Digital metrics: A graph-theoretical approach

Frank HARARY
Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA

Robert A. MELTER
Department of Mathematics, Southampton College of Long Island University, Southampton, NY 11968, USA

Ioan TOMESCU

Faculty of Mathematics, University of Bucharest, Bucharest, Romania

Received 3 August 1983

Abstract

Consider the following two graphs M and N, both with vertex set $Z \times Z$, where Z is the set of all integers. In M, two vertices are adjacent when their euclidean distance is 1 , while in N, adjacency is obtained when the distance is either 1 or $\sqrt{2}$. By definition, H is a metric subgraph of the graph G if the distance between any two points of H is the same as their distance in G. We determine all the metric subgraphs of M and N. The graph-theoretical distances in M and N are equal respectively to the city block and chessboard matrics used in pattern recognition.

Key words: Digital metrics, graph theory, city block distance, chessboard distance.

1. Introduction

We follow the notation and terminology of the book [3]. A subgraph H of G is a metric subgraph if the distance between any two points of H is the same as their distance in G. Graphs in which every connected induced subgraph is metric are said to be distance-hereditary. A characterization of dis-tance-hereditary graphs was derived by Howorka [6]. (Two diagonals e_{1}, e_{2} or a cycle φ are called a pair of skew diagonals of φ if the graph $\varphi+e_{1}+e_{2}$ is homeomorphic with K_{4}.) He showed, for example, that a graph G is distance-hereditary if and only if each cycle of G of length at least five has a pair of skew diagonals. (Figure 1 illustrates, as in [6], a distance-hereditary graph with 6 points.) Metric subgraphs have also been studied by Kundu [7] who showed that if G has a unique metric spanning tree then G is regular. He thus provided an answer to a question posed by Chartrand and Schuster [1]. Other results on isometric graphs are

Fig. 1. A distance-hereditary graph.
due to Chartrand and Steward [2].
In work on pattern recognition (see [10]) one considers a variety of distances defined on $Z \times Z$, the set of all integral points in the plane. For example, the city block distance d_{4} and chessboard distance d_{8} are defined by

$$
\begin{aligned}
& d_{4}\left[\left(X_{1}, Y_{1}\right),\left(X_{2}, Y_{2}\right)\right]=\left|X_{1}-X_{2}\right|+\left|Y_{1}-Y_{2}\right| \\
& d_{8}\left[\left(X_{1}, Y_{1}\right),\left(X_{2}, Y_{2}\right)\right]=\max \left(\left|X_{1}-X_{2}\right|,\left|Y_{1}-Y_{2}\right|\right)
\end{aligned}
$$

Other distances for $Z \times Z$ have recently been studied in [8].

If u, v are points of $Z \times Z$, then $d_{4}(u, v)$ and $d_{8}(u, v)$ are equal respectively to the usual graph theoretic distance in the graphs M and N, both of which have $Z \times Z$ as vertex set. In M two vertices are adjacent when their euclidean distance is 1 , while in N adjacency is obtained when this distance is either 1 or $\sqrt{2}$. The graph M is often called the Manhattan graph. One could refer to N as a kind of diagonalized Manhattan graph. It can also be appropriately called the King's graph since adjacency is equivalent to two points being a King's move apart on an infinite chessboard. In Figure 2 we show some metric subgraphs of M and N. Our object is to provide characterizations of the metric subgraphs of the Manhattan graph and the King's graph.

Fig. 2a. A metric subgraph of M (this graph is axially convex but not diagonally convex).

Fig. 2b. A metric subgraph of N (this graph is diagonally convex but not axially convex).

2. Metric subgraphs of the Manhattan graph

A general notion of convexity in graphs has been defined by Harary and Nieminen [5]. A set $S \subset V(G)$ is convex if for all $u, v \in S$, every vertex on all $u-v$ geodesics is also in S. If G were not mentioned in the preceding sentence, this definition would be the same as that of a convex set in any other metric space. It will be useful, however, to define the following related but different concept. A subgraph G of M is axially convex if for any two points of G lying on a line parallel to the coordinate axes, all points on the line segment connecting them belong to $V(G)$.

