
Volume 135B, number 4 PHYSICS LETTERS 9 February 1984 

NONCOMPACT N=2 SUPERGRAVITY 

B. de WIT 
NIKHEF-H, Amsterdam, The Netherlands 

P.G. LAUWERS 
Physikalisches Institut, Universitiit Bonn, Fed. Rep. Germany 

R. PHILIPPE l 
Physics Department University of  Michigan, Ann Arbor, M1, USA 

A. van PROEYEN 2 
Laboratoire de Physique Thdorique de l'Ecole Normale Supdrieure 3, Paris, France 

Recewed 20 October 1983 

A massive spin-one multlplet with central charge IS coupled to N=2 supergravity. Compared to conventional gauge fields 
the anomalous magnetic moment of the spin-one particles is of the opposite sign. The construction of this theory is based on 
an N=2 supersymmetric gauge theory associated with the noncompact group SO(2,1). As a byproduct we present a conve- 
nient expression for the N=2 Emstein-Yang-Mills lagrangian. 

As is well-known, noncompact symmetry groups have quadratic invariants that are not positive definite. This 
aspect limits their applicability in realistic field theories, where one must insist on states with positive norm. The 
standard solution to this problem is to ensure that the noncompact transformations are realized nonlinearly. This 
can be achieved by introducing a nonlinear sigma model in which the fields parametrize the coset space G/H, where 
H is the maximal compact subgroup of  the noncompact group G [ 1 ]. All other fields are assigned to representations 
o f  H and not of  G. The compact group H acts then linearly on all the fields, whereas the noncompact transforma- 
tions act nonlinearly. These nonlinear transformations take the form of  an H transformation, but with parameters 
that depend on the fields o f  the nonlinear sigma model. 

It is possible to formulate this theory in such a way that the full group G is realized linearly on the fields. In 
that case the group H is promoted to an independent local gauge group, so that the lagrangian is manifestly invari- 
ant under Gngid × Hloca 1. Because G is noncompact the kinetic term for the scalars contains fields whose contribu- 
tion is o f  the 'Wrong" sign, but those fields are precisely associated with the gauge degrees of  freedom of  H. The 
gauge invariance can thus be used to remove these negative-metric components, which have therefore no direct 
physical content [2]. 

A similar situation exists in gravity, where the scale factor of  the gravitational field also occurs with the "wrong" 
sign. This is obvious if one rescales the metric in Einstein's lagrangian according to g~v -~ qb2g~v, after which this 
lagrangian assumes the form 
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- ~ v ~ R  ~ -½x/fiRe 2 + 3v~g"Va.q~ ~v¢. (1) 

The right-hand side of (1) can be viewed as a conformally invariant Klein-Gordon lagrangian with the "wrong" 
sign. However,just as in the nonlinear sigma models this is deceptive; in fact ¢ does not correspond to a physmal 
degree of freedom, because the right-hand side of (1) is invariant under local scale transformations. These transfor- 
mations can be exploited to adjust ~b to a constant. On the other hand, (1) shows that the gravitational field also 
contains negative metric components. 

The field ~b associated with the scale factor is called the compensating field. Such fields play a role in the con- 
text of conformally invariant formulations of gravity and supergravity [3]. The possibility that we will explore in 
this letter is that the compensating field is part of an entire multiplet of a noncompact group. The fields associated 
with the compact directions are used as gravitational compensators, whereas the remaining fields of the multiplet 
will correspond to physical degrees of freedom. In principle this will give rise to some kind of nonlinear sigma mod- 
el coupled to gravity, but we wdl make the construction nontrivial by introducing a local noncompact group. At 
first sight, this leads to a gauge-field lagrangian of indefinite sign. However, this problem is avoided in N = 2 super- 
gravity, where the compensating field is extended to a full supermultiplet which contains a massless gauge field 
[4,5] (for a different solution to this problem, see ref. [6]). Because of supersymmetry the kinetic term for this 
field initially occurs with the "wrong" sign as well, but the sign is reversed once the tensor auxiliary field o f N  = 2 
supergravity has been eliminated. Thus one obtains the N= 2 supergravity lagrangian with the right Maxwell kinetic 
term for the vector field. The remaining fields of the compensating supermultiplet are auxiliary, so that the sign of 
their contribution is not relevant here. 

