
Pattern Recognition Letters 2 (1984) 159-163 March 1984 

Nnrth-Holland 

Digital metrics: A graph-theoretical approach 

F r a n k  H A R A R Y  
Department of  Mathematics, University of  Michigan, Ann Arbor, MI 48109, USA 

Robert A. MELTER 
Department of  Mathematics, Southampton College of  Long Island University, Southampton, NY  11968, USA 

l o a n  T O M E S C U  
Faculty of  Mathematics, University of  Bucharest, Bucharest, Romania 

Received 3 August 1983 

Abstract: Consider the following two graphs M a n d  N, both with vertex set Z×Z, where Z is the set of all integers. In M, 
two vertices are adjacent when their euclidean distance is 1, while in N, adjacency is obtained when the distance is either 1 
or 1/2. By definition, H is a metric subgraph of the graph G if the distance between any two points o f / 4  is the same as their 
distance in G. We determine all the metric subgraphs of M and N. The graph-theoretical distances in M and N are equal respec- 
tively to the city block and chessboard matrics used in pattern recognition. 
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1. Introduction 

We follow the notation and terminology of the 
book [3]. A subgraph H of G is a metric subgraph 
if the distance between any two points of H is the 
same as their distance in G. Graphs in which every 
connected induced subgraph is metric are said to 
be distance-hereditary. A characterization of dis- 
tance-hereditary graphs was derived by Howorka 
[6]. (Two diagonals el, e2 or a cycle ¢ are called a 
pair of skew diagonals of ~0 if the graph q~ + el + e2 
is homeomorphic with K4.) He showed, for ex- 
ample, that a graph G is distance-hereditary if and 
only if each cycle of G of length at least five has 
a pair of skew diagonals. (Figure 1 illustrates, as in 
[6], a distance-hereditary graph with 6 points.) 
Metric subgraphs have also been studied by Kundu 
[7] who showed that if G has a unique metric span- 
ning tree then G is regular. He thus provided an 
answer to a question posed by Chartrand and 
Schuster [1]. Other results on isometric graphs are 

"k/",./ 
Fig. 1. A distance-hereditary graph. 

due to Chartrand and Steward [2]. 
In work on pattern recognition (see [10]) one 

considers a variety of  distances defined on Z x Z, 
the set of all integral points in the plane. For ex- 
ample, the city block distance d4 and chessboard 
distance d8 are defined by 

d4[(Xl, YI), (X2, 1:2)] = lXl -X2l + 11:1 - Y2I, 
dst(X1, Y1), (X2, Y2)] = m a x ( l x l - x 2 l ,  IY1- Y21). 

Other distances for Z × Z have recently been studied 
in [8]. 
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If  u,o are points of  Z × Z ,  then d4(u,v) and 
da(u, o) are equal respectively to the usual graph 
theoretic distance in the graphs M and N, both of  
which have Z x Z as vertex set. In M two vertices 
are adjacent when their euclidean distance is 1, 
while in Nadjacency  is obtained when this distance 
is either 1 or V ~. The graph M is often called the 
Manhattan graph. One could refer to N as a kind 
of  diagonalized Manhattan graph. It can also be 
appropriately called the King's graph since adja- 
cency is equivalent to two points being a King's 
move apart on an infinite chessboard. In Figure 2 
we show some metric subgraphs of  M and N. Our 
object is to provide characterizations of  the metric 
subgraphs of  the Manhattan graph and the King's 
graph. 

2. Metric subgraphs of the Manhattan graph 

A general notion of  convexity in graphs has been 
defined by Harary and Nieminen [5]. A set SC V(G) 
is convex if for all u, o e S, every vertex on all u - o 
geodesics is also in S. If G were not mentioned in 
the preceding sentence, this definition would be the 
same as that of  a convex set in any other metric 
space. It will be useful, however, to define the fol- 
lowing related but different concept. A subgraph 
G of  M is axially convex if for any two points of  
G lying on a line parallel to the coordinate axes, all 
points on the line segment connecting them belong 
to V(G). 

Rosenfeld [9] characterized geodesics for M in 

the following way: A path 

(X1, Y1), (X2, Y2) . . . . .  (Xn, Yn) 

of  M is a geodesic if and only if 

X l ~ X 2 ~ . . . < _ ~ X  n and Y I ~ Y 2 ~ ' " < - Y n  . 

We have assumed without loss of  generality that 

XI <_X n and YI <_Yn. 

