
Computers & Strucluns Vol. 18, No. 2, pp. 333-342, 1984
Printed in Great Britain

cQ45-7949184 s3.w + .oo

Pergamon Press Ltd.

II

V,
6
F,
V
E
F
G
7

71. 72, TT
AV
BE
AF
AG

AN ALGORITHM FOR GENERATING SOLID ELEMENTS
IN OBJECTS WITH HOLES?

TONY C. Woo and TIMOTHY THOMASMA

Department of Industrial and Operations Engineering, The University of Michigan, Ann Arbor, MI 48109, U.S.A.

(Received 21 April 1982; received for publication 17 January 1983)

Abstract-An algorithm for dividing an object with holes into solid elements for finite element preprocessing is
presented. Since a tetrahedron can always be subdivided into prisms and cuboids, the approach of first dividing the
given object into disjoint tetrahedra is taken.

Objects without holes are dealt with first. Two mesh operators, each generating a single tetrahedron, are
presented. In addition to the construction procedure, it is shown that they handle all objects without holes. The
algorithm for objects with holes requires a third operator. In addition to showing the necessary and sufficient
condition for applying such an operator, it is shown that it effectively reduces the number of holes in an object by
one while yielding three tetrahedra. The algorithm which sequences the three operators thus reduces a given
polyhedron to a single tetrahedron iteratively. Data structure requirements and update procedures are also given in

this paper.

NOTATION

a polyhedron
a vertex in II
an edge in n
a face in II
number of vertices in II
number of edges in II
number of faces in II
number of holes in II
a tetrahedron
mesh operators
change in V after each ‘T,
change in E after each pi
change in F after each 7,
change in G after each T,

1. INTRODUCTION

In discrete mathematics and computing, the problem of
dividing a complex geometric structure into simpler ones
received some attention recently[2, 3, 7, 10, 131. Since
the primary emphasis had been on the analysis of al-
gorithms for their computational complexities, a “com-
plex” geometric structure was often assumed to be a set
of points[7] or a set of linear equations[3] while a
“simple” structure only needed to be convex[2] without
restriction on the number of vertices, say, in the struc-
ture. Two other attempts[lO, 131 were made in dividing a
polyhedron (defined by a set of vertices, edges and faces)
into tetrahedra (defined as having four vertices, six edges
and four faces). Success was largely limited to objects
without holes.

This paper describes an algorithm for dividing an
arbitrary polyhedral object (with or without holes) into
solid elements. It is intended for the automatic process-
ing of a geometric modeI[1,9] into finite element
models[8] in an integrated computer-aided design and
analysis environment.

The approach taken in this paper for the automatic
generation of solid elements is as follows.

tThis work was supported in part by an SME Foundation
research grant #481-186 and in part by the Center for Robotics
and Integrated Manufacturing, The University of Michigan.

Step 1. Generate a rough mesh of tetrahedral elements
without adding new vertices to the geometric model.

Step 2. Refine the elements by subdivision.
Step 1 is discussed in this paper. Step 2 is illustrated in
Fig. 1 in which a tetrahedron is subdivided into tetra-
hedra, pentahedra, and hexahedra using new vertices
such as the centroid of the tetrahedron, centers of the
triangular facets and midpoints of the edges. It is
assumed that subdivision can be carried out to any
user-specified resolution.

In this paper two solid mesh operators are introduced
in Section 2. Each operator generates one tetrahedron by
either “slicing” or “digging” into the given polyhedron.
After the tetrahedron passes geometric tests for non-
interference tests, it is removed from the polyhedron.
This process iterates until the polyhedron is reduced to a
single tetrahedron. .

To ensure that the algorithm converges, the topological
properties of the operators are examined in Section 3.
Using Euler’s formula for simple polyhedra, the opera-
tors are shown to maintain topological integrity at every
step in the process.

Objects with holes are dealt with in Section 4. A third
operator for “cutting” open a hole is introduced. As the
operator for transforming a multiply-connected poly-
hedron into a simply-connected polyhedron is again
examined for topological integrity, an algorithm combin-
ing all three operators is given.