Rosenfeld [9] characterized geodesics for M in the following way: A path

$$
\left(X_{1}, Y_{1}\right),\left(X_{2}, Y_{2}\right), \ldots,\left(X_{n}, Y_{n}\right)
$$

of M is a geodesic if and only if

$$
X_{1} \leq X_{2} \leq \cdots \leq X_{n} \quad \text { and } \quad Y_{1} \leq Y_{2} \leq \cdots \leq Y_{n} .
$$

We have assumed without loss of generality that $X_{1} \leq X_{n}$ and $Y_{1} \leq Y_{n}$.

We now proceed to the main theorem of this section.

Theorem 1. A subgraph G of the Manhattan graph M is a metric subgraph if and only if G is both connected, and axially convex.

Proof. If G is a metric subgraph of M, then G obviously is connected. Suppose that G is not axially convex. It follows that there are two points $a, b \in$ $V(G)$ such that the line through a and b is parallel to one of the coordinate axes, but at least one point of the segment connecting a and b does not belong to $V(G)$. This implies that $d_{G}(a, b) \geq d_{M}(a, b)+2$, which contradicts the hypothesis.

Suppose now that the subgraph G is connected and axially convex. It remains to show that $d_{G}(a, b)=d_{M}(a, b)$ for any $a, b \in V(G)$. Since G is connected there is a path in G between any two points a, b of G. Let a geodesic $P_{a b}$ be determined by the sequence of points

$$
a=\left(X_{1}, Y_{1}\right),\left(X_{2}, Y_{2}\right), \ldots,\left(X_{r}, Y_{r}\right)=b
$$

and suppose that $X_{1} \leq X_{r}, Y_{1} \leq Y_{r}$ and $d_{G}(a, b)>$ $d_{M}(a, b)$. Since $P_{a b}$ is not a geodesic for M it follows that there is an index $s \geqq 1$ such that

$$
X_{1} \leq X_{2} \leq \cdots \leq X_{s}, \quad Y_{1} \leq Y_{2} \leq \cdots \leq Y_{s}
$$

and

$$
X_{s}>X_{s+1} \quad \text { or } \quad Y_{s}>Y_{s+1} .
$$

We shall give details of the proof for the instance in which $X_{s}>S_{s+1}$. Since $P_{a b}$ is a geodesic in a subgraph of M, it follows that

$$
X_{s-1}=X_{s}=X_{s+1}+1 \text { and } Y_{s+1}=Y_{s}=Y_{s-1}+1 .
$$

We will examine separately the two cases I: $X_{1} \geq X_{s}$ and II: $X_{1}<X_{s}$.

Case I. If $X_{1}=X_{s}$ then, since $X_{1} \leq X_{r}$, there is a point $d=\left(X_{p}, Y_{p}\right)$ on $P_{a b}$ such that $p \leq r, X_{p}=X_{s}$, and $Y_{p}>Y_{s}$. If $c=\left(X_{s}, Y_{s}\right)$ and G is axially convex it follows that all points on the segment connecting c and d are in $V(G)$ (see Figure 3). If the subpath

$$
\left(X_{s}, Y_{s}\right),\left(X_{s+1}, Y_{s+1}\right), \ldots,\left(X_{p}, Y_{p}\right)
$$

of $P_{a b}$ is replaced by the vertical path $P_{c d}$ between c and d, then a path between a and b in G is obtained which is shorter than $P_{a b}$; this contradicts the hypothesis that $P_{a b}$ is a geodesic in G.

Fig. 3. Illustration for the proof of Theorem 1.

Case II. If $X_{1}<X_{s}$ then there is an index $1 \leq$ $p \leq s-2$ such that $X_{p}=X_{s+1}$ and $Y_{p}<Y_{s+1}$, i.e., the points $c=\left(X_{p}, Y_{p}\right)$ and $d=\left(X_{s+1}, Y_{s+1}\right)$ lie on a line parallel to the y-axis. We now replace the subpath

$$
\left(X_{p}, Y_{p}\right),\left(X_{p+1}, Y_{p+1}\right), \ldots,\left(X_{s+1}, Y_{s+1}\right)
$$

of $P_{a b}$ by the vertical path between c and d; again,
a path between a and b shorter than $P_{a b}$ has been constructed in G.