We now proceed to the main theorem of this 
section. 

Theorem 1. A subgraph G of  the Manhattan graph 
M is a metric subgraph i f  and only i f  G is both con- 
nected, and axially convex. 

-q 

Fig. 2a. A metric subgraph of M (this graph is axially convex 
but not diagonally convex). 

¥ 

Fig. 2b. A metric subgraph of N (this graph is diagonally con- 
vex but not axially convex). 

Proof .  If  G is a metric subgraph of  M, then G ob- 
viously is connected. Suppose that G is not axially 
convex. It follows that there are two points a, b 
V(G) such that the line through a and b is parallel 
to one of  the coordinate axes, but at least one point 

of  the segment connecting a and b does not belong 
to V(G). This implies that dG (a, b) >_ d M (a, b) + 2, 
which contradicts the hypothesis. 

Suppose now that the subgraph G is connected 
and axially convex. It remains to show that 
dc(a,b)=dM(a,b ) for any a,b~ V(G). Since G is 
connected there is a path in G between any two 
points a, b of  G. Let a geodesic P~b be determined 
by the sequence of  points 

a = (Xl ,  Yl), (X2,  Y2) . . . . .  (Yr ,  Yr) = b 

160 



Volume 2, Number 3 PATTERN RECOGNITION LETTERS March 1984 

and suppose that X 1 ~gr ,  Y1 ~ Yr and do(a, b) > 
dM(a,b ). Since 'P.b is not a geodesic for M it 
follows that there is an index s>_ 1 such that 

x~<-x2<-...<-xs, Y~<-Y2<-'"<-Ys 
and 

Xs>Xs+ 1 or Ys>Ys+l. 

We shall give details of  the proof  for the instance 
in which X~>S~+I. Since Pab is a geodesic in a 
subgraph of  M, it follows that 

Xs_1=X~=Xs+1+I and Ys+1=Y~=Y~_I+I. 

We will examine separately the two cases I: X~ >_ X~ 

and II: )(1 <Xs. 
Case L If X1 =As then, since X1 <-Xr, there is a 

point d = (X o, YR) on Paa such that p <_ r, XR = Xs, 
and Yp> Ys. If c=(Xs, Y~) and O is axially convex 
it follows that all points on the segment connecting 
c and d are in V(G) (see Figure 3). If  the subpath 

(Xs, Ys),(Xs+l, Ys+l) . . . . . .  (Xm Y p) 

of  P~b is replaced by the vertical path P~d between 
c and d, then a path between a and b in G is ob- 
tained which is shorter than Pab; this contradicts 
the hypothesis that Pab is a geodesic in G. 

(XpzYp) 
_- -_ (Xr,Yr) 

i '  I 

[ - , 
_ 1 (Xs, Ys) 

(Xs+ 1 ,Y$+1) 

(Xs-1 'Ys-1) 

Cxl,Yl) 

Fig. 3. Illustration for the proof  of Theorem 1. 

Case II. If  X 1 < X  s then there is an index 1_  
p<_s-2 such that Xp=Xs+l and Yp<Ys+l, i.e., 
the points c=(Xp, Yp) and d=(Xs+ 1, Ys+D lie on a 
line parallel to the y-axis. We now replace the sub- 
path 

(Xm Yp), (Xp+ l, Yp+ l), ..., (Xs + l, Ys + l) 

of  Pab by the vertical path between c and d; again, 

a path between a and b shorter than Pab has been 
constructed in G. 

3. Metric subgraphs of the King's graph 

The following variation of  convexity is pertinent 
to the characterizations at hand. A subgraph G of  
the King's graph N is diagonally convex if for any 
two points of G lying on a line with slope +1, all 
points of  the line segment connecting them belong 
to V(G). 

Rosenfeld [9] characterized geodesics in N as 
follows: A path 

(X1, YI), (X2, Yz) . . . . .  (Xn, Yn) 

of  N is a geodesic if and only if 

X I < X 2 < . . . < X  n o r  Y I < Y 2 < . . . < Y n ,  

assuming without loss of  generality that X~<--Xn 
and YI <_ Y,. 

The principal result of  this section can now be 
stated. 

Theorem 2. A subgraph G of  the King's graph N 
is a metric subgraph o f  N i f  and only i f  G is 

(i) connected, 
(ii) diagonally convex, and 

(iii) G does not contain as a subgraph any o f  the 
eight subgraphs illustrated in Figure 4. 

