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Analytical solutions of the velocity, pressure and stream function are developed for the slow 
incompressible viscous fluid in a simple rectangular domain. All solutions can be applied to the 
boundary integral techniques as typical fundamental solutions. 

1. Introduction 

The finite element method has been zealously applied to the slow incompressible viscous 
flow (simply called the Stokes flow). One of the major difficulties arises through divergent-free 
constraints due to incompressibility. We have several alternatives; the mixed formulations 
[l-3], stream function methods [2,3] and reduced-integration penalty approximations [4-g]. In 
the second approach by the use of stream functions, we need some genuity to compute the 
pressure. In other finite element approximations, some smoothing procedures are necessary 
for the pressure [8,9], although the higher order simplex interpolations [lo] are always free 
from locking [ll]. 

In the boundary element approach, on the other hand, the divergent-free conditions are 
realized quite easily [12]. However, another difficulty arises through incompressibility with 
regards to traction forces as shown in Appendix B. The usual boundary element ap- 
proximations developed in linear elasticity [13] cannot be applied to the Stokes flow. 

This paper is devoted to the analytical solutions for the steady Stokes flow within a simple 
rectangular domain, by which numerical techniques currently used can be examined directly. 
Not only the velocity and pressure but also the stream function are dealt with. Examples are 
then presented to which boundary element solutions in a least-square scheme are compared. 

2. Constitutive law 

We consider a slow incompressible viscous fluid in the domain 0 with isotropic homo- 
geneous viscosity CL. Let cfX, f,) be a body force placed at a source point X, = (s, ys). Then the 
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velocity u = (u, u) at the field point x = (x, y) satisfies the equiIibrium equation of the form 

pV2u(x) + (p f l/&)a[div u(x)]l8x + fxS(x - x,) = 0 , 

pV2u(x) + (r-L + l/s)d{div u(x)]lay -+ f,6(x - xS) = 0 . 
(1) 

Here Vz denotes the Laplacian, div designates the divergence, 6 is the Dirac distribution and E 
is a parameter such that E -+ 0’. 

Let p be the pressure defined by 

p(x) = -[div u(x)]/E . 

Then (1) can be written as 

pV2u(x) - (1+ j.M)dp(x)/dx -i-f&x - XS) = 0 ) 

~V”?_I(X) - (I + ~&)~~(~)/~Y + f,S(x - XS) = 0 . 

(2) 

(3) 

In definition, the incompressible fluid is divergent-free such that 

div u(x) = 0 , (4) 

while the pressure should not be zero, i.e. div u(x) is O(E). At the limit of E + O”, (3) can 
simply be written as 

pV2u(x) - a&)/ax + f&r - &) = 0 ) 

pV”v(x) - ap(x)/ay + f&x - X8) = 0 f tW 

The boundary conditions shall be described for each problem. 
We further define the stream function $ by 

~~jay = U, atlrfax= --u. 

REMARK 2. I. In the so-called penalty method, 
positive and very small. However, in this paper, 
(i.e. independent of s). 

(6) 

E is regarded as a penalty parameter which is 
the solutions are given at the limit of E + O* 

~E~A~~ 2.2. For E > 0, (1) and (3) can be identified with the equilibrium equation in Iinear 
elasticity (plane strain), but not (5). 

REMARK 2.3. If i2 is the infinite domain, then velocities at infinity should be zero. The 
natural boundary condition at infinity requires multiple body forces satisfying the force 
balance conditions of the form 

Cfi=O 
i 

(74 
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andfor 

CfS=O. VW 

Here superscript i designates the body force number. 
In this paper, for simplicity, we deal only with a point force tf;,f,,). If the force balance 

condition is needed in some direction, therefore, our solutions are inadequate. Notice that the 
linear superposition makes them adequate. 

3. W~oIe-spank problem 

We first consider the whole-space 0. Here only the natural boundary condition at infinity is 
applied. 