2. MESH OPERATORS AND INTERFERENCE TESTS

A solid mesh of tetrahedral elements in a polyhedron
consists of non-interfering tetrahedra. Each tetrahedron
consists of four vertices, six edges and four (triangular)
faces. There is no requirement for each tetrahedron to be
regular, i.e. to have equilateral triangular faces with 60
dihedral angles. The only requirements are that the
tetrahedra be non-overlapping and be in the interior of
the polyhedron.

A polyhedron is represented by three kinds of enti-
ties--vertices, edges, and faces. Each kind of entity has
two types of information associatdd with it--geometry
and topology. The geometry of an entity records its

333

334 T. C. Woo and T. THO~ASMA

Fig. 1. Subdivision of a tetrahedron.

topology of the three entities is given below.

entity geometry

vertex V, = (Xl. YI. Z,)

topology

points to n incident
edges

edge E,=(I-l)V,tIV: points to two vertices
and two faces

face F,=AXtBYtCZ+D=O points to n bounding
edges

It may be noted that the seperation of topological
information from geomCtric information permits greater
flexibility for further development of algorithms. If, for
instance, octahedral elements for polyhedra are desired,
only the mesh operators need to be rewritten since the
geometry does not change. If, on the other hand, cur-
vilinear tetrahedral elements are desired for objects with
curved surfaces, only the geometric tests need to be
rewritten. In the following two mesh operators are
presented which operate primarily on topological in-
formation. To ensure that a tetrahedron does not inter-
fere with others, two geometric tests for vertex and edge
interference are needed.

The two mesh operators are called P! and Q. each
removing a tetrahedron T from the remaining polyhedron
7~. In forming a tetrahedron, operator T, “slices” a corner
off of in by making one “cut”. The corner must neces-
sarily be convex and trivalent (have three edges). If the
remaining polyhedron does not have a convex trivalent
vertex, operator r2 “digs” out a tetrahedra from a con-
vex edge by making two ‘“cuts”. All polyhedra have at
least one convex edge, therefore r2 can always be ap-
plied. These two operators are illustrated in Fig. 2.

magnitude. The topology of an entity records its relation
with another kind of entity.

The geometry of a vertex V, is a triple (X,, Y&, Z,)
which are the Cartesian coordinates of the vertex. Its
topology is a list of pointers to al1 the incident edges. The
geometry of an edge Et is in the form of a parametric
equation expressed in terms of its two endpoints V, and
V,.

E,=(l-t)V,ttVz tE[O,l]

Its topology consists of two pointers to its two vertices
and two pointers to its two faces. The geometry of a face
F, is a four-tuple (A, B, C, D) where A, B, C are the
direction consines and D is the distance from the origin
to a plane having the equation

AX+BY tCZ+D=O.

It topology consists of a fist of pointers to all the edges
bounding the face. A summary of the geometry and the

b. I.-,

Fig. 2. 71 and 72 on polyhedra.

An algorithm for generating solid elements in objects with holes 335

BEFORE DURI~ t

/- I
er i

\

J

\ I
‘\ ’ I

‘\

AFTER LIV AE AF

q

-I 0

Fig. 3. Cases of 7,.

Operator 71
T, operates on a convex trivalent vertex V,. From the

topology of Vi, all four vertices, at least three of the six
edges, and exactly three of the four faces for the tetra-
hedron to be constructed are immediateIy available. No
vertex, zero to three edges, and one face need to be
constructed. (See Fig. 3 for the various cases of rl.) The
procedure for performing on vertex Vi of polyhedron ‘II
can be stated as follows.

Algorithm T,(Vi)
Step 1. Determine if Vi has exactly three edges.
Step 2. Determine if Vi is convex.
Step 3. Construct a tetrahedron 7 from Vi. Return T.

Operator r2
72 operates on a convex edge Ei. From its topology, at

least two of the four vertices, at least one of the six
edges, and exactly two of the four faces for the tetra-
hedron to be constructed are immediately availabie. No
vertex, zero to five edges, and exactly two faces need to
be constructed. (See Fig. 4 for the various cases of Q,)
The procedure for performing 72 on edge Ei of poly-
hedron r can be stated as follows.