Because N=2 supergravity is based on a compensating vector multiplet, we first consider the N=2 supersym- 
metric Yang-Mills theory coupled to conformal supergravity. For reasons explained above we will choose a gauge 
group with only one compact generator. The obvious candidate for this group is SO(2,1) or its covering group 
SU(1,1) [the latter is isomorphic to S1(2) and Sp(1)]. However, it is easy to give the lagrangian for a general group 
G. The supermultiplet consists of gauge fields W, A , complex scalar fields X A , Majorana spinors ~2zA and auxiliary 
fields yqA,  where A labels the generators t A of G, and indices i,j ..... refer to the local SU(2) group of conformal 
supergravity. Our conventions are that complex conjugation is always effected by raising or lowering of indices 
(for notation, see e.g. ref. [7] ). For instance, the SU(2) X G invariant constraint for the auxiliary fields Y takes the 
form 

yAij = = yklA. (2) 

The N=2 supersymmetric Yang-Mills lagrangian in a superconformal background is constructed by means of the 
superconformal multiplet calculus [7,4] (This calculus has been reviewed in ref. [8] ). After various manipulations 
we FEnd 

e - l ~  YM = tr {el)taX%X* + XX*(D - ~R) -~  I Y?I 2 - g2 [X, X*] 2 

+ _ + + £x2(rz i/eq) + I g / ¢ a i  +  geq i[x*,afl -  ialx 

% i x *  - a i x x *  . . . .  ,. ~%, /'-'. . i+~v2i'TX A +~g~2tT't~Jei][X,X*] -¼azTu~/ei]F"V + 

+ ~ ~ T u  ~ / T  + zuiiX + ~e -1 evoa '~z iTu ,  p q2oixx* + ¼e -1 ezuoa'~.iT~,tp oi( C'DaX - ½"~/f~)X* - 1 ~'--~i ~ q e'Tpzux 

_ h '~MOujT-"uiJxx  * + ~niTuT~'t~l~i~ja] + ~'~Mol~'q)uje ikelT~.kal -- ~OMOu]e'leklakolaV~2l 

- ~e e ~f itP ge e k f f /ok(TaalX +~e_le,~,oa-~Myu~o/(2-~oia/x, 8 5 - ~ o k a k X .  ) 1 -1 ,~'oa i/ l-- +½OolX2)+h.c.]} 

(3) 
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where g is the gauge couphng constant; the fields of the vector multlplet are written as Lie-algebra valued expres- 
sions, e.g. 

x : X A t A  , X * : x A * t A  . (4) 

The overall sign adopted in (3) is such that for compact generators [tr(tAtA) < 0] the kinetic terms have the con- 
ventional sign. The superconformal fields are the vierbeln and gravitino fields e a and ~u i, the chiral U(1) and 
SU(2) gauge fields A u and qY u/j, a Majorana spinor doublet X i, a tensor T[ab] [~/~ and a scalar field D. In (3) we 
have also used the definitions 

O u x  = a X - g [ W , x ]  + iAuX, 

C-l)u~2 i = a ~2 i - ½co u " 0~2 i - g[ Wu, ~2 i] + ½ i A , n  t - ~ clYji~2/, 

1 l i A 1 
CD#¢vi = Ou~vi -- ~W u "O~vi -- 2 u~vi -- ~c))ji~v], 

/~v =/~+~,v +/~-uv =8 U Wv - 0  v Wu -g[W~'Wv]  + ( - ½ ~ u i T v ~ e t l  +½~v iTu~2 /e t l -~u i~q  etlX+h'c')" (5) 

The spin connection field couab contains ~k-torsion, and R is its associated curvature scalar. 
The action corresponding to (3) is invanant under all superconformal transformations, such as dilatations (D), 

chiral SU(2) and U(1) transformations, and Q and S supersymmetry. Some of these invariances may be exploited 
to remove some of the fields in (3), and to establish that such lagrangians are gauge equivalent to Poincard super- 
gravity, possibly coupled to some matter multiplets. An indication that such a phenomenon is in fact possible for 
(3) is indicated by the fact that if we adjust tr(XX*) to a constant by means of a local scale transformation, the 
lagrangian (3) contains precisely the standard kinetic terms for the graviton and gravitina. Hence the degrees of 
freedom associated with tr(XX*) may act as a compensating field for scale transformations in a way that we have 
explained in the introduction. Note again that a "correct" sign for graviton and gravitini kinetic terms is accom- 
panied by a "wrong" sign for the compensating field. 