~~E~RE~ 3.1. Fur the weave-space prab~e~, the ~e~~i~ and pressure at x cm be expressed 
e~p~ici~l~ as 

and 

Here 

u = A[-fxIn R - rjecfxri - f,r~)lR*] , 

ZJ = A[-f,ln R - r”,V;r”x -fxr$‘R2] , 

p = C&r”, + f,rO,)fR’ . 

0 
TX = x - x, ) r”, = Y - YS 7 R = [(rz)” + (rOy)2]1’2 , 

A = 114n,u , c = v27r. 

PROOF. In the case of x # x,, it is easy to verify that the velocity and pressure by (8) and (9) 
satisfy the governing equations (5). 

Let us introduce the polar coordinates (R. 8) of Fig. 1 origined at xS such that 

cos@=r:/R, sin B = rt/R . (121 

Fig. 1. centered at x,. 
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Then (8) and (9) can be written as 

and 

u = A{-f,(ln R + sin*8) + f,sin 8 cos 0)) 

u = A{-f,(ln R + cos* 0) + f,sin 0 cos 0) 
(13) 

p = CcI’,cos 8 +f,sin 6)/R. (14) 

Let 0, be an infinitesimal closed circle with radius R around x,, and let S, be its surface. Then 
from (5a), we have 

o = 
i 
n, [pv2u(x) - ap(x)lax + fxS(x - xs)ldfl 

= 
J 
sc [~{(&/~x)cos 8 + (&/ay)sin 0) - p cos B]dS + fX . 

Here the divergence theorem is applied. Noting dS = R dt9, (15) can be expressed as 

cos 8 - ~{(&/&)cos 0 + (du/ay)sin e}]R de = nf,(C + 2pA). 

(15) 

(16) 

Evidently A and C by (11) realize (16), and hence the velocity and pressure by (8) and (9) 
satisfy (5a) even at x = x,. In the same way, we can prove that (5b) is always adequate. 

REMARK 3.2. The whole-space problem is not well posed for a single body force. The 
natural boundary condition at infinity requires the force balance condition (7a) and (7b). 
Therefore, solutions of (8) and (9) should be linearly superposed for the balanced body forces. 

THEOREM 3.3. For the whole-space problem, the stream function by (6) can be given as 

I,? = -ACf& - f,$)ln R . (17) 

Here we neglect the integral constant. 

REMARK 3.4. The incompressible viscous stream function of (17) is not harmonic, i.e. 
V2& # 0. 

REMARK 3.5. The potential function 4 (defined by d4/lax = u, a$day = v and 4 I $I> does 
not exist in the Stokes flow. 

4. Half-space problem 

We next consider the half-space 0. On the half-space boundary r,’ of y = h, v should be 
zero (see Fig. 2). The natural boundary condition at infinity should be applied also. 
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y=h 

Fig. 2. Geometry of the half-space problem. 

THEOREM 4.1. For the half-space problem, the velocity and pressure at x can be written 
explicitly as 

and 

u = A[-f,ln R - r”,(fxrt - f,rO,)lR’ - fJn &,I - r:(fxr: f f,rP)lRLl y 

2, = A[-f,,ln R - rf(f,rt - fxr0,)lR2 + f,Jn &.I + r”,(f,r”x + fxr:)lRLl 
(18) 

where 
p = C[(jxrZ + fYrt)lR2 -t (fxr”, - f,r:)lR&l 

y: = - ys + 2h , r:=y-yi, R,,, = {(rz)'+ (r:)2)1'2 . 

(19) 

(20) 

PROOF. In whole-space, we place an image force (fX, -f,) at the image point xi = (xS, yf). 
Then we can solve the half-space problem as the whole-space one with the image body force. 
On the half-space boundary rz, v due to fX at X, is cancelled with v related to the image force 
fX at xf, while v caused by f, at X, is extinguished by v associated with -f, at xi. Hence v = 0 
on rX. 