~gorithm T*(E))
Step I. Determine if Ei is convex.
Step 2. Construct a tetrahedron T from Ei. Return r.

2.2 Interference Tests
A tetrahedron 7 constructed by operators T, and r2

CM Vol. 18 No. 2-J

must not interfere with any part of the polyhedron 8. Inter-
ference is defined by following two rules.

Rule VT. No vertex Vi of the polyhedron rr lies on any
of the four faces of the tetrahedron T.

Rule ET. No edge Ei of the polyhedron n intersects
any of the four faces of the tetrahedron T. Figures 5fa, b)
illustrate the violation of Rule VT and Rule ET, respec-
tively. Because of the “local influence” of the operators
71 and Q, the faces of the polyhedron cannot be inter-
sected by the edges of the tetrahedron.

The two interference rules can be formulated as pro-
cedures with candidate te~ahedron 7 and polyhedron ?T
as input.

Algorithm VT(T, 71)
Step 1. Evaluate all vertices Vi of polyhedron v on all

four faces Fi of 7.
Step 2. If a Vi is on Fj, return False. Else, return True.

Algorithm E?‘(T, rf
Step 1. Calculate points of intersection between all

edges Ei of polyhedron 7r and all four faces Fi of
tetrahedron T.

Step 2. If a point of intersection lies within the boun-
dary of Fi. return False. Else, return True.

In the next section, an algorithm that applies or and 72
is developed. Tests VT and ET are performed on the
tetrahedron T produced by either a 7I or a Q. The
procedure iterates until the polyhedron v is reduced to a
single tetrahedron.

336 T. C. Woo and T. THOMASMA

BEFORE DURING AFTER Av AE AF

Fig. 4. Cases of 72.

0. VERTEX INTERFERENCE

p fp

b. EDGE INTERFERENCE

Fig. 5. Interference between 7 and R.

0 I I

0 2 2

0 2 2

0 3 3

0 4 4

3. MESHING SIMPLE OBJECTS

In this section we first provide a more rigorous treat-
ment of the relationship between the two operators and
the polyhedron. Specifically, we show that they are ap-
plicable to any polyhedron satisfying the derivative form
of Euler’s formula:

AV-AEtAF=O (1)

where AV, AE, and AF are the changes in the number of
vertices, edges and faces of a polyhedron respectively at
every step of the process. Next, we give the procedure
for meshing simple polyhedra satisfying eqn (1).

3.1 T,, TV and simple objects
A simple polyhedron P with V vertices, E edges and F

faces satisfies Euler’s formula

V-E+F=2. (21

Consider inverse operators 7;’ and 7;’ that “glue”
tetrahedra on a polyhedron. We show by induction that
at any step of the construction process the polyhedron
satisfies eqn (1).

An algorithm for generating solid elements in objects with holes 331

The first tetrahedron trivially satisfies eqn (2) since
V = 4, E = 6 and F = 4. Suppose eqn (2) is true after n
steps. Consider the (n t l)st step. If the operation is a
r; , then from Fig. 3 the following table can be con-
structed.

7;’ AV AE AF

I 3 2
I 2 1
I 1 0
I 0 I

apply a 71 and construct a tetrahedron T. If T passes
interference tests VT and ET then remove it from ?r.
Continue with 7) on the remaining polyhedron. If all
remaining the vertices fail the interference tests or if
they are not convex trivalent, apply at TV. If a tetra-
hedron is successful obtained from a TV, go back to TI.
Continue this process until the polyhedron r is reduced
to a single tetrahedron.

4. MESHING OBJECTS WITH HOLES

If the operation is a r;‘, then a similar table can be
constructed from Fig. 4.

The two operators 71 and T2 apply to simply-connected
polyhedra. An object with holes is a multiply-connected
polyhedron. In this section we introduce a special opera-
tor 73 that cuts open holes hence reducing a multiply-
connected polyhedron to a simply-connected one.

T_’ AV AE AF

0 0 0
0 -1 -1
0 -2 -2
0 -2 -2
0 -3 -3
0 -4 -4

Clearly, in both cases eqn (I) is satisfied. Hence, eqn (2) is
satisfied.