At the moment it as not yet necessary to specify the gauge group, so we proceed to derive the general Einstein 
-Yang-Mills lagrangian. It turns out that the compensating field mechanism outlined above does not yet suffice 
m this case to derive the Einstein-Yang-Mills lagrangian, because the lagrangian (3) alone will lead to inconsistent 
field equations. This can be remedied in various ways [9] by introducing a second compensating multiplet. Here 
we choose the option of using the "nonlinear" multiplet, which contains the fields (cbia, Xi, M[ij], Vu). The scalar 
fields in ~ i  parametrize elements of SU(2), and can therefore be used as compensating fields for the chiral SU(2) 
group. Hence ~ is restricted to the unit matrix, in which case there is no longer a distinction between indices ~z, 13, 
.., and i , /  . . . . .  Prior to this, one has the option of letting ~ transform under an invariant SU(2) or SO(2) subgroup 

of the full group acting on the indices cz, 13 . . . . .  This will lead to "gauged" N=2 supergravity or to a Fayet-Iliopoulos 
lerm, depending on whether the gauge field(s) associated with this subgroup belong(s) to supergravity or to the 
matter multiplets. We denote the corresponding multiplets by (Xaa, f2ia ~, I~ua#, Yi[~a) and introduce a separate 
coupling constant g' to indicate the modifications in subsequent formulas. The final Einstein-Yang-Mills lagrangian 
will in general have a cosmological term of order g,2. 

Apart from these details the net effect of the introduction of the nonlinear multiplet is that the superconformal 
field D is expressed in tersm of the spinor Xi, the complex scalar M[0. ] and the vector field V u . To substitute the 
resulting expression in the lagrangian one needs 
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1 2 1 " " 1 e f ( ¢ ) O  = --e V u buf(• ) + el(C) { - ~  V~ - ¼ I g q l  2 - ~ V j I  Vul  i - ~R 

+ [ 2 X i s ~ x i _ ~ i V , ) # _ ½ X i o . T - O X ,  + 2Y~iX,/+_S~'oUV~ ,,,i - ' ' , -  a"i  ~ u  " v  - 2 X i ° u v v ' / q J v l  - 6Xi°"  T - i / 7 "  q 

- -  " 1--i  "" 1 _-l_lavpo.'77 _ ~ .i. i t_~-l~lavpaTiT, ^. r: i ,r, 1 + tlllat~kiVta - g ~  "Txi  + l Tlai~llvjT-lavtl + se  e ~ laiTv~l.) otga -- 4 c ~ ~,tailv,  p ]~, ° 

-- 2 " ~ M o u " x i ( ~ b  q + ~l.t~ / )  - ½e-l  euuo°~ ta ,7 ,~  piY~lTaX 1 + 2~ui~uj~tiouuXJ 

+ (-2~.3,°X / + ½ e - l e u " ° ° ' ~ u i T t ~ / ) ( Z ~ o t X  ] - - ~ 5 ~ o k X k )  + l g ' e i l Y k l k  i -- 2 g ' 2 X * S X i  i 

- 4g'e/kY~i(~2k + XkX) ~ + b.c.] ), (6) 

where f(¢) is some arbitrary function of the fields involved, and 

, , %SxJ, cbuXi = auxi - =~ul .oX' + =iAuX + ½ 

Vu'I = qY u !i" -g- 'wu ji _ 2"77~ u i" + 2--~Mxi + ½85(-~ukXk -- "~uk ~'k)" (7) 

In (6) we have dropped a total divergence• 
Combining (3) and (6) with f(q~) = tr(XX*), we may now scale tr(XX*) to a constant to obtain the lagrangian 

for Einstein-Yang-MiUs supergravity. A second condition may be imposed on the spinors by exploiting S super- 
symmetry, and we remind the reader that we have already removed the local chiral SU(2) invariance by restricting 
the fields @ of the nonlinear multiplet. Hence altogether we have the gauge conditions 

tr(XX*) --- 1 (D), tr(X~2 i) = 0 (S), @ia = ~ i  (SU(2)). (9,10) 

The second condition, which reduces the supersymmetry variation of the first one to zero, is convenient because 
• 1 it supresses the mixing between spin-{ and spln-~ fields in the kinetic terms of the final lagrangian (in the context 

of N=l such gauge conditions have been studied in ref. [10] ). 
The field equations for the auxiliary fields can be substituted into the full lagrangian. Ignoring the optional 

SU(2) or SO(2) gauging of the nonlinear multiplet the relevant equations are 

tr(X* ~ uX) = ¼tr(-~iTu~2i), Vut ] = -½tr(~2'Tu~2 / - ½85~kTug2  k ,  T + .uml = 2 e d [ t r ( X 2 ) ] - i  tr(XF;v)' (11) 

where we note that the first equation determines the chiral U(1) gauge field A u.  However, none of these equations 
breaks the U(1) gauge invariance, so that at this stage this symmetry will remain preserved. Of course, we may al- 
ways break it by imposing another gauge condition on the fields X. 