REMARK 4.2. In the half-space problem, the force balance condition is required only in the 
x-direction, since f, is balanced with its image force -f,. Evidently f, should not be placed on 
r;. 

REMARK 4.3. On r,’ we have no tangential traction force, since &lay = &J/LS’X = 0. 

THEOREM 4.4. For the half-space problem, the stream function can be written as 

I/J = -A[Cf& - f&)ln R + Cfxr: + f,r!)ln R.11 . (21) 

Here we neglect the integral constant. 

5. Infinite fissure problem 

The domain we next consider is the infinite fissure with two walls rt; of y = h and Th of 
y = -h (see Fig. 3). On the walls, v should be zero. The infinite fissure problem with 
the natural boundary condition at infinity can be solved by applying, successively, the image 
method. 
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y=h 

Fig. 3. Geometry of the infinite fissure problem. 

THEOREM 5.1. For the infinite fissure problem, the velocity and pressure can be expressed as 

u = A 2 [-fxln Ro,, - rXLr; - (- WvrO*~lRLI , “z-m 

and 

Here 

co 

v = A c [-(-1)“fJn Ro,, - r”x{(-l)“f,rP -f&/R&] 
n=--m 

y: = (-1)“~~ + 2nh, r,” = y - y: , RI,, = @)” + (r;)2)1’2 , 

1 0 ( f, 9 -fy ) 

rh 
-1 0 ( f, , -fy ) 

-2 o (f, 9 fy' 

-3 0 
( f, > -fy y’ 

(22) 

(23) 

n = 0, +l, . . . , ‘-cc. (24) 

y= 5h 

y= 3h 

y=h 

y=- h 

y=-3h 

y=-5h 

y=-7h 

Fig. 4. Infinite series of image sources. 
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PROOF, Let (f&f,) at x, correspond to IZ = 0. With respect to r:, its image force (fx, -fY) is 
placed at (x,, yJ) associated with n = 1. Similarly with respect to &, we place the image force 
(fx, -f,) at (x,, y:‘) related to n = -1. These image procedures are successively applied such 
that the (n + 1)st force is the image of the -nth force with respect to ri, while the nth force 
yields the -(n + 1)st one through r; (see Fig. 4). 

Our infinite fissure probiem can thus be soIved as the whole-space one with an infinite series 
of image forces (fx, (-l)“f,) at (x,, y:). 

REMARK 5.2. In the infinite fissure problem, only the force balance condition (7a) is needed 
just like in the previous half-space problem. 

THEOREM 5.3. For the infinite fissure problem, the stream function can be written as 

tt, = --A .s_ &r; - C-l)“f.d~ln &, . w 

Here the integral constant is neglected. 

6. Analytical solutions for the rectangle problem based on the image method 

We now consider the rectangular domain fl with rz of y = i3h and r: of x = +g (Fig. 5). 

On r$ 2) should be zero, while u should be zero on ri. 

THEOREM 6.1. The analytical solat~o~s for the rectangle problem catt be given as 

u = A 2 2 [- (- l)“fxln R,,,,, -.- r;{(- l)“f,ry - (- l)“f,r,“)/R2,,,] , m=-m “z--m 

v = A 2 2 [--(-lJ”fJn R,,, - C’iW”f,C’ - (-l)*f&MC,,J 
(26) 

m=--m n;--OD 

Fig. 5. Geometry of the rectangle problem. 
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0 0 0 0 

0 0 0 0 

n 

0 0 lJ 0 0 

0 0 0 0 

Fig. 6. Distributions of two-dimensional image sources. 

and 

Here 

P = c ,z_- “2, K- WfJx” + (- mmL” * 

X ; = (-l)“XS + 2mg ) r:: = x - XT ) R,,, = {(r:)2 + (r;)2}1’2 ) 

m, n = 0, +-1,. . . , k+oo. 

