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Abstract: Consider the following two graphs M and N, both with vertex set Z x Z, where Z is the set of all integers. In M,
two vertices are adjacent when their euclidean distance is 1, while in N, adjacency is obtained when the distance is either 1
or 1/5 By definition, H is a metric subgraph of the graph G if the distance between any two points of H is the same as their
distance in G. We determine all the metric subgraphs of M and N. The graph-theoretical distances in M and N are equal respec-

tively to the city block and chessboard matrics used in pattern recognition.
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1. Introduction

We follow the notation and terminology of the
book [3]. A subgraph H of G is a metric subgraph
if the distance between any two points of H is the
same as their distance in G. Graphs in which every
connected induced subgraph is metric are said to
be distance-hereditary. A characterization of dis-
tance-hereditary graphs was derived by Howorka
[6]. (Two diagonals e,, e, or a cycle ¢ are called a
pair of skew diagonals of ¢ if the graph ¢ +¢,+e,
is homeomorphic with K,.) He showed, for ex-
ample, that a graph G is distance-hereditary if and
only if each cycle of G of length at least five has
a pair of skew diagonals. (Figure 1 illustrates, as in
[6], a distance-hereditary graph with 6 points.)
Metric subgraphs have also been studied by Kundu
[7]1 who showed that if G has a unique metric span-
ning tree then G is regular. He thus provided an
answer to a question posed by Chartrand and
Schuster [1]. Other results on isometric graphs are
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Py Py
Py P,

Fig. 1. A distance-hereditary graph.

due to Chartrand and Steward [2].

In work on pattern recognition (see [10]) one
considers a variety of distances defined on Z x Z,
the set of all integral points in the plane. For ex-
ample, the city block distance d, and chessboard
distance dg are defined by

d4[(X1, Yl)a (XZ’ YZ)] = |X1 —X2| + |Yl - Y2|y
d3[(X,, Y1), (X, o)l = max(| X, —X;|, |Y|-Y))|).

Other distances for Z X Z have recently been studied
in [8].
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If w,v are points of ZxZ, then d,(u,v) and
dg(u,v) are equal respectively to the usual graph
theoretic distance in the graphs M and N, both of
which have Z x Z as vertex set. In M two vertices
are adjacent when their euclidean distance is 1,
while in N adjacency is obtained when this distance
is either 1 or /2. The graph M is often called the
Manhattan graph. One could refer to N as a kind
of diagonalized Manhattan graph. It can also be
appropriately called the King’s graph since adja-
cency is equivalent to two points being a King’s
move apart on an infinite chessboard. In Figure 2
we show some metric subgraphs of M and N. Our
object is to provide characterizations of the metric
subgraphs of the Manhattan graph and the King’s
graph.

1

Fig. 2a. A metric subgraph of M (this graph is axially convex
but not diagonally convex).

Fig. 2b. A metric subgraph of N (this graph is diagonally con-
vex but not axially convex).
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2. Metric subgraphs of the Manhattan graph

A general notion of convexity in graphs has been
defined by Harary and Nieminen [5]. A set SC V(G)
is convex if for all u,v € S, every vertex on all u—v
geodesics is also in S. If G were not mentioned in
the preceding sentence, this definition would be the
same as that of a convex set in any other metric
space. It will be useful, however, to define the fol-
lowing related but different concept. A subgraph
G of M is axially convex if for any two points of
G lying on a line parallel to the coordinate axes, all
points on the line segment connecting them belong
to V(G).

Rosenfeld [9] characterized geodesics for M in
the following way: A path

(Xl’ Y])v (XZ, Y2)1 ey Xna Yn)
of M is a geodesic if and only if
X =X;<--<X, and Y <Y,=<--<Y,.

We have assumed without loss of generality that
X=X, and Y, <Y,.

We now proceed to the main theorem of this
section.

Theorem 1. A subgraph G of the Manhattan graph
M is a metric subgraph if and only if G is both con-
nected, and axially convex.

Proof. If G is a metric subgraph of M, then G ob-
viously is connected. Suppose that G is not axially
convex. It follows that there are two points a,b e
V(G) such that the line through a and b is parallel
to one of the coordinate axes, but at least one point
of the segment connecting a and b does not belong
to V(G). This implies that ds(a, b)=d,(a, b)+2,
which contradicts the hypothesis.

Suppose now that the subgraph G is connected
and axially convex. It remains to show that
dg(a,b)=dy(a,b) for any a,be V(G). Since G is
connected there is a path in G between any two
points a, b of G. Let a geodesic P,, be determined
by the sequence of points

a=(X, V), (X5, Y3), ..., (X, Y,)=b
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and suppose that X;<X,, Y;<Y, and dg(q,b)>
dy(a,b). Since P, is not a geodesic for M it
follows that there is an index s=1 such that

X =Xp<-- =X, Y]SYzS"'SYS
and
X>Xg or Y >Yo,,.

We shall give details of the proof for the instance
in which X;>S,,,. Since P, is a geodesic in a
subgraph of M, it follows that

XS—IZXS=XS+1+1 and Ys+1=YS=YS—1+1'

We will examine separately the two cases I: X; = X
and II: X, <X.

Case I. If X;=X; then, since X, <X, thereis a
point d =(X), Y,) on Py, such that p<r, X,= X,
and Y,>Y,. If c=(X,,Y,) and G is axially convex
it follows that all points on the segment connecting
¢ and d are in V(G) (see Figure 3). If the subpath

(Xsa Ys)’ (Xs+1, Ys+l)n ey (Xp’ Yp)

of P, is replaced by the vertical path P,; between
c and d, then a path between @ and b in G is ob-
tained which is shorter than P,,; this contradicts
the hypothesis that P, is a geodesic in G.

