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The relation between unary (trapping) and binary (mutual annihilation) reactions in disordered systems is studied in the 
framework of the continuous-time random walk. It is found that if t_be waiting-time distribution of the walk has infinite 
moments, a time-independent binary rate constant may exist even though a unary one does not. 

In recent years, much attention has been devoted 
to the theory of stochastic transport in disordered 
systems [l-3]. Most of this work has considered 
either pure transport properties, such as the mean- 
squared displacement, or the trapping of moving par- 
ticles at stationary acceptor sites. Less consideration 
has been devoted to binary reactions between the 
moving particles, as it is usually assumed that this pro- 
cess is identical with trapping up to a proportionality 
constant. In the present note, we show that a popular 
model of transport in disordered systems, the 
Montroll-Weiss-&her continuous-time random walk 
[4,5], gives quite different results for unary and bina- 
ry reaction rate constants when the waiting-time dis- 
tribution of the walk has infinite temporal moments. 
This result is significant because infinite moments are 
needed to describe non-diffusive behavior such as dis- 
persive transport in semiconductors [5] and fractal 
tranrport an perl?oh&ing cbt&Xs [41_ Wa do not el!P&m 
that our explicit result holds for such systems, but we 
do believe that it implies that a simple proportionality 
between unary and~binary rate constants should not 
be taken for granted in such cases. 

We consider a disordered lattice containing two 
random walkers which destroy each other on contact 
but otherwise move independently of one another. 
The precise form of the random motion and the type 
of disorder are not important for our purposes; for 
definiteness we may assume that the individual (one- 
particle) site occupation probabilites obey a master 
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equation_ We define a pair conditional probability or 
two-particle propagator P(rLr2, t lr;r$, t’), the prob- 
ability that, in the absence of reaction, particle 1 oc- 
cupies site rl and particle 2 site r2 at time t given that 
they occupied sites r; and r; at time t’. In each con- 
figuration of the disordered system this is a product 
of one-particle conditional probabilities p(r, t Ir', t'). 

The configuration averaged pair probability will not 
take this form, as the averaging induces an effective 
interaction between the particles. Our first approxi- 

mation is to neglect this fact entirely. 

If in each configuration the one-particle probabilities 
obey a master equation, the configuration averaged 
probability obeys a generalized master equation or 
equivalently a continuous-time random walk (CTRW) 
equation [7] _ In general, the kernel of the GME or 
CTRW will have highly non-local spatial properties 181: 
we will ignore this and assume that a site-local wait- 
ing time distribution 5s a&?4uate_ We will n& attempt 
to calculate this function, but merely deduce the two- 
particle properties associated with a given waiting-time 
distribution. This approach is analogous to the very 
successful Scher-Montroll theory of dispersive trans- 
port in amorphous semiconductors [5] _ We will con- 
sider only qualitative, asymptotic (r. t + -) properties. 
It will be seen that even with all of these severe ap- 
proximations, we find interesting dynamic behavior. 

After configuration averaging (including an average 
over the initial site 191) the probabilities become trans- 
lation-invariant. If all many-body effects are neglected, 
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the incorporation of on-site particle annihilation into 
the equations of motion becomes a straightforward 
exercise in Green function and t-matrix techniques. 
The details have been presented by various authors 
[ 10,l I] and we shall not repeat them; suffice it to say 
that translation invariance enables one to project the 
problem onto a trapping one which is then solved by 
local defect methods. One finds an expression fcr the 
steady-state rate constant having the form: 

K’(u)= J dt eeUzK’(t)= l/S(u), (1) 
0 

t 
-(d~r/dt)~,n = rr 2 

s dt’ K'(t') , (2) 
0 

S(t) = c (P(rr, t Ir’r’)) , 
r 

(3) 

in which II is the spatially averaged particle density, 
held constant in this definition of the steady state, 
and we assume that at time zero the density was uni- 
form in space. The integral in eq. (2) defines a time- 
dependent rate coefficient; the usual time-indepen- 
dent rate constant is then given by K’(u = 0). The 
memory function S(t) is analogous to the diagonal 
Green function g(t) = p(r, t Ir) which appears in ex- 
pressions for trapping rates. Indeed, one may obtain 
(1) from a first collision time, analogous to a first pas- 
sage time, definition of the reaction rate. One typical- 
ly applies (l)-(3) to non-steady-state situations by 
replacing, in a mean-field approximation, rz by n(r). 
From recent analyses of trapping by dilute acceptors 
on perfect lattices [ 12 1, we know that this approxi- 
mation will fail at long times; since we expect this 
problem to be worse in a highly diso5dered structure 
we will consider only the steady-state case. 