(27) 

(28) 

PROOF. To the infinite series of forces in the preceding fissure problem, we apply the image 
procedure with respect to f: (see Fig. 6). Our rectangle problem can then be solved as the 
whole-space one with ((-l)“fx, (-l)“f,) at (xy , y:). 

REMARK 6.2. The incompressible rectangle problem is well posed even for a point force. It 
is evident, however, that fx should not be placed on rs, while f, should not be on rg. For velocity 
constraints see Fig. 7. 

THEOREM 6.3. For the rectangle problem, the stream function is given as 

II, = --A $_ “2, K- lYfxr; - (- l)“f,rZ’lln KY, . 

Here the integral constant is neglected. 

(29) 

Fig. 7. Velocity constraints on the boundaries. 



M. Okabe, N. Kikuchi, Analytical solutions for incompressible viscous flow 227 

REMARK 6.4. The velocity and pressure are unbounded naturally at the source point x,. The 
stream function, on the other hand, is bounded everywhere even at x = x,. 

Consider, for example, r$r I&. Then putting rt = fit and r”, = Pt (t > 0) at x = x,, it 
extinguishes such that fit ln[t~cu* + /?“I + 0 as t + 0’. Here LY and j3 denote appropriate constants. 

7. Some formulae related to the potential problem 

Analytical solutions for the steady Stokes flow within the rectangular domain are given in 
the form of infinite series with m and IZ, which are not so preferable in computations. In this 
section, we present some formulae to simplify our solutions. 

The probiem we consider is the electrical infinite fissure 0 of unit specific conductivity 
between infinite spaces a+ and &?- of conductivity 00 (Fig. 8). Let only a point source of unit 
intensity be placed at xa = (xs”, ys) with f2. Then the potential 4,,,(x) at x in J2 is governed by 

V”~,,(x)+ 8(x-x:) = 0. 

The boundary conditions on E of y = th are 

&(X)=0, xE!r;. 

LEMMA 7.1. For the electrical fissure problem, the potential at x in .Q can be written as 

4~#&) = --IQ% y, x5”, ys, W’+k Y, C, ys, h)3 

Y 

sl 

a=1 Lx J 
m 

x 
6 

X 

(30) 

(31) 

(32) 

Fig. 8. Geometry of the electrical infinite fissure prob- 
lem. An infinite fissure is embedded in otherwise 
perfectly conductive whole-space. 

Fig. 9. Transformed space after the conformal mapping 
of (34). 
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where 

PROOF. 
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(33) 

(34) 

F*(x, y, XT, yS, h) = e?rx’h + enxqlh + 2 en(x+x~)‘zh cos ~(y + y,)/2h , 

Under the conformal mapping of the form 

7r(x + iy) = 2h ln(X + iY) , 

the infinite fissure of Fig. 8 can conformally be translated into the half-space of Fig. 9. Here i 
designates the imaginary unit. For further details, see [14,15]. 

LEMMA 7.2. For the electrical fissure problem, the image procedure yields the solutions in 
another form of 

21~4, (x) = - 2 (- 1)“ln R,,, . 
n=-a 

(35) 

REMARK 7.3. The solution of (32) or (35) is adequate only after the linear superposition for 
balanced current sources just like in the preceding Stokes flow within the infinite fissure. 

Lemmas 7.1 and 7.2 thus produce the following theorems, which are applicable to the 
steady Stokes flow. 

THEOREM 7.4. Let us define the V,,, function by 

V,,, = 1 ln[F-(x, y, x?, Ys, h)lF’(x, Y, x:, Ys, h)l . (36) 

Then we have 

V,,, = 2 (- 1)“ln R,,, + 0, , 
“=-Cc 

where D, designates an appropriate constant. 

THEOREM 7.5. Let us define the U,, function by 

U, = $ln[F-(y, x, y:, G, g)lF’(y, x9 Y Y, xS, 811 . 

Then we have 

U, = 2 (-l)mln R,,, + D, 
In=-cc 

where D, designates an appropriate constant. 