Using (8)-(11) the lagrangian takes the form 

.t? = tr(buX~uX* ) + ~ [tr(X*~uX)] 2_ ~R - g2 tr([X,X*] 2) + ~ t r ( i ~ u p u v ) _ ~ { [ t r ( ~ , X ) ] 2 / t r ( X 2  ) e-1 + h.c.} 

½geiJtr(~i[X*,~21])__ *~  _ .  , • ~ t r ( ~ 2  i) - ~ t r (X a X) tr(g2"ru~.) + ~tr(~i3, g2j)tr(~'Tug2i) - ~ [tr(~'~ g2i)] 2 + h.c + + 

_ _  , ^  

+ t r { _ ½ ~ u ~ X . T t a ~ 2 i + ½ g ~ T . d J e i j [ X , X .  ] 1-~i~ # , j ~  ~v+l~- l~ t t~O~rT f f  , i~, ,Ii ~ t"I** "'-- 4 ~  ~U V'v ~i/-- 4~" " v'U "o~'vi  o . . . .  -- ¼ealt~ ui~llv/FUVX 

+ I g i T u l f v t ) u , ~ j g ~  + l ' ~ u i o u u ~ v i e i k e i l g k ~ 2 l  -- ldJ '~ ta i~Jv]ek lgkolaUa l 

- ~e - l euuO°Wui~v le 'Tek IWok(7o~2 lX  + ½ ~k/X 2) + h.c.} + ½e- l ( euU°°WuiTvbo~  J + h.c.), (12) 

where the derivatives b u are equal to those given in (5) without the U(1) and SU(2) gauge fields A u and c)Yu/j. We 
should add that the fields X and ~2 are still subject to the conditions (8) and (9). This result now represents the 
general lagrangian for N=2 Einstein-Yang-MiUs supergravity based on a quadratic form. As we have discussed re- 
cently, it is possible to generalize such lagrangians on the basis of arbitrary functions of chiral superfields [ 11 ], 
but this is somewhat outside the scope of this work. 
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In order to ensure that all kinetic terms have the correct signs, precisely one of the generators must have a dif- 
ferent sign for tr(t A 2). Usually this is achieved by introducing a single abelian multiplet where one can adjust the 
sign at will. The novel feature of the model that we are about to present is that this generator is part of a nonabelian 
group. Namely we choose the group SO(2,1) winch has one compact and two noncompact generators. By changing 
the overall sign in the lagrangian we then obtain a compensating kinetic term associated with the compact generator 
with the "wrong" sign, and two kinetic terms associated with the noncompact ones with the "correct" sign. As ex- 
plained in the introduction we should thus end up with a lagrangian that is of the "correct" sign for both the grav- 
itational and the matter multlplets. 

The SO(2,1)generators are defined by 

[ to , t l ]  = - t 2 ,  [ t2,to] = - t l ,  [ t l , t2 ]  = to, (13) 

and to take care of the overall change of sign in the lagrangian we define the trace over these generators by 

tr(to 2) = 1, tr(tl2 ) = tr(t2 2) = - 1 ,  (14) 

where t O is now the compact generator. It is straightforward to write the Lie-algebra valued quantities on this basis, 
e.g. 

, ¥ = X O t o + X l t l  +X2t2 , X * = X ° * t o + X I * t l  +X2*t2 , (15) 

so that (8) assumes the form 

tr(XX*) = IY°l 2 - [ x l l  2 - I X 2 [  2 = 1. (16) 

A field configuration that satisfies (16) leaves only the compact SO(2) subgroup of SO(2,1) invariant. Therefore 
the gauge fields associated with the noncompact generators acquire a mass. It is thus convenient to impose an addi- 
tional gauge condition on X with respect to the noncompact gauge transformation. For instance, X may be ex- 
pressed in terms of a complex field a and two real fields A and B according to 

X = a ( t  0 +At  1 +iBt2) .  (17) 

The field Z = A -1B now transforms under the SO(2) subgroup as 

Z -+Z '  = exp (iga 0) Z ,  (18) 

but is inert under the scale and chiral U(1) transformanons of the superconformal theory. The condition (16) now 
amounts to 

[a[ 2 = (1 - [gl2) -1  • (19) 

Note that (16) implies I Z I <  I. 
It is not difficult to evaluate the scalar field potential 

V(Z,Z*) = 4g21Z12(1 - IZ12) -2  • (20) 

This potential has an absolute minimum at Z=0, with zero cosmological constant and no supersymmetry breaking. 
As is shown in (12) the kinetic terms for the gauge fields come from two sources. At the minimum of the poten- 

tial the second term contains only the "graviphoton" field strength F °, and this term is responsible for reversing 
the sign of (F0uv)2. Let us redefine the gauge fields as 