3. Metric subgraphs of the King's graph

The following variation of convexity is pertinent to the characterizations at hand. A subgraph G of the King's graph N is diagonally convex if for any two points of G lying on a line with slope +1 , all points of the line segment connecting them belong to $V(G)$.

Rosenfeld [9] characterized geodesics in N as follows: A path

$$
\left(X_{1}, Y_{1}\right),\left(X_{2}, Y_{2}\right), \ldots,\left(X_{n}, Y_{n}\right)
$$

of N is a geodesic if and only if

$$
X_{1}<X_{2}<\cdots<X_{n} \quad \text { or } \quad Y_{1}<Y_{2}<\cdots<Y_{n},
$$

assuming without loss of generality that $X_{1} \leq X_{n}$ and $Y_{1} \leq Y_{n}$.

The principal result of this section can now be stated.

Theorem 2. A subgraph G of the King's graph N is a metric subgraph of N if and only if G is
(i) connected,
(ii) diagonally convex, and
(iii) G does not contain as a subgraph any of the eight subgraphs illustrated in Figure 4.

Proof. It is clear that if G does not satisfy any of (i), (ii), or (iii), then it is not a metric subgraph of N. In particular, in each of the graphs of Figure 4, we have

$$
d_{N}(C, D)=d_{G}(A, B)+1=d_{G}(C, D)-1 .
$$

Conversely assume that a subgraph G of N satisfies (i), (ii) and (iii) and is not a metric subgraph of N. It follows that there exist two points $u, v \in V(G)$ such that $d_{G}(u, v)>d_{N}(u, v)$. Since G is connected, there is a shortest path $P_{u v}$ between u and v. Let $P_{u v}$ be determined by the sequence of points

$$
u=\left(X_{1}, Y_{1}\right),\left(X_{2}, Y_{2}\right), \ldots,\left(X_{r}, Y_{r}\right)=0
$$

and suppose that $X_{1} \leq X_{r}$ and $Y_{1} \leq Y_{r}$. Since $P_{\psi \psi}$ is not a geodesic in N it follows that there are indices $i, j, 1 \leq i, j \leq r-1$ such that

Fig. 4. Forbidden subgraphs in metric subgraphs of N.
$X_{1}<X_{2}<\cdots<X_{i}, \quad Y_{1}<Y_{2}<\cdots<Y_{j}$, $X_{i} \geq X_{i+1} \quad$ and $\quad Y_{j} \geq Y_{j+1}$.

We need to consider separately the cases I: $i=j$ and II: $i \neq j$.

Case I. If $i=j$ then

$$
X_{i+1}=X_{i}-1 \quad \text { and } \quad Y_{i+1}=Y_{i}
$$

or

$$
X_{i+1}=X_{i} \quad \text { and } \quad Y_{i+1}=Y_{i}-1 .
$$

Since $X_{i-1}=X_{i}-1$ and $Y_{i-1}=Y_{i}-1$ it follows that in either case the path

$$
\left(X_{i-1}, Y_{i-1}\right),\left(X_{i+1}, Y_{i+1}\right)
$$

of length one in G is shorter than the subpath

$$
\left(X_{i-1}, Y_{i-1}\right),\left(X_{i}, Y_{i}\right),\left(X_{i+1}, Y_{i+1}\right)
$$

of $P_{u v}$. This contradicts the assumption that $P_{u v}$ is a geodesic in G.

Case II. Assume without loss of generality that $i<j$. Since $X_{i+1} \leq X_{i}$ and $Y_{i+1}>Y_{i}$ it follows that

$$
X_{i+1}=X_{i} \quad \text { and } \quad Y_{i+1}=Y_{i}+1
$$

or

$$
X_{i+1}=X_{i}-1 \quad \text { and } \quad Y_{i+1}=Y_{i}+1
$$

There are in fact three subcases which must now be examined:
II.1. $X_{j}=X_{j-1}+1$ and $Y_{j}=Y_{j-1}+1$,
II.2. $X_{j}=X_{j-1}$ and $Y_{j}=Y_{j-1}+1$,
II.3. $X_{j}=X_{j-1}-1$ and $Y_{j}=Y_{j-1}+1$.