(37) 

(38) 

(39) 
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THEOREM 7.6. The following relations hold: 

av,iay=$3 Ir(x+*~Y2h I sin n(y - yS)/2h sin 7~(y + yS)/2h 
F-(x, y, x,“, y,, h>+ F+(X, Y, CT Ys, w I 

= 2 (-l)“r;/R;,, , 
n=-m 

ne aunlax=2g w(Y+Y:w&? 
[ 

sin 7r(x - XS)/2g sin 7r(x + XS)/2g 
F-(y, x, y:, x,, g) + F’(Y7 x9 Y :v .L d I 

= 5 (--l)“K/R2,., , 
m=-m 

(40) 

(41) 

T 

awax = 2h 

e-/h _ edx+x’3~2hCOS T(y - Y&3 _ e’-‘h + e”‘X+X:“2hc~s T(y + Ys)/2h 

F-(x, y, c, ys, h) F+(x, y, XT, ys, h) 1 

= r:: 5 (-l)“lR:,, , (42) 
n=-Cc 

aunlay =$ I e my/g - ev(y+y!)‘2gcos ~F(X - xs)/2g _ e TYlg + e4Y+Yt)12gcos n x + x, 12 

ny, x, y:, A, g> F'(y, 4 y:, A, s> ) “I 

= r; 2 (-1)“‘lRk n . * 
m=-co 

(43) 

8. Simplified solutions for the rectangle problem 

We can now simplify our solutions in Theorems 6.1 and 6.3 by using the preceding formulas. 
It is especially noted that the simplified solutions are given also in the form of infinite series, 
but only the one-directional expansion is needed. 

THEOREM 8.1. For the rectangle problem, the incompressible viscous velocity and pressure can 
be written simply as 

u = A[% 5 Wn + r;(aUn/ay)l+fy 5 C(aLlay)] , 
“=-a m=-cc 

and 

v = A [-f, 5 W,, + rIWC,Jax)~ + f* ,$_ r;WLlax)] 
m=-a (44 

(4% 
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THEOREM 8.2. For the rectangle problem, the incompressible viscous stream function can be 
written simply as 

$=-A fx 
[ 

2 rFU,,--f, 2 r:V,,,]. (46) “G---m In=--m 

Here we neglect the integral constant. 

We then deal with the stress-strain relation for the incompressible viscous fluid. 

THEOREM 8.3. For the rectangle problem, stress components a,, a, and 7xY are given by 

Txy = C fx 
[ 

2 {r”,(d’U,/dx”)- dU,/dy}+ f, 2 {r?(f32V,/dy2)- aV,/f%x} 
“=-cc In=-ca 

-d_fx+f,)~(~-~s) * 1 
PROOF. Strain-rate components E,, E, and yXY are defined by 

cx = au/ax, F, = aday, 275, = aulay+ au/ax. 

Stress components can then be written as 

ux=&%-P, 0, =3-+-P, Txy = 2PYxy * 

Substitution of (44) and (45) into (48) and (49) thus completes the proof. 

(48) 

(49) 

REMARK 8.4. In deriving TV,,, notice that 

v2vO-2rrTTs(X-Xx,)=o. 

Evidently V,,, (m f 0) as well as U, (n Z 0) are harmonic. 

(50) 

REMARK 8.5. Let the outward normal be expressed as (nx, n,) on the boundaries. Then the 
traction force (t,, t,) can be obtained as 

t, = n,u, + n,T,, , tY = n,T,, + n,u, . (51) 

In our rectangle problem, no tangential forces exist. 



M. Okabe, N. Kikuchi, Analytical solutions for incompressible viscous fiw 231 

9. Examinations of boundary element solutions 

We can now examine currently used numerical techniques such as the finite element and 
boundary element methods. Examples we present are associated with a rec_tangle of g =_4 and 
h = 2 with a homogeneous viscosity of p = 1/27r (Fig. 10). Body forces of (iv3,$) and (- gq3, - $) 
are applied at source points (2,l) and (2, -1) respectively. Our computations are made by 
using finite series of X.ilJ, in place of infinite ones of IX:“,. Here N is increased until the 
sufficient convergence is attained. 