A necessary condition for applying operator 7% is that
if the hole is cut by a plane there exists a triangular
cross-section with vertices Vi, Vi, and Vk. (Intuitively,
such a condition always exists in a multiply-connected
polyhedron. When a hole is cut, it yields a cross-section
and if the cross-section is not a triangle, more 7,s and 7~s
could have been applied.) Figure 6(a) illustrates such a
condition. A sufficient condition for applying operator 7%

is that there exists two other triangular cross-sections V,,
Vi, V, and Vk, V,, V,. Figure 6(b) illustrates such a
condition. Operator 7% transforms the polyhedron from
the configuration in Fig. 6(a) to that in Fig. 6(b) in three
distinct stages. The notion of a genus is needed for
dealing with the reduction of holes at these stages.

Having shown the applicability of T! and Q to simple
polyhedra, we proceed with the description of the al-
gorithm.

3.2 AIgorithm for simple objects
Intuitively, T, seems to be “easier” to apply than Q

since fewer new entities must be constructed. It may also
seem intuitive that T, and 72 must work “in tandem”. The
latter intuition can be verified by the change in the
number of vertices AV each operator makes. From Fig. 3
and 4, we see that for 71, AV = I, and for 72, AV = 0.
Thus, operator 71 eventually reduces a polyhedron with
V vertices to a tetrahedron with four vertices. As we
also see, T2 is needed when none of the vertices are
“r,-able”, i.e. convex, trivalent, and yielding a non-
interfering tetrahedron. The algorithm presented in this
section has two nested loops, with T1 as the workhorse in
the inner loop. The flow of control of the algorithm is as
follows. The inner loop first executes all the applicable
T,S. The outer loop then indices by one and executes one
72. If the tetrahedron produced is non-interfering, the
control drops down to the inner loop. Else, another T2 is
executed.

Euler’s formula for a simple polyhedra does not hold
for objects with holes[6]. The concept of a “three-
dimensional hole” can be described by a parameter
called genus G, commonly referred to as a handle. A
simple polyhedron is topologically equivalent to a
sphere. The vertices, edges and faces become nodes,
arcs and regions on the sphere. The genus of a sphere is
zero. An object with one hole is topologically equivalent
to a torus. The genus of a torus is one. The genus G of an
object is related to V, E and F by the Euler-Poincare
formula [5]

Algorithm S(a)
Step 1. If H is a tetrahedron, return.

For all edges E, do
For all vertices Vi do

Step 2. T+Cd Tdvi)

Step 3. If WT. r) and ET(T, T), rrc n - T.
end

Step 4. T+d Tz(Ei)

Step 5. If V~(T. rr) and ET(T, T), T+ T - T.
end

V-EtF=2-2G (3)

Meshing an object with holes involves changing the
genus. In transition, the operator T$ produces a non-
manifold object having G =i. A small sphere placed
near the singularity of a non-manifold would be divided
into four regions, alternating inside, outside, inside and
outside of the object. A small sphere placed anywhere
else would be divided into at most two regions, inside
and outside. Figure 7 shows two non-manifold objects.
The object in Fig. 7(a) has a singularity of a point. The
object in Fig. 7(b) has a singularity of a line. These two
non-manifold objects occur as intermediate stages of a
multiply-connected polyhedron as it is cut open by a 7%.

4.1 TT and its three stages
Operator 73 opens up a hole in three distinct stages.

The polyhedron under the operation makes the following
transitions:

Stage 1. From manifold, G = 1 to non-manifold, G = $.
Stage 2. From non-manifold, G = f to non-manifold,

G =;.
Step 6. Go to step I. Stage 3. From non-manifold, G = f to manifold G = 0.

Algorithm S works in the following fashion. If there Figure 6(a) corresponds to the configuration of the poly-
exists a convex trivalent vertex in the polyhedron 7~, then hedron with a hole before stage I. Figure 6(b) cor-

338 T. C. Woo and T. THOMASMA

“K
/

I

I

“J @a
o. NECESSARY CONDITION b. SUFFICIENT CONDITION

c. NECESSARY AND SUFFICIENT CONDITION

Fig. 6. Conditions for ~3.

o. VERTEX

b. EDGE

Fii. 7. Non-manifold objects We can express operator TT procedurally in terms of

responds to the configuration of the same polyhedron
without a hole after stage 3. The three stages are illus-
trated in Fig. 8.