We shall present the details for subcase II.1. The other subcases can be dealt with in a similar manner.

In subcase II. 1 since $Y_{j+1} \leq Y_{j}$ it follows that exactly one of the following statements is true:
(α) $X_{j+1}=X_{j}-1$ and $Y_{j+1}=Y_{j}$,
(β) $X_{j+1}=X_{j}$ and $Y_{j+1}=Y_{j}-1$,
(y) $X_{j+1}=X_{j}+1$ and $Y_{j+1}=Y_{j}$,
($\delta) X_{j+1}=X_{j}+1$ and $Y_{j+1}=Y_{j}-1$.
If (α) or (β) holds it is easy to see that, as in the proof of case I, we can replace a subpath of length two of $P_{u v}$ by a path of length one and hence $P_{u v}$ cannot be a geodesic for G.

If (γ) is true then there exists an index k, $i+1 \leq k \leq j-1$ such that $X_{k}<X_{k+1}<\cdots<X_{j}, Y_{k}<$ $Y_{k+1}<\cdots<Y_{j}$, and either
($\delta 1) X_{k-1}=X_{k}$ and $Y_{k-1}=Y_{k}-1$ or
($\delta 2) X_{k-1}=X_{k}+1$ and $Y_{k-1}=Y_{k}-1$.
In the case of ($\delta 1$), the slope of the line passing through the points

$$
C=\left(X_{j+1}, Y_{j+1}\right) \quad \text { and } \quad D=\left(X_{k-1}, Y_{k-1}\right)
$$

is equal to 1 . Since G is diagonally convex it follows that

$$
d_{G}(C, D)=d_{P_{u v}}(C, D)-1
$$

and hence $P_{u v}$ cannot be a geodesic for G.
If ($\delta 2$) holds then the subpath of $P_{u v}$ between C and D is similar to the graph depicted in Figure 4 a and hence (iii) implies that

$$
\begin{aligned}
d_{G}(C, D) & =d_{G}(A, B)+1 \\
& <d_{G}(A, B)+2=d_{P_{w w}}(C, D)
\end{aligned}
$$

which contradicts the assumption that $P_{u v}$ is a geodesic.

When δ holds we can show the existence of an index k having the same properties, but if

$$
X_{k-1}=X_{k} \quad \text { and } \quad Y_{k-1}=Y_{k}-1
$$

the graph of Figure 4d is obtained. Finally if

$$
X_{k-1}=X_{k}+1 \quad \text { and } \quad Y_{k-1}=Y_{k}-1
$$

the slope of $C D$ equals 1 and it follows that $P_{u v}$ is not a geodesic for G since G is diagonally convex.

References

[1] Chartrand, G. and S. Schuster (1974). Which graphs have unique distance trees? Amer. Math. Monthly 81, 53-56.
[2] Chartrand, G. and M.J. Steward (1971). Geometric graphs. Springer Lecture Notes Math. No. 186, pp. 63-67.
[3] Harary, F. (1969). Graph Theory. Addison-Wesley, Reading, MA.
[4] Harary, F., Achievement and avoidance games. To appear.
[5] Harary, F. and J. Nieminen (1981). Convexity in graphs. J. Differential Geometry 16, 185-190.
[6] Howorka, E. (1977). A characterization of distance hereditary graphs. Quart. J. Math. Oxford 26, 417-420.
[7] Kundu, S. (1977). The Chartrand-Schuster conjecture: Graphs with unique distance trees are regular. J. Combin. Theory B 22, 233-245.
[8] Melter, R. and I. Tomescu (1983). Path-generated digital metrics. Pattern Recognition Letters 1, 151-154.
[9] Rosenfeld, A. (1978). Geodesics in digital pictures. Information and Control 36, 74-84.
[10] Rosenfeld, A. and A.C. Kak (1976). Digital Picture Processing. Academic Press, New York.