Table 1 shows the convergence of the velocity U, pressure p and stress a, at the origin (0,O). 
All values converge quite rapidly, while larger N is needed in computing the stream function 
as shown in Table 2. At nodes regularly placed on a grid without vacancy, computed results 
are listed in Tables 3 to 5. 

We then apply the boundary element method (see Appendices A and B) associated with the 
whole-space fundamental solutions to this rectangle problem. The boundary surface is divided 
into 24 boundary elements of length 1, on which the piecewise linear approximations are made 

r- 
g 

x=-4 

rii y=2 

(i3/2,1/2) 

Y / 
R 

L 

(2.1) 

x 
0 (-/3/2,-l/2) 

!.I = 1/2a 

r” 

(2,-l) 

rh 
y=-2 

c 

x=4 

Fig. 10. Geometry of the example problem of g = 4 and h = 2. Body forces of intensity (j/3,:) and (- jd/3, - $) are 
applied at the source points of (2, 1) and (2, -1) respectively. The isotropic and uniform viscosity of p = 1/27~ is 
assumed. 

Table 1 
Numerical solutions at the origin (0,O) under the finite 
approximations. The infinite series of ZY., is ap- 
proximated by the finite one of x!$ 

N I4 (x10-8) p (x10-8) u* (x10-8) 

0 6775377 - 1078335 3375079 
1 6813287 - 1080356 3394133 
2 6813287 - 1080356 3394133 
3 6813287 - 1080356 3394133 

Table 2 
Computed stream function values under the finite ap- 
proximations at the origin (0,O) 

N * (x10-‘) N IJ (x10-‘) 

0 -6803068 8 -7569628 
1 -9199912 9 -7569866 
2 -6936128 10 -7569811 

3 -7762598 11 -7569823 

4 -7517060 12 -7569820 

5 -7583426 13 -7569821 

6 -7566445 14 -7569821 

7 -7570637 15 -7569821 
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Table 3 
Solutions of the stream function and velocities in the rectangle problem 

l+b (x10m4) X 
u (x10-5) 

v (x1o-5) -4 -3 -2 -1 0 1 2 3 4 

0 0 

2 0 7850 
0 0 
0 -711 

1 0 5658 
6735 7853 

0 -1018 

Y 0 0 144 
9623 11314 

0 -729 
-1 0 -5658 

6872 8137 
0 0 

-2 0 -8137 
0 0 

0 
18071 

0 

-1644 
13241 
11172 
-2381 

587 
16565 
-1719 

- 13241 
12167 

0 
-19244 

0 

0 0 0 0 0 0 

32502 49784 56988 53765 59692 0 
0 0 0 0 0 0 

-2999 -4795 -6472 -8082 -6041 0 
24885 43102 73226 +m 54000 0 
16030 19018 12453 +X - 52989 -63462 

-4457 -7570 -11639 - 13799 -8201 0 
2125 6813 15803 587 - 13534 0 

25528 36810 41479 - 16565 -78321 -83243 
- 3270 -5665 -8601 -8157 -4201 0 

-24885 -43102 -73226 --oo - 54000 0 
19383 28363 25752 --oo - 36620 -44907 

0 0 0 0 0 0 
-36752 -63411 -88594 -54939 - 32624 0 

0 0 0 0 0 0 

Table 4 
Solutions of the pressure and strain components in the rectangle problem 

p (x10-5) 
Ex (XN5) 

yxyxy (x1o-5) -4 

-522 -687 -1271 -2550 -4735 -5011 13865 18681 14313 
2 7449 8651 12131 16639 16000 -6306 25582 -38460 - 68524 

