. (8) and (12)-(13) to predict values of r and w for the present and over 
the remainder of their lives. Hence, the utility-maximization problem of eqs. 
(l)-(3) implies a function F(., p) : RN+’ X RN + RN+’ with 

X,=F(x,-l,k,,...,k,+N-l,p). (20) 

Because of the normalizations of eqs. (15)-(18), F(a) is time autonomous. Eq. 
(8) determines a second function G(*, p) : RN+’ + R’ with 

k,= G(x,, P). (21) 

All perfect foresight growth paths for our system must obey eqs. (20)-(21). 

We can combine the last two equations. Let 

z,= (Z,(l) ,..., z,(2A’))== (XT, k ,+l,...,k,+N-1)TER2N, (22) 

and, if F(.)=(F’(.),...,FN+l(.))T, let 

H(Z,J,-1, P)=(81,...,92~)=ER~~, (23) 
with 

qj=z,(j)-Fj(z,-1,z,(2N),p) forall j=l,..., N+l, 

~jt=z,(j’)-zl-l(j’+l) for all j’=‘hi’+2,...,2N- 1, 

1/2N=Z,-1(N+2)-G(F(Z,-1,Z,(2N), P), P). 
Then 

H(z,,z,-,,p)=O forall t20 (24) 

is equivalent to having eqs. (20)-(21) hold for all I 2 0. 

2.3. Local stability 

Suppose that for parameter vector p* our model has a steady-state solution 
z*=z*(p*)~R 2N. In other words, supp ose z*( p*) obeys 

qz*(P*),z*(P*),P*)=O. (25) 
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For future reference, let 

and let 

H;r( p*> = m(z*( p*), z*(p*), p*)/& 

Hj+q p*) = aiq z*( p*>, z*(p*), P”)/kl. 
We must digress briefly to consider the local asymptotic stability of z*. 

Assuming H:( p*) is non-singular, and using the implicit function theorem, 
we can see that the local stability of z* must depend on the eigenvalues of 

M(p*)= -[II;*(p’*&?(p*). (27) 

Notice that the matrix M( p*) is 2N X 2N. 

Let our stability analysis begin at time t = 0. Then we want to know if 
following a shock at time 0, z, will converge to z*( p*). Below we will think, for 
example, of a surprise (but permanent) parameter change from p to p* 
occurring at f = 0. Then at t = 0, past events fix the national debt and family 
assets carried over from t = - 1. So, the first N + 1 components, x;f, of z. 
must be exogenously given. In the terminology of Laitner (1982b) they are 
‘historical’ initial conditions. In contrast, the remaining components of 
z. - k,,..., kNel - are ‘non-historical’. They are not physically (directly) 
linked to the past. The surprise at time t = 0 will have invalidated previous 
forecasts about k l,. . . , kNel, seemingly leaving us without initial values for 
them. 

However, suppose M( p*) has one explosive eigenvalue for each non-histori- 
cal element of zo. Then if the economy is to converge to z*( p*) after time 0, 
there will only be one possible set of values for k,, . . . , k,- 1 - the set placing a 
zero loading on each eigenvalue with modulus greater than 1. If M( p*) has 
less than N - 1 explosive eigenvalues, we will face an indeterminacy problem 
stemming from our lack of. figures for k,, . . . , k,-,. If M( p*) has more than 
N - 1 unstable eigenvalues, & will not in general be able to reach z*(p*). If 
M( p*) has exactly N - 1 explosive roots, neither indeterminacy nor divergence 
need be a stumbling block [see Laitner 19811. This is not to say that our model 
provides a mechanism insuring that agents wilJ initialize (at t = 0) their 
anticipations-o-f kl,, . . , /cNbl to &sure convergence to z*(p*) even if we do 
have the correct ntiber of unstable characteristic roots. Nevertheless, we can 
argue that in the latter case nothing rules out either convergence or de- 
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terminacy. In the context of a simpler model we might, in fact, be able to 
perform a global analysis which would exclude all paths except the convergent 
one [see, for example, Shell and Stiglitz (1967)]. 

Thus, from the standpoint of local asymptotic stability and determinacy we 
would like M( p*) to have N + 1 eigenvalues of modulus less than 1 and N - 1 
with modulus exceeding 1. This turns out to be the case in all of our numerical 
calculations in section 3. 