B =l~v'~W 0, W - - - ½ ( W  1 + i W 2 ) ,  

with corresponding field strengths 

= a8 - - + - w 

(21) 

F v ( W -  ) = (a + v~igBu)W v- - (a + v~igBv)Wu- , (22) 
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where B u is the graviphoton of N=2 supergravity, and Wu- a complex (massive) gauge field. The terms in the 
lagrangian proportional to F 2 then read 

e - l ~  = (1 + [Z[2) -1 {-¼(l - I Z [ 2 ) F ~ v ( B ) 2  - ~-[F~v(W-) 12 

+ ¼Z2F(W-) 2 + }z* 2F. (W+)2 + ¼ [ZFoo(W-) + Z*Foo(W+)]). (23) 

The charge which measures the coupling of the graviphoton B to W- (and by supersymmetry to all matter fields) 
is thus equal to v~g.  A characteristic difference with charged vector bosons in the standard gauge theories is that 
the anomalous moment is of opposite sign. This originates from the concompact nature of the gauge group, in 
particular from the sign in the last commutator of (13). 

To determine the masses for spin-0 and spin-1 fields we must also give the kinetic terms for Z with the corre- 
sponding interactions with the SO(2,1) gauge fields. The result takes the form 

= - ( 1  - I z t 2 )  - 2  ( t o O z l  2 + 2) 

- 4g2(1 - IZl2) -1 {W~W-" - } [ ( 3  + IZ12)/(1 -IZI2)](W~Z * - Wu-Z)2}, (24) 

where 

o O z  = (~ u - x / ~ i g B u )  Z . (25) 

This theory describes the coupling of N=2 supergravity, with a graviton, two gravitini and the graviphoton, to a 
charged massive vector multiplet. The latter is based on the charged boson fields Wu + and Z, and the chiral com- 
ponents of the charged Dirac fields 12i + ~ 12i 1 - i 12 i  2 , ~+i ~ 1 2 1 i  _ i 1 2 2 i  [remember that the spinors associated 
with t o are eliminated through the gauge condition (9)]. This represents precisely an N=2 massive spin-one multi- 
plet with central charge, whose associated gauge field is the graviphoton. The central charge thus corresponds to 
the S0(2) generator t 0. In N=2 supersymmetry gauge transformations enter in the commutator of two supersym. 
metry transformations with parameter 

A A = - 4 X  A ~ l i e2 je  il -- 4 ) (  A *~lie2Jei j ,  (26) 

where X is the scalar field of the corresponding guage multiplet. In the SO(2,1) theory it is the X ° component 
that acquires a vacuum expectation value. Therefore A 0 will remain as the relevant central charge transformation 
for the states of the matter multiplet [12]. There is a typical relation between the mass and the charge which must 
hold for this matter multiplet, namely 

M = 2g~ -1 , (27) 

where vr2g and M are the charge and the mass of the matter multiplet, and K is the gravitational coupling constant 
which has been put to one in this paper. As is well-known, this relation gives rise to the phenomenon of "antigravity" 
[13]. 

We close with some comments regarding the coupling of supersymmetric matter to this theory. As was clearly 
indicated by our derivation of the Einstein-Yang-Mills lagrangian it is straightforward to introduce additional 
gauge field multiplets to this theory. Precisely as for the more conventional N=2 supergravity theories the gauge 
field lagrangian may be based on an arbitrary gauge invariant function of the Lie-algebra valued fields [ 11 ]. If the 
corresponding gauge group contains an invariant SU(2) or SO(2) subgroup one can introduce a Fayet-lliopoulos 
term. This term will give rise to a cosmological term and corresponding SU(2) or SO(2) gauge field interaction 
with the gravitini. However, the graviphoton cannot have a minimal coupling to the gravitini. To introduce scalar 
multiplets is much harder. First of all a single scalar multiplet cannot couple to SO(2,1), so that it is not possible 
to introduce a coupling with the graviphoton. Even if this were the case, the corresponding kinetic terms would 
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not be positive definite. However, it may be possible to use an independent gauge field in order to realize the local 

central charge transformations for the scalar multiplets separately. 
In principle extended supersymmetry severely restricts the variety of invariant matter couphngs or the nature 

of the scalar field potentials. Our results show that the techniques of multiplet calculus can reveal the possibility 
for new theories with an unusual structure. The theory at hand is one such example, which, unlike the standard 
N ~  lagranglan, cannot be viewed as a truncation of one of the known higher-extended supergravlty theories. 
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