0 0 0 0 0 0 0 0 0 
-372 -493 -936 -2000 -4518 - 12039 km 14532 9407 

1 5345 6287 9234 14458 22626 41718 -+m -62463 - 50597 
0 3223 6863 10239 9078 -4500 km 7961 0 

-4 -10 -47 -225 - 1080 -4991 - 12547 -5206 -2157 

Y 0 107 223 781 2632 7269 7106 -38495 9515 14431 
0 4853 10948 19343 30824 39414 - 13197 24924 0 

372 493 936 2000 4518 12039 koo - 14532 -9407 
-1 -5345 -6287 -9234 - 14458 -22626 -41718 200 62463 50597 

0 3616 8413 15504 23829 20241 km -11122 0 
530 707 1365 3000 6895 14994 11228 - 8268 - 10000 

-2 -7663 -9097 - 13694 -21904 - 30538 -7905 51408 19430 39662 
0 0 0 0 0 0 0 0 0 

-3 -2 -1 

X 

0 1 2 3 4 
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Table 5 
Solutions of the stress components in the rectangle problem. 

crx (x10-5) X 
a, (xW5) 
Txy (x 10-5) -4 -3 -2 -1 0 1 2 3 4 

2893 3441 5133 7847 9827 3004 
2 -1849 -2067 -2590 -2746 -358 7018 

0 0 0 0 0 0 
2074 2494 3875 6602 11720 25318 

1 -1329 - 1508 -2004 -2602 -2684 -1240 
0 1026 2185 3259 2890 - 1432 

38 81 296 1063 3394 7253 

Y 0 -30 -61 -202 -613 - 1233 2730 
0 1545 0 3485 6157 9812 12546 

-2074 - 2494 -3875 -6620 -11720 -25318 
-1 1329 1508 2004 2602 2684 1240 

0 1151 2678 4935 7585 6443 
-2969 -3603 -5724 -9972 -16616 - 17510 

-2 1909 2189 2994 3972 2825 - 12477 
0 0 0 0 0 0 

- 5722 -3092 -36125 
- 22008 -6439 7499 

0 0 0 
k’m -34414 -25513 
k+-m 5351 6698 
km 2534 0 
293 8235 6750 

24800 2178 -2437 
-4201 7934 0 

km 34414 25513 
A% -5351 -6698 
km -3540 0 

5135 14453 22624 
-27592 2084 -2625 

0 0 0 

for the tangential velocity with the piecewise constant normal traction forces. Under the 
tangential-free boundary conditions that we are concerned with, we must determine 20 
velocities at nodes on smooth boundaries and 24 traction forces on the boundary elements. 
For the tangential components nodes on smooth boundaries are chosen as x,, while centers of 
gravity of every boundary elements are selected as xi for the normal components. 

Computed velocities on the boundaries are plotted in Figs. 11 and 12 together with the 
exact profiles. We also show the velocity and strain components along the line of y = 0 in Figs. 
13 and 14, respectively. Extremely accurate results are thus obtained. 

Computed traction forces on ri are drawn in Fig. 15, which are in good agreement with 
exact solutions. But the superconvergence like in the velocities cannot be attained. We then 
compute the pressure, and the results along the line of y = 0 are plotted in Fig. 16. It is thus 
obvious that the accuracy of boundary element stress components is strongly influenced by 
that of the pressure. 

10. Concluding remarks 

We have developed analytical solutions of the steady Stokes flow in a rectangular domain as 
well as in an infinite fissure, which are applicable to the boundary integral techniques as typical 
fundamental solutions. Alternative expressions by the use of Fourier series have been already 
developed also, but they converge very slowly. It is emphasized that the quite rapid con- 
vergence inherent to our solutions is of great importance in the boundary element ap- 
plications. 
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Fig. 13. Boundary element solutions of velocities along the line of y = 0. 
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Fig. 14. Boundary element solutions of strain components along y = 0. 
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Appendix A. Boundary integral equations associated with the whole-space fundamental solutions 