2.4. Adjurtment time paths 

Our focus of attention is the short-run adjustment time path of z, following a 
permanent change in an element 8, say, 19 =p(m), of parameter vector p, Let 
the new vector be p*. 

If for z* = z*(p), 

&T(P)= W*(p), z*(p), pMp(m), (28) 

a convenient way of presenting steady-state results about changes in 8 is to 
solve for dz*( p)/d8 E R2N from 

:H;r(p).(dz*/d6’)+H,*(p).(dz*/df3)+H,*(p)=OERZN. (29) 

The elements of dz*/d8 correspond to what macroeconomists call ‘multi- 
pliers’: if we change B by a small amount At9, if we begin the analysis on a 
steady-state growth path for the original parameter values, and if the economy 
responds to the variation in 8 by moving to a new steady state in the local 
vicinity of the former one, then (dz*/dQ. Af3 approximates the long-run 
change in each element of z* = z*(p). 

We can derive corresponding short-run, or transition-phase, multipliers as 
follows. Given p and z,,, eq. (24) determines z, for all t 2 1. So, we can write 

z,=E(f,p,zo(p)) forA t21, (30) 

where z. = zo( p) because the last N - 1 components of z. are non-historical 
(as discussed above). Let A0 distinguishp* fromp, and let 

Then 

~(t,p*,zo(p*))-l(t,p.zo(P))~(d~(t,p,zo(p))/de)~Ae. (31) 
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We study the case in which p had been in force long enough to establish 
z*(p), but in which a change in 8 (giving p*) occurs at time t = 0. Thus, 

~(~,P,z~(P))=z*(P) forallt. (32) 

Define 

5, = d5(& P, z,(p))/de. (33) 

Then 5; for all t 2 0 gives our sequence of short-term multipliers - see eq. (31). 
Replacing z, with t(t, p, zc( p)) in eq. (24), and differentiating, 

H;“(p).3;+Hz*(p).S,-1+H,*(p)=O. (34) 

This equation enables us to analyze {,. We deal only with infinitesimal changes 
in Ad, for which eq. (31) is exact.3 

Transform variables to 

f,=L-(dz*(p)/de). (35) 

Then eqs. (29) and (34) imply 

So, using eq. (27), 

(36) 

Consider our initial condition &-,. We know how to calculate 
dz*( p)/de - see eq. (29). Because the elements of x0 are ‘historical’, we have 

dx,/de = 0. (37) 

We do not immediately know the remaining components of &, - 
dk,/d0,. . . , dk,-,/de - we do not even know k,,. . .,kNwl, as discussed 
above. However, if z*(p) is possibly to have the stability and determinacy 
properties of section 2.3, M(p) must have exactly N - 1 eigenvalues with 
modulus greater than 1. Unless we choose dk,/dfI,. . . , dk,-,/de to put zero 

‘To compute exact adjustments in z, all t ~0 following a medium or large change in 0, we could 
turn to Lipton et al. (1982) - perhaps using our multipliers to obtain starting values for their 
iterative procedure. Although Laitner’s (1981) proofs describe the construction of a precise 
solution, they only guarantee success when A0 is small. An alternative approach is to check the 
magnitude of dZzJde2 each r 2 0 for clues of how much dz,/dfJ changes when 6’ does. See section 
4 below - especially the fourth column of table 3. 
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loadings on the explosive roots, 5, will not converge to the vector of long-run 
multipliers dz*( p)/de - in other words, z, will not converge to the new steady 
state. Thus, corresponding to our stability analysis, we have a way of choos- 
ing fO. 

Our steps are as follows. Let E’(i) be a square matrix with the stable 
eigenvalues of M(p), each raised to the power i, along its principal diagonal 
and zeros elsewhere; let E*(i) be the same for the unstable roots; and, let 
Y = [I/’ V*] be the matrix of eigenvectors for M(p), with Vj containing the 
vectors corresponding to the eigenvalues in Ej(1). Then 

f,= Y’.E’(t)-b,+ Y*-E2(r).b2, (38) 

withb,~R~+iandb~~R~-’ gives all solutions to eq. (36). For convergence 
[via eq. (38)] to a new steady state following a change in 8, we will need 
b, =OE RN-‘. Providing the first N + 1 rows of V’, say Vll, constitute a 
non-singular matrix, we can solve 

(dx,/d8) - (dx*( p)/d@ = -dx*( p)/dt9 = Y1l. b, 

for b,. If the remaining rows of V’ form V*l, the last N - 1 elements of &, are 
then given by V*l. b,. 