Proof. It is clear that if G does not satisfy any of  
(i), (ii), or (iii), then it is not a metric subgraph of  
N. In particular, in each of  the graphs of  Figure 4, 
we have 

d N ( C , D )  = d G ( A , B  ) + 1 = d G ( C , D  ) - 1. 

Conversely assume that a subgraph G of  N satis- 
fies (i), (ii) and (iii) and is not a metric subgraph of  
N. It follows that there exist two points u, o ~ V(G) 
such that d o (u, o) > du(u, o). Since G is connected, 
there is a shortest path P,o between u and v. Let 
P,o be determined by the sequence of points 

U = ( X l ,  ] I1) ,O(2,  Y2) . . . . .  (Xr ,  Yr) = t) 

and suppose that )(1 _<X, and Yj ___ Yr. Since Puo is 
not a geodesic in N it follows that there are indices 
i, j ,  1 _< i, j _< r -  1 such that 
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Fig. 4. Forbidden subgraphs in metric subgraphs of N. 

x]<x2<...<xi, r~< r2<..-< ~, 

Xi>Xi+  1 and Yj-Yj+I .  

We need to consider separately the cases I: i = j  and 
II: i q:j. 

Case L If  i = j  then 

X i + l = X i - 1  and Y/+I=Yi 

o r  

Xi+l = X i  and Y/+I = Yi-1 .  

Since Xi_ l = Xi  - 1 and Y/_ 1 = Yi - 1 it follows that 
in either case the path 

(Xi-D Yi-1),(Xi+l, Yi+l) 

of  length one in G is shorter than the subpath 

(Xi-l, Yi-l), (Xi, Yi), (Xi+ l, Yi+ l) 

of  Puo. This contradicts the assumption that Puo is 
a geodesic in G. 

Case II. Assume without loss of  generality that 
i < j .  Since Xi+l<_Xi and Y/+I> Y/it follows that 

Xi+l = X i  and Y/+I = Y/+I 

o r  

X i + l = X i - 1  and Y / + ] = Y / + I .  

There are in fact three subcases which must now be 
examined: 

II.1. Xj = X j _ I + I  and Yy = Yy_t+ 1, 
11.2. Xj = X j _  1 and Yj = Yj_I+I ,  
11.3. Xj = X j _ I - 1  and Yj = Yj_1+I. 

We shall present the deta qs for subcase II.1. The 
other subcases can be dealt with in a similar man- 
ner. 

In subcase II.1 since Yj+I_<Yj it follows that 
exactly one of  the following statements is true: 

(a) Xj-+I = Xj - 1 and Yj+I = Yj, 
(# )  Xj+I = X j  and Yj+I = Y i - I ,  

(y) Xj+I : X j + I  cad Yj+l = Yj, 
(~) Xj+ 1 = X j + I  and Yj+I = Y1-1. 

If  (a) or (fl) holds it is easy to see that, as in the 
proof  of case I, we can replace a subpath of  length 
two of  P,o by a path of  length one and hence P,o 
cannot be a geodesic for G. 

If  (y) is true then there exists an index k, 
i+ 1 <_ k <_ j - 1 such that Xk < Xk + ~ < "'" < Xj  , Yk < 
Yk+l < "'" < Yj, and either 

(~1) X k _ l = X k  and Yk_l=Yk-1  or 
(~2) Xk_ 1 = Xk + 1 and Yk- 1 = Yk - 1. 

In the case of  (~1), the slope of  the line passing 
through the points 

C = (@+1, Yj+I) and D = (Xk_ 1, Yk-O 

is equal to 1. Since G is diagonally convex it fol- 
lows that 

do(C,D ) = dp.o(C,D) - 1 

and hence P.o cannot be a geodesic for G. 
If  (~2) holds then the subpath of  P.Ü between C 

and D is similar to the graph depicted in Figure 4a 
and hence (iii) implies that 

dG(C,D ) = d o ( A , B ) + I  

< d o ( A , B ) + 2  = dp.o(C,D) 
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which contradicts the assumption that Puo is a 

geodesic. 
When ~ holds we can show the existence of  an 

index k having the same properties, but if 

Xk-  i = Xk and Yg-l = Yk - 1  

the graph of  Figure 4d is obtained. Finally if 

X k _ l = X k + l  and Y k _ l = Y k - 1  

the slope of  CD equals 1 and it follows that Puv is 
not a geodesic for G since G is diagonally convex. 
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