Referring to the whole-space solutions in (8) and (9) we introduce the fundamental 
solutions ti = (I;, d) and @ by 

ti(i:, X) = li’S,i + Li*S*i) 

6(i, X) = 6’6,i + C26*i, (A4 
fi(i, X) = b’S,i + p’S*i f 

Here 6ij is the Kronecker delta (i, j = 1,2) and 

47~~6~ = -In r - (y’ - y)*/r* , 

47F/_& = (x’ - x)(9 - y)lr2, 64.2) 

21Tfi1 = (2 - x)/r2 ) 

4V/_Lii2 = (Z - x)(y’ - y)/r” ) 

47rp6* = -In r - (x’ - x)*/r’, 

21$* = (jj - y)/r* 

(A-3) 

where r denotes the distance between x and x = (x’, 7) by 

r = [(i - x)* + (9 - y)*ll’* . (A.4) 

Then the governing equations for the fundamental solutions can be written as 

L,[d(i, X)] + A(X)aliS(f - X) = O ) 

L.,[ti(i~, X)] + A(X)&iS(i - X) = O 9 

(A-5) 

Here the differential operators L, and L, are given by using the Laplacian 9’ with respect to x 
such that 

and A(x) designates the positioning constant which can be geometrically defined [16]. 
Noting the governing equations (5) and (AS), we adopt the weighted residual scheme of the 

form 

0 = I, z? (2, x){L:, [u(x)] + f*S(x - x,)}dfi + I, 15(x’, x)& [u(x)] + f,S(x - xs)}dfi 

- I u(%i[ti(x’, x)] + h(x)&S(i - x)}dji 
R 

- 
I 

2, (X’){J% [ci (x, x)] + A (x)6,$(x - x)}dfi . R (A.7) 
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Here the integrations and differentiations are taken with respect to i. Applying the Green’s 
theorem, (A.7) can be written as 

Here the integrations are taken over the boundary r with respect to 2, and iX and i,, are given 

bY 

iX(Z, X) = -2(x’ - x)fi * (i - x)$(2, x)/r2 ) 

t$, X) = -2(j; - y)ii * (2 - x)j?(i, x)/r2 
(A.9) 

where n’ = (fix, fi,) is the outward normal at i on r. 
Differentiation of (A.8) further gives 

+2/.~ 
I 
r {u(Z)6 - V@l($ x) + u(g)6 l Vj’(lE, i)}di; , x E 0 . (A.lO) 

For further details, see [12]. Notice that r is composed of rz and rZ in our rectangle problem. 

Appendix B. A boundary element scheme in least-squares 

Since the fundamental solutions of (A.l) are divergent-free, we have 

0 = 
I 

(&i/ax + aC//y)dfi, 
R 

which yields immediately 

(B.1) 

03 4 

It is then obvious in (A.8) that the constant traction forces t, and t,, do not influence upon the 
velocities. In the boundary element approximations for Stokes flow, therefore, we should 
extinguish these degrees of freedom on traction forces. 

On the smooth part of r, let ur and t, denote the tangential velocity and normal traction 
force, respectively. At the smooth point x on r, (A.8) can then be written for the tangential 
velocity as 

44(x) = K,[x, u,(i), tn(Z)] , (B.3a) 
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and for the normal velocity as 

0 = K[x, u&f), ~(41 . 

We then express the traction force balance conditions as 

(B.3b) 

03 -4) 

Denoting the boundary element approximations by superscript h, we introduce a least-square 
functional of the form 

Here (Y, and a,, are Lagrange multipliers, and the smooth points X, and q are sampled on r 
so that the sampled number is greater than or equal to that of the discretized variables to be 
determined plus two of Lagrange multipliers. Minimization of x by (BS) then determines u: 
and th,. 

It is emphasized that imposition of the constraints of (B.4) guarantees the uniqueness of our 
boundary element solutions. 
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