2.5. Possible generalizations 

We have set up our economic framework, explained our basic difference 
equation system [see eq. (36)], and presented a method of obtaining adequate 
numbers of initial conditions - if we have exactly the correct number of 
eigenvalues for M(p) with modulus less than 1. Before turning to numerical 
examples, we now comment briefly on several possible generalizations of our 
analysis. 

The practical difficulty of implementing our derivation of short-run multi- 
pliers is the eigenvalue computation for M(p). Elaborations of our economic 
system which do not substantially alter the dimensionality of M(p) will, 
therefore, tend to be feasible to work with if our model is. As an example, 
suppose we make family labor-leisure choices endogenous, and suppose the 
new formulation’s design permits a steady-state solution. Then we can repeat 
our analysis with only one new row and column for M(p). If we could develop 
a sophisticated description of how the government adjusts tax rates, its 
spending, and its deficit in response to current fluctuations in the gross 
national product per capita, the dimensions of M(p) would remain unchanged. 
The same would be true if we could replace our tax rates r,,, and rr with a twice 
continuously differentiable facsimile of a progressive tax system (having brac- 
kets which expand with the natural growth of the overall economy). On the 
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other hand, if we try to introduce a new capital variable - such as a natural 
resource - the number of rows and columns in M(p) would double. 

3. Examples 

This section presents two numerical examples which illustrate our procedure 
for studying time paths of adjustment. Both examples investigate permanent 
changes in exogenous variables - in one case, an alteration in the rate of 
labor-augmenting technological progress; in the other, a modification of the 
tax system. Numerous other computations are possible, of course. 

3. I. Parameter values 

First we must select functional forms for +( *) and II, (.) and numerical values 
for all parameters. 

We let #(a) be the constant elasticity function 

l)(K,L)= [cKp+(1 -cY)L-p]-l’p. 

The production elasticity of substitution is 

(40) 

up = l/(1 + p). (41) 

Following Tobin (1967), we sometimes set up = 1 - giving the Cobb-Douglas 
special case. In light of the time series estimates surveyed in Lucas (1969) and 
Nerlove (1967), we also try up = f. National accounts data for 1981 suggest 
that labor’s share of the gross national product is 0.65. We adjust a to reach 
that share in every instance. 

We construct an empirical measurement of the U.S. capital stock from 
Musgrave’s (1982) constant-dollar fixed non-residential and residential private 
capital figures for 1981 plus national accounts data on business inventories 
during the same year. We also add the value of privately held land, assuming 
that the constant-dollar stock of land was the same in 1981 as in 1949, and 
using 1949 data from Goldsmith, Brady and Mendershausen (1965, table W3). 
Then using national accounts data on total depreciation in 1981, we determine 
h = 0.06. 

We use Bergson utility functions for families. Households start with an 18 
year old husband and wife. Each adult lives a maximum of 70 additional 
years - so that N = 70. Following Tobin (1967), we compute the number of 
‘equivalent adults’ per representative family of age i E (0, 1,. . . ,70} by sum- 
ming the survival probabilities for males and females of age 18 + i (taken from 
standard actuarial tables), 0.6 times the number of minor children, and 0.8 
times the number of teenaged children. We assume a family’s first child is born 
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when the parents are 22 and its second when they are 24.8. Every child leaves 
home on his or her eighteenth birthday. 

As in Tobin (1967), if e, is the number of equivalent adults for a family of 
age i, 

or 

+(C, i) = (ei/b)‘(C/ei)’ with /3<1 and /I+Oo, 

(42) 
e, - ln( c/ei) .4 

The (absolute value of the) inverse of the marginal utility of consumption with 
respect to consumption is 

a, = l/(1 - a), (43) 

or, in the logarithmic case, a, = 1. Tobin chooses a, = 1. Other authors have 
used lower values. Weber (1970) generates estimates for a, of 0.14, 0.28. and 
0.41. Weber (1975) derives figures of a, = 0.56 and 0.75. Given this backdrop, 
wetryu,=l ando,=+. 