t3early, the relation between one- and two-particle 
reaction rates is implicit in that between g and S. Let 
us first assume that all spatial and temporal moments 
of the CTRW exist- The central limit theorem then 
yields [43 : 

(p(r * t I/)> - (4nDt)-d/2e-‘2/4Dt 7 r*t+m: (4) 

++(t)l = C e-‘k’r(p(r, t [ 0)) - e-k2Dt , 
r 

k+O,t-+=, (5) 

in d spatial dimensions, from which we immediately 

recover the well-known result that the two-particle 
quantitities are obtained from the one-particle ones 
by the replacement D + 20. This conclusion also ap- 
plies to master equations on ordered lattices at all r 
and t, and to CTRWs having infinite spatial but finite 
temporal moments such as Levy flights [ 13]_ 

Now let us consider infinite temporal moments. 
Following Scher and Montroll [s], we classify the 
asymptotics of the walk according to the long-time 
decay of the waiting time distribution Q(r): 

q/(t) - t-(1+&), J/(u) - 1 - CUQ, 

O<CY<l; (6) 

w+(u)= 11 - Nu)l/[l -fkw)l 

- uQ/(u” + Bk2). I?. u + 0 _ (7) 

In eq. (7).fk is the spatial part of the structure func- 
tion of the CTRW [4], and B is a pseudo-diffusion 
constant (the mean-squared displacement is sublinear 
in time) rehting length and time scales. Integrating 
(7) over k, we find: 

g(t)-fQ, d>2. 

- tmaln t , d=2, 

_ pd/2 , d-C?_ (8) 

Eq. (8) suggests that d = 2 be regarded as an upper 
critical dimension for CTRWs, above which the char- 
acteristic exponents are independent of d. For a = 1, 
(8) described classical diffusive motion. 

To find the asymptotic form of S(t), we proceed 
in a highly non-rigorous way. We write: 

+ %XKiing&u parI (9) 

and use the asymptotic form of p&), obtained for 

k # 0 from a tauberian theorem: 

pk(t)- (1 - a)t-=/Dk+(2 - a) (10) 

giving: 

S(t) - t-?= /dk kd-l/(Bk’)’ (11) 

which diverges for d G 4, showing that our procedure 
is indeed faulty: in d =G 4 there are important contri- 
butions to (9) from k z 0. To recover sensible results. 
we absorb the divergeuce into the time hhauiar by a 
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simple scaling argument. We introduce a lower cutoff 
l/Lo into (II), and evaluate S(t;Lo). We then asso- 
ciate a characteristic time To with_&; the form of 
implies that this should be given by To = @/I$)-’ I 

7) 
a- 

ffw~nowsetT~=twefind: _ 

s(t) -w2+@ 3 d>4, 

._+*-2rq* r-, d=4 

- @-d/2/(4 _ d)]fad/2 f d<4. (12) 

We have checked this procedure by applying it to g(f), 
for which we know the correct result. 

Comparison of (12) with (8) shows that the upper 
critical dimension of the binary reaction is 4. Alterna- 
tively, the effective value of Ly for the two-particle 
CTRW is doubled. It follows that for a > l/Z, Lift) is 

integrable in d~ensions d > 2/a. It is thus possible 
for the binary reaction to possess a non-zero time-in- 
dependent rate constant K’(u = 0) even though the 
unary reaction does not. In the terminology of 
De Gennes [ 1 I], the motion of individual particles is 
compact, but that of pairs may be non-compact, This 
is our principal result. 

Because of the many approximations involved in 
the transition from the random walk of two particles 
in a disordered medium to independent translation- 
invariant site-local CTRWs, we cannot assess the im- 
portance of our result with respect to other long-time 
anomalies which may arise from those aspects of the 

dynamics that we have not considered. We are current- 
ly designing simulations to study this point. Also, the 
physical interpretation of our result is unclear, al- 
though mathematically it is trivial enough, reducing in 
essence to: (&-“)2 = t-2&_ We suggest that a systemat- 
ic treatment of this problem, for example a two-par- 
ticle version of the self-consistent diagrammatic anal- 
ysis of GAF [3] or of the coherent medium theory [2] 
would be of interest, though it is likely to be very 
comphcated. We hope that our result suggests some of 
the qualitatively new features that might arise from a 
complete theory, or in experiments fl43. 
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