At each stage, a tetrahedron is removed, thus changing
the V. E, and F of the polyhedron. In addition, genus G
changes by -f at stages I and 3 satisfying the derivative
form of eqn (3):

AV-AEtAF=-ZAG. (4)

Figures 9-11 give detailed cases of each of the three
stages. We can construct the following tables that verify
eqn (4) is obeyed.

TT stage? AV SE AF .iG

0 0 0 0
0 -I -1 0
0 -1, -1 0

An algorithm for generating solid elements in objects with holes

AFTER BEFORE

“I

“K SE “L

“J

"N “I

"K 32 "L

“Y "J

“N “I

I
II

\

-

\ ’ I "L
\ /’ ’

“M "J

STAGE I

“I

“K

3E

“L

“Y “J

STAGE 2

“N “I

\ “K

YE

\ “L

\

“M “J

STAGE 3

Fig. 8. The three stages of rt.

339

the three triangular cross-sections Fk = (V,ViVk), Fr =
(ViVjV,) and F, = (V,V,,,V,,) shown in Fig. 6(c). An edge
connecting vertices Vi and Vj will be denoted by (ViVr).

Algorithm TT (Fkr F,. F,, n)
Step 1. Let Ei be (VkV,). Apply stage 1 of T$ to Ei

and get tetrahedron 7. Remove T from r.
Stage 2. Let Ei be (VjV,). Apply stage 2 of T$ to Ei

and get T. Remove T from 71.
S:ep 3. Let Ei be (V,V,,,). Apply stage 3 of T: to E,

and get T. Remove T from ir.

The three stages of T$ are given in Fig. 9-11.

4.2 Algorithm for objects with holes

Compared to 7, and T*, ~2 will be used less frequently.
In fact, it will be used only as many times as there are
holes in the object. For objects with holes, we shall
develop an algorithm H with three nested loops. The
inner loop will be for TI. The middle loop will be for T*.
The outer loop will be for ~3. The middle and the inner
loops are Algorithm S. As many 7,s are executed as
possible until all convex trihedral vertices are exhausted.

A T2 is then executed and the control drops into the inner
loop. The outer loop is indexed only when neither TV nor
T2 is applicable to the remaining polyhedron. At this
point, a ~3 is executed to transform the polyhedron into
a r,-able or a rZ-able polyhedron. The index
of the outer loop Fk, F,, F, corresponds to the T$
condition shown in Fig. 6.

Algorithm H (rr)
Step 1. If IT is a tetrahedron, return.

For all faces Fk, F,, F, do
For all edges Ei do

For all vertices V, do
Step 2. T+Cdl T1(Vi)
Step 3. If VT(T. r) and ET(T, a), T+ 71 - T.

end
Step 4. T +- call TV
Step 5. If VT(T, r) and

end
Step 6. Call T?(&, 4, F,, 8)

end
Step 7. Go to Step 1.

ET(T,T) P&P-T.

340

BEFORE

BEFORE

P

I IP :

I

T. C. Woo and T. THOMASMA

DURING AFTER

Fig. 9. Stage 1 of 7%

OlJRlNG AFTER

:
I

@
1’

I

I

@

/

I IP

@ IP
Fig. 10. Stage 2 of TT.

AV AE AF

0 I 2

0 0 I

0 -I 0

Av AE AF

0 0 0

0 -I -1

0 -2 -2

An algorithm for generating solid elements in objects with holes 341

BEFORE DURING AFTER Av AE AF

Fig. 11. Stage 3 of rt.

a. b.

Fig. 12. Example of applying ~1, ~2, and ~3.