Our data on family labor supplies comes from U.S. Department of Health 
and Human Services (1981, tables 35-36). The most recent figures are for 1978. 
Fortunately, our results are invariant to the proportional labor supply changes 
over time which eq. (7) implies. We employ median labor earnings figures for 
different age and sex categories corrected for labor force participation and 
multiplied by survival probabilities.5 We then derive i(i,1978) for all i = 
0 , . . . ,70 as outlined in section 1, first making a proportional (upward) correc- 
tion in I(i, 1978), all i, to account for employers’ contributions to govemment- 
run retirement programs (including social security). As in Summers (1981) and 
Kotlikoff (1979), we set the rate of labor-augmenting technological progress 
equal to o.02.6 

National accounts data for 1981 on all federal, state, and local tax receipts 
less transfer .payments other than retirement benefits implies an average tax 
rate of 0.28. Thus, some of our computations set 7r = r,,, = 0.28. As in Summers 
(1981) and Kotlikoff (1979), we try a higher tax, r,= 0.40, as well.’ For 

4Notice that our notation is somewhat different from Tobin’s (1967). In particular, his variable c 
corresponds to our c/e,. 

‘As in Tobin (1967), we implicitly assume the existence of zero transactions cost life insurance 
and annuity contracts. Several recent analyses of the importance of this assumption are KotlikofT 
and Spivak (1981) and Davies (1981). 

‘This y is high for the very recent past [see De&on (1979)], but perhaps not for the long run. 
(At any rate, one of the potential uses of our model is to investigate the consequences of a 
reduction in y.) 

‘See, for example, table 5 in Feldstein and Summers (1979). 
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Table 1 
Steady-state solutions. 

Steady-state values for 
Trial Parameters” WY k r 

1 T,~ = 0.28, 7r = 0.28 2.66 4.51 0.05 
u<= 1, up = 1 

2 T,r = 0.22, Tr = 0.40 2.48 4.06 0.05 
oc= 1. a,, = 1 

3 7” = 0.22, Tr = 0.40 2.48 12.38 0.05 
or= 1. u,, = 0.5 

4 T,,. = 0.22, Tr = 0.40 1.54 2.19 0.10 
(I, = 0.5, fJp = 0.5 . 

“In every case, h = 0.06, y = 0.02, and labor’s share = 0.65. 

consistency with our overall tax receipts figure, we set r,,, = 0.22 in the latter 
case. The size of the national debt held by private investors in 1981 and our 
growth rate of y = 0.02 imply a steady-state deficit-to-gross national product 
ratio of 0.0045. 

Table 1 presents numerically derived steady-state solutions for our model in 
four cases. As a comparison, our empirical capital stock figures (for 1981) 
imply a capital-to-output ratio of 1.91. 

3.2. Multipliers 

Table 2 presents multiplier results, in elasticity form, for different parameter 
combinations. In each instance we developed closed-form expressions for all 
elements of M(p) and dz*/de. We then solved for the eigenvalues of M(p) 
numerically. We always found exactly N + 1 = 71 eigenvalues with modulus 
less than 1, and N - 1 with modulus greater than 1. So, as discussed at the 
close of section 1, neither indeterminacy nor lack of a convergent time path 
was ever a problem. In reading table 2, notice that in every case the exogenous 
shock occurs at time t = 0 and is a complete surprise. At the beginning of 
period 0, the government deficits and private savings of previous periods fix the 
starting national debt and vector of family asset holdings.* None of the 
variables in table 2 have long-run time trends. 

Consider a rise in y. In the context of a simple Solow (1956) model, ifs is the 
aggregate average propensity to consume, \c, ( .) is the production function, and 
k* is a steady-state capital-to-labor ratio, 

s-t,b(k*,l)=(h+y)-k*. 

XRecall our assumptions from section 2 - capital employed at time t must have been built and 
financed at time I - 1 or before. 
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Table 2 
Multipliers, in elasticity form, for permanent changes at time 0 in y and in tax rates.” 