(Xp.yp)
AL —e (Xr,¥r)

— e o

- (Xs.Ys)
Xs41Y549

W Xs1¥s_1)

p

J (X1:¥7)

Fig. 3. Illustration for the proof of Theorem 1.

Case II. If X;<X, then there is an index 1<
p=s—2 such that X,=X,,, and Y,<Y,,4, i.e.,
the points ¢=(X,, Y,) and d =(X;,, ¥;4;) lieon a
line parallel to the y-axis. We now replace the sub-
path

(Xps Yp)a (Xp+1a Yp+1)a ---’(Xs+la Ys+1)

of P, by the vertical path between ¢ and d; again,
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a path between a and b shorter than P, has been
constructed in G.

3. Metric subgraphs of the King’s graph

The following variation of convexity is pertinent
to the characterizations at hand. A subgraph G of
the King’s graph N is diagonally convex if for any
two points of G lying on a line with slope +1, all
points of the line segment connecting them belong
to V(G).

Rosenfeld [9] characterized geodesics in N as
follows: A path

(Xlsyl)s (XZs YZ)a-"y(Xn’ Yn)
of N is a geodesic if and only if
X1<X2<"'<Xn or Y1<Y2<"'<Yn,

assuming without loss of generality that X, =X,
and Y, <7,.

The principal result of this section can now be
stated.

Theorem 2. A subgraph G of the King’s graph N
is a metric subgraph of N if and only if G is
(i) connected,
(ii) diagonally convex, and
(iil) G does not contain as a subgraph any of the
eight subgraphs illustrated in Figure 4.

Proof. It is clear that if G does not satisfy any of
(i), (i1), or (iii), then it is not a metric subgraph of
N. In particular, in each of the graphs of Figure 4,
we have

dn(C,D) =dg(A,B) +1=d(C,D) - 1.

Conversely assume that a subgraph G of N satis-
fies (i), (ii) and (iii) and is not a metric subgraph of
N. It follows that there exist two points u, v e V(G)
such that dg(y, v) > dy (1, v). Since G is connected,
there is a shortest path P,, between u and v. Let
P,, be determined by the sequence of points

u=(X,Y)X5Y),....(X,,Y,)=v

and suppose that X; <X, and Y, <Y,. Since P, is
not a geodesic in N it follows that there are indices
i,j, 1=<i,j<r—1 such that
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Fig. 4. Forbidden subgraphs in metric subgraphs of N.

X1<X2<"‘<)(i; Y1<Y2<"’<Yj,
XizX;y1 and Y=Y,

We need to consider separately the cases I: i =j and
II: i#J.
Case I. If i=j then
Xiy1=X;-1 and Y, =Y,
or
Xiy1=X; and Y, =Y,-L

Since X;_,=X;-1and Y,_,=Y;—1 it follows that
in either case the path

()(i—l’ Yi—l)’ (/Yi+l’ Yi+l)
of length one in G is shorter than the subpath
(Xi—l, Yi—l)’ ()(n },1)’ (Xi+l’ )/i+l)

of P,,. This contradicts the assumption that P,, is
a geodesic in G.

Case II. Assume without loss of generality that
i<j. Since X;,<X; and Y;,,>Y; it follows that

Xis1=X; and Y, =Y+l
or
Xiq1=X;—1 and Y, ,=Y;+1L

There are in fact three subcases which must now be
examined:

Il X;=X;_;+land Y;=Y;_;+1,

11.2. Xj =Xj_1 and Yj = Y}_l'*'l,

3. X;=X;,_;—land Y;=Y;_;+1.
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We shall present the details for subcase 1I.1. The
other subcases can be dealt with in a similar man-
ner.

In subcase II.1 since Y;,;<Y; it follows that
exactly one of the following statements is true:

@ X =X;~land Y, =Y,

(B) Xj. =X;and ¥, =Y; -1,

¥ X=X +leud Y, =Y,

¥) Xj,,=X;+land Y;,, =Y;—1.

If (@) or (B) holds it is easy to see that, as in the
proof of case I, we can replace a subpath of length
two of P,, by a path of length one and hence P,
cannot be a geodesic for G.

If (y) is true then there exists an index £,
i+1=<k=<j—1such that X; <X, <. <X, ¥;<
Y, 1<--<Y,, and either

1) X;,_1=Xyand Y,_=Y,—1or

(02) ‘X;_ =X +1 and Y;_, =Y, —1.

In the case of (41), the slope of the line passing
through the points

C=X;1,Y41) and D=(Xy_,Y_y)
is equal to 1. Since G is diagonally convex it fol-
lows that
dg(C, D) =dp (C,D)-1
and hence P,, cannot be a geodesic for G.
If (62) holds then the subpath of P,, between C

and D is similar to the graph depicted in Figure 4a
and hence (iii) implies that

dg(C,D) = dg(A, B) +1
<dg(A,B)+2 = dp_(C,D)
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which contradicts the assumption that P,, is a

geodesic.
When J holds we can show the existence of an
index k having the same properties, but if

Xk—1=Xk and Yk—1=Yk_1
the graph of Figure 4d is obtained. Finally if
Xk—lsz+1 and Yk—lek_l

the slope of CD equals 1 and it follows that P, is
not a geodesic for G since G is diagonally convex.
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