342 T. C. Woo and T. THOMASMA

Figure 12 shows the execution of algorithm H on an
object with a hole. The object is transformed from Fig.
12(a, b) by a sequence of operators rZ, T,, Q, R. (7, could
not be used as the first operation because the hole blocks
the formation of a tetrahedron.) Eventually, the object is
reduced to that shown in Fig. 12~ where no T? is apphc-
able. The three stages of ~3 are illustrated in Fig. 12(d-f).
Since the object in Fig. 12(f) is simple, 7l and T? can
reduce it to a single tetrahedron.

5, CONCLUSIONS

We have shown that simple objects meshed by opera-
tors 71 and Q obey AV - AE - AF = 0, Algorithm S con-
verges because 72 reduces the degree of a vertex and 7l
reduces the number of vertices. For objects with holes,
an operator rT is needed in conjunction with 7l and r2.
TT changes the genus of a polyhedron from G to (G - 1).
The three stages of r? yields a non-manifold object as
tetrahedra are removed.

The implementation of Algorithm H can be simplified
if we do not insist on mathematical rigor. For the reason
of clarity, we have made a distinction between ~1 and R
by their topological differences in the updating of the
polyhedron. For the reason of expediency, we alfow 7%
to remove three tetrahedra in succession rather than
letting TV take over after one tetrahedron is removed. In
practice, if the updating rules for TV and 7% are observed,
there is no need to make a distinction between them.
Hence, Algorithm S suffices.

As a side issue on storage allocation for the elements it
would be of interest to know how many elements there
are in a polyhedron without decomposing it. It is
knownf4] that there can be T tetrahedra in the interior of
a polyhedron with F faces on the boundary and f faces
in the interior satisfying the rule:

Recently, it has been shown[1 I] that, a priori T is related
to the number of vertices V by the relation:

(V_3)5T~tV-3)1V-2)
3

The bounds for T can be quickly appreciated since a
cube can be divided into five or six tetrahedra. If 21
interor vertices are allowed in the polyhedron[l’& there
can be

T= v-c+d-3

tetrahedra, where d is the number of interior diagonals.

1.

2.

3.

4.

9.

10.

II.

I?.

13.

I. C. Braid, The synthesis of solids bounded by many faces.
Comm. ACM l&209-216 (1975).
B. Chazelle, Convex decomposition of polyhedra. ACM
Symp. on Theory of Comp~f~ng. Milwaukee, pp. 70-79
(1981).
J. Cohen and T. Hickey. Two algorithms for determining
volumes of convex polyhedra. J. ACM 26, 401-414 (1979).
D. J. F. Ewing, A, J. Fawkes and J. R, GrifIiths, Rules
governing the of nodes and elements in a finite element
mesh. Int. J. Num. Meth. Engng 2,597-601 (1970).
P. J. Giblin, Graphs, Surfaces and Homology. Chapman and
Hall, London (1977).
I. Lakatos, Proofs and Refutations. Cambridge University
Press, (1976).
F. F. Little, Three-dimensional triangulation. SIAM 1981
National Meeting, Troy, New York (8-10 June 1981).
A. K. Noor, Survey of computer programs for solution of
nonlinear structural and solid mechanics problems. Comput.
C&put. Grup~i~s AppIic. 2,9--24 (1982).
A. A. G. Requicha and H. B. Voelcker, Solid modeling: a
historical summary and contemporary assessment. JEEE
Compt. Graphics Applic. 2,924 (1982).
T. C. Woo. An algorithm for triangulating a class of poly
hedra. SIA&f Conf. on the App~jcatjo~ of Discrete ~at~erna-
tics, Troy, New York (11-12 June 1981).
T. C. Woo and T. Thomasma, On the number of disjoint
tetrahedra in simple polyhedra. Tech. Rep. 81-12. Depart-
ment of Industrial and Operations Engineering, The Uni-
versity of Michigan, Ann Arbor, Michigan 0981).
T. C. Woo and T. Thomasma, Characterization for the in-
terior of three-dimensional polyhedra. Tech. Rep. 82-3.
Department of Industrial and Operations Engineering, The
University of Michigan, Ann Arbor, Michigan 48109 (1982).
B. Wordenwever, Volume-triangulation, CAD Group DOCU-
ment 110. Computer Laboratory, Cambridge University,
England (1980).