Elasticity w.r.1. y for Elasticity w.r.t. 7,. forh 
Time k r WC AK/@ k r n’ AK//) 

0 
1 
2 
3 
4 
5 
6 

i 
9 

10 
11 
12 
15 
20 
50 
00 

0 
1 

: 
4 
5 
6 
1 
8 
9 

10 
11 
12 
15 
20 
50 
03 

0 
1 
2 
3 
4 

2 
7 
a 
9 

10 
11 
12 

0.000 
-0.026 
-0.050 
-0.073 
-0.095 
-0.115 
-0.134 
-0.152 
-0.169 
-0.184 
-0.199 
-0.213 
-0.226 
-0.259 
-0.300 
-0.355 
-0.346 

O.OCKl 
-0.027 
-0.053 
-0.078 
-0.100 
-0.122 
-0.142 
-0.161 
-0.180 
-0.196 
-0.211 
-0.226 
-0.239 
-0.274 
-0.318 
-0.381 
-0.372 

Trial 1 (with r,+ = 0.28. 7r = 0.28. o, = 1 and a,, = 1) 
0.000 0.000 -0.320 O.ooO 1.755 
0.031 -0.oo9 -0.261 0.05x 1.686 
0.060 -0.018 -0.204 0.114 1.620 
0.088 -0.026 -0.150 0.167 1.556 
0.113 -0.033 -0.097 0.218 1.495 
0.138 - 0.040 -0.047 0.277 1.438 
0.160 - 0.047 0.001 0.313 1.381 
0.182 -0.053 0.047 0.358 1.327 
0.202 -0.059 0.091 0.401 1.276 
0.221 -0.064 0.133 0.442 1.227 
0.238 -0.070 0.174 0.481 1.180 
0.254 - 0.074 0.212 0.519 1.135 
0.270 -0.079 0.249 0.554 1.092 
0.309 -0.090 0.349 0.653 0.975 
0.358 -0.105 0.485 0.789 0.812 
0.425 -0.124 0.780 1.105 0.434 
0.414 -0.121 0.175 1.097 0.444 

Trial 2 (with rw, = 0.22. -rr = 0.40. q. = 1 and o,, = 1) 
0.000 0.000 -0.399 O.OQO 1.527 
0.031 -0.010 -0.336 0.056 1.463 
0.060 -0.019 -0.276 0.109 1.403 
o.oaa -0.027 -0.219 0.160 1.345 
0.114 -0.035 -0.163 0.208 1.290 -0.209 2.511 
0.138 -0.043 -0.110 0.255 1.237 -0.193 2.438 
0.161 - 0.050 -0.060 0.299 1.187 -0.177 2.368 
0.183 -0.056 - 0.011 0.342 1.138 -0.162 2.300 
0.203 -0.063 0.036 0.383 1.092 -0.148 2.235 
0.222 -0.068 0.080 0.422 1.048 
0.239 - 0.074 0.122 0.459 1.006 
0.256 -0.079 0.163 0.494 0.966 
0.271 -0.084 0.202 0.528 0.927 
0.311 -0.096 0.307 0.621 0.822 
0.360 -0.111 0.449 0.749 0.678 
0.431 -0.133 0.759 1.042 0.346 
0.421 -0.130 0.758 1.038 0.350 

Trial 3 (with 7W = 0.22, Tr= 0.40. cl,= 1 and IJ,, = 0.5) (continue 
0.000 0.000 0.000 0.048 0.000 1.181 

-0.019 0.042 -0.013 0.100 0.028 1.118 
-0.036 0.082 -0.025 0.151 0.054 1.059 
-0.052 0.118 -0.036 0.198 0.078 1.003 
- 0.067 0.152 -0.047 0.243 0.102 0.950 
-0.081 0.184 -0.057 0.286 0.124 0.900 
-0.094 0.214 -0.066 0.326 0.145 0.853 
-0.106 0.241 -0.074 0.364 0.165 0.808 
-0.117 0.266 -0.082 0.400 0.183 0.765 
-0.128 0.289 -0.089 0.434 0.201 0.725 
-0.137 0.311 -0.096 0.466 0.218 0.687 
-0.146 0.330 -0.102 0.496 0.234 0.651 
-0.154 0.348 -0.108 0.525 0.249 0.617 

-0.389 2.957 
-0.369 2.871 
-0.349 2.789 
-0.330 2.709 
-0.313 2.632 
-0.296 2.558 
-0.279 2.486 
-0.264 2.417 
-0.249 2.351 
-0.234 2.287 
-0.220 2.225 
-0.207 2.166 
-0.195 2.108 
-0.160 1.946 
-0.113 1.711 
-0.002 0.744 
-0.005 0.713 

-0.282 2.831 
-0.263 2.147 
-0.244 2.666 
-0.226 2.587 

-0.134 2.172 
-0.121 2.111 
- 0.109 2.053 
-0.097 1.996 
-0.065 1.837 
-0.020 1.607 

0.082 0.710 
0.081 0.675 

id) 

-0.282 1.404 
-0.263 1.348 
-0.244 1.294 
-0.221 1.243 
-0.211 1.195 
-0.195 1.149 
-0.181 1.105 
-0.167 1.064 
-0.154 1.025 
-0.141 0.988 
-0.130 0.953 
-0.118 0.920 
-0.108 0.888 
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Table 2 (continued) 

Trial 3 (with T,,, = 0.22, r, = 0.40. u, = 1 and up = 0.5) 

0.394 -0.122 0.601 0.289 0.525 
0.447 - 0.138 0.699 0.343 0.403 
0.498 - 0.154 0.865 0.456 0.148 
0.487 -0.151 0.860 0.454 0.153 

Trial 4 (with TV, = 0.22, rr = 0.40, q = 0.5 and o,, = 0.5) 

:E 
0:084 
0.123 
0.161 
0.198 
0.233 
0.266 
0.299 
0.329 
0.358 
0.385 
0.411 
0.481 
(P.569 
0.653 
0.644 

O&O 
-0.017 
-0.033 
- 0.049 
- 0.064 
- 0.078 
- 0.092 
- 0.106 
-0.118 
- 0.130 
- 0.142 
- 0.153 
-0.162 
-0.190 
- 0.225 
- 0.258 
- 0.255 

- 0.228 
- 0.201 
-0.173 
-a144 
-0.114 
- 0.083 
- 0.052 
- 0.021 

0.011 
0.044 
0.076 
0.109 
0.142 
0.239 
0.395 
0.795 
0.763 

0.022 
0.033 
0.045 
0.057 
0.069 
0.082 
0.095 
0.108 
0.121 
0.134 
0.148 
0.189 
0.257 
0.489 
0.478 

0.991 
0.973 
0.953 
0.933 
0.912 
0.891 
0.869 
0.847 
0.824 
0.801 
0.778 
0.754 
0.730 
0.657 
0.537 
0.127 
0.146 

Elasticity w.r.t. y for Elasticity w.r.t. q,, forb 

Time k r WC A K/Yd k r w AK/Y 

15 - 0.174 
20 - 0.197 
50 - 0.220 
03 - 0.215 

0 0.000 
1 - 0.024 
2 - 0.047 
3 - 0.070 
4 - 0.091 
5 -0.112 
6 -0.132 
7 - 0.151 
8 - 0.169 
9 - 0.186 

10 - 0.202 
11 -0.218 
12 - 0.233 
15 - 0.272 
20 - 0.322 
50 - 0.369 
co - 0.364 

- 0.029 0.802 
- 0.042 0.685 

0.037 0.299 
0.036 0.295 

- 0.282 0.544 
- 0.275 0.570 
- 0.267 0.596 
-0.259 0.620 
- 0.251 0.643 
- 0.242 0.666 
- 0.234 0.688 
- 0.225 0.708 
- 0.216 0.728 
- 0.207 0.746 
-0.197 0.762 
-0.188 0.777 
- 0.178 0.791 
- 0.150 0.821 
- 0.102 0.844 

0.060 0.319 
0.052 0.311 

‘In all cases, X = 0.06, y = 0.02, and labor’s share = 0.65. 
bWit.h a compensating change in T, - see the text. 
‘10 is the gross wage per ‘effective’ labor unit. 
dA K/Y is the net investment-to-GNP ratio. 

If s is a constant and up = 1, dln(k*)/dln(y) would equal [l/(cr- l)]. 
[y/(X + y)], or, with our parameters, about - 0.38. 

In our model, s is not a constant, however, and we have a government sector. 
Concentrating on s, if y increases, we might expect the following long-run 
effects. First, provided young families tend to save and retired families to 
dissave, an increase in y will tend to raise the steady-state magnitude of the 
former figures relative to the latter - causing s to rise. Second, with Bergson 
preferences, a family’s consumption in youth will tend to depend positively on 
the present value of its future labor earnings [see the equations in Tobin (1967) 
and Summers (1981)]. Hence, a rise in y will tend to increase youthful 
consumption at the expense of saving. Third, if k* falls, the resulting rise in 
interest rates will reduce the present value of each family’s future labor 
earnings, tending to increase saving early in life [see table 1 in Summers (1981), 
for instance]. On the other hand, at least in the case of up = 1, if family 
preferences are homothetic, a permanent change in w will have no influence 
on s. 
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If s tends to rise with y in the long run, eq. (44) shows ldln(k*)/dln(y)l 
should be reduced. For most of the trials in table 2, however, our 
dln(k*)/dln(y) figures agree fairly closely with -0.38. Thus, the various 
long-run effects on s appear roughly to cancel one another out. 

In the very short run, our first and third long-run effects may not operate. 
The second will. In fact, a rise in y at time 0 will create a one-time-only (at 
r = 0) windfall gain in lifetime earnings for all non-retired families. Thus, there 
may be a substantial temporary decline in s, which would tend to speed the 
convergence of k, down to k*. The decline in s shows up in table 2 in the form 
of low investment spending as a fraction of output for as many as seven 
periods. Eventually the first and third long-run effects of y on s should come 
into play. 

Table 2 reveals half-lives of 7-a”years for the convergence of k, following a 
change in y. In contrast to simpler growth models, these are, if anything, 
surprisingly short - see, for instance, Sato (1963). The responses of saving 
described in the preceding paragraph provide an explanation. Ifs is fixed in eq. 
(44) and up = 1, our parameter values for h, y and a imply a half-life for the 
convergence of k, on the order of 13-14 years.’ 

Our second example considers a permanent marginal increase in r,,,. The 
change begins at time t = 0. It is accompanied by a one-time-only adjustment 
in rr oh sufhcient magnitude to keep steady-state tax receipts at previous 
levels.” 

An increase in r,,, coupled with a decrease in r,, will raise the net interest rate 
at time 0 and lower net wages. Our analysis above indicates that, at least if 
up = 1, in the long run this may tend to raise the aggregate average propensity 
to save and, hence, the steady-state capital-to-labor ratio. Table 2 and Summers 
(1981) results bear this out. Since short-run adjustments in this case depend 
entirely on induced factor price changes, we should not be too surprised to tind 
longer half-lives to convergence for k, than on the left-hand side of table 2. In 
fact, the tax change half-lives for k, falI between 10 and 2.0 years. 

Our basic equations [see eq. (36)] show that for onep, studies of changes in y 
and in taxes employ the same matrix M(p) - only the vector dz*/d0 differs. 
Thus, if we derive entries for M(p) and complete our most demanding 
computation - hnding the eigenvalues and eigenvectors for M(p), which is 
140 x 140 - once, we can use the results to determine both growth-rate and 
tax-change multipliers. For each parameter vector p, the computation time 
(with double precision variables) for a single trial in table 2 on an Amdahl 
5860 computer was 35-40 seconds. As stated, we derived closed-form func- 

9This hall-life is based on a linearization of Solow’s (1956) equation of motion about its 
steady-state value of k. With up = 1, the half-life to convergence is then ln(O.S)/[(h + y)(a - l)]. 

“An alternative would be to adjust 7, period-by-period to hold total tax receipts [normalized by 
(1 + v)‘] constant during all transition phases as well as steady states. That would require a 
parameterization in which normalized total tax revenues and TV (instead of T, and 7,) were 
elements of p. 
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Table 3 
Sensitivity analysis with respect to selected parameters (assuming X = 0.06, y = 0.02, a = 0.35, 

Tw = 0.28, Tr = 0.28, 0, = 1. UP = 1). 

Time 

Elasticity of growth Elasticity of tax 
rate multiplier for k w.r.t. rate multiplier for k w.r.t. 

0, UP Y h 0, UP Y h 

0 0.000 0.000 0.000 
1 - 0.405 0.460 0.986 
2 - 0:423 0.469 0.980 
3 - 0.441 0.477 0.974 
4 - 0.458 0.486 0.969 
5 - 0.475 0.494 0.964 
6 - 0.491 0.502 0.959 
7 - 0.507 0.510 0.954 
8 - 0.522 0.519 0.949 
9 - 0.537 0.526 0.934 

10 -0.551 0.534 0.939 
11 -0.565 0.541 0.934 
12 - 0.578 0.549 0.930 
15 - 0.615 0.571 0.917 
20 - 0.667 0.605 0.898 
50 - 0.780 0.727 0.852 
m - 0.809 0.722 0.925 

0.000 O.OQO 0.000 0.000 0.000 
0.010 0.692 0.771 0.407 0.594 

- 0.004 0.663 0.780 0.400 0.579 
- 0.017 0.635 0.788 0.393 0.564 
- 0.030 0.608 0.796 0.387 0.550 
- 0.043 0.582 0.804 0.380 0.535 
- 0.056 0.555 0.811 0.373 0.521 
- 0.068 0.530 0.819 0.367 0.508 
- 0.080 0.505 0.826 0.360 0.494 
- 0.092 0.480 0.833 0.354 0.481 
- 0.104 0.457 0.840 0.348 0.468 
- 0.116 0.433 0.847 0.342 0.455 
-0.128 0.411 0.853 0.336 0.442 
- 0.160 0.346 0.871 0.318 0.406 
- 0.211 0.250 0.898 0.292 0.350 
-0.377 - .0.033 0.983 0.193 0.146 
- 0.388 0.000 1.003 0.182 0.126 

tions for the elements of M(p) and dz*/de. The eigenvalue calculations used 
a standardized algorithm.” 

The majority of the eigenvalues with moduli less than 1 in each case were 
complex. Table 2 shows, however, that cycles seem to play a rather minor role 
in the evolution of multipliers for aggregative variables. As an example, the 
minimum and maximum cyclic periods for stable characteristic roots were 2 
and 52 years in our first trial. 

4. Sensitivity analysis 

The parameters we use in our examples originate from a variety of sources 
and have magnitudes which are by no means certain. We should, therefore, be 
curious about the extent to which the outcomes in section 3 vary if the 
parameters take different values. One approach is to repeat our analysis for a 
number of vectors p. Table 2 provides some results along these lines. Another 
way of proceeding is to calculate the elasticities of the multipliers in table 2 
with respect to selected parameters. We pursue the latter tack here. 

Table 3 presents examples of the new elasticities. We generated the table’s 
entries by changing a given element of the parameter vector p, say, 8’, by 1 

“The algorithm is a public Fortran subroutine on the University of Michigan computer system. 
It is briefly described in paragraph 3.2.019 of Harding (1979), and thoroughly discussed in Smith, 
Boyle, Dongarra, Garbow, Ikebe, Klema and Molar (1976). According to Mr. Harding, the 
algorithm is useful for matrices up to 150 by 150. 
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percent; recalculating all multipliers in table 2 numerically; and then deriving 
the percentage variation for each multiplier. Although in principle we could 
have developed similar results using closed-form expressions, differentiating eq. 
(36) with respect to 8’ yields a very cumbersome array of terms. 

The figures in table 3 illustrate the sensitivity, at least locally, of our 
multipliers to changes in a,, up, y and A. Only one of the entries exceeds 1. 
A 1 percent reduction in y, for example, changes the period-l growth-rate 
multiplier in table 2 from -0.0259 to -0.0256 - in other words, by about 
1 percent. For the period-l tax-rate multiplier, the change is frdm 0.0579 to 
0.0577. Such outcomes should give us some confidence that if our parameter 
choices are fairly realistic, the same will tend to follow for the results in table 2. 

5. Conclusion 

We have presented a method for studying the transition phases of a 
well-known model which is usually only used for analyzing steady states. The 
method is based on eigenvalues and eigenvectors. At an intermediate stage we 
can count the number of eigenvalues of modulus less than 1 to be sure that we 
have enough to proceed. Our solution does not rely on iterative steps. Our 
results take a convenient and familiar form and are exact for marginal 
parameter variations. 

The illustrative numerical examples in section 3 generally reveal half-lives 
for convergence to a new steady state on the order of a decade - at least in the 
case of aggregative multipliers. With perfect foresight, even the immediate 
response of investment to permanent changes in taxes or in the rate of 
technological progress is quite noticeable in most cases. Although our transi- 
tion time paths are cyclic, in the case of aggregative variables the cycles are 
very gentle. 
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