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The atomic structure of non-crystalline solids is described by the correlation function. When 
more than one phase is present, the simple addition of the correlation functions for the various 
phases in proportion to their concentrations within the system is not valid, except in the case of the 
completely phase-separated system. The overall correlation function must reflect the boundaries 
between the various phases within the system. The cross correlation functions between the phases 
have a dependence both on the degree of mixing of the phases and also on the sizes of the domains 
of the phases. The correlation function for a non-crystalline solid with more than one phase has 
been derived in a general way. Particular application has been made to non-crystalline carbon for 
which the correlation function given previously did not have the correct limits because of absence 
of the cross correlation terms. 

I. Introduction 

T h e  a t o m i c  s t ruc tu re  of  non -c ry s t a l l i ne  ma te r i a l s  is o f t en  expressed  by the  

c o r r e l a t i o n  f u n c t i o n  g ( r ) ,  wh ich  is de f i ned  as the  a t o m  dens i ty  at a d i s t ance  r 

f r o m  an a t o m  loca t ed  at the or igin ,  ave raged  ove r  all or ig in  a t o m s  in the 

sys tem.  This  f u n c t i o n  is e q u i v a l e n t  to the  P a t t e r s o n  f u n c t i o n  used  for  crys ta l -  

l ine  mate r ia l s ,  and  is r e la ted  to the  sca t t e r ing  cross  sec t ion  S ( Q )  of  the  sys tem 

t h r o u g h  a F o u r i e r  t r ans fo rm.  S ince  non -c rys t a l l i ne  mate r i a l s  do  no t  have  

l o n g - r a n g e  o r d e r  as in crystals ,  this f u n c t i o n  g ( r )  has  peaks  wh ich  b e c o m e  less 

d i s t inc t  a n d  m o r e  b r o a d  wi th  i nc rea s ing  d i s t ance  r, unt i l  g ( r )  a p p r o a c h e s  a 

c o n s t a n t  va lue  equa l  to go which  is the  ave rage  a t o m  dens i ty  in the  sys tem.  F o r  

c rys ta l l ine  ma te r i a l s  wh ich  have  m o r e  than  o n e  phase  o r  c rys ta l  s t ruc ture ,  one  

m u s t  use a c o m b i n a t i o n  of  several  P a t t e r s o n  func t ions .  F o r  non -c rys t a l l i ne  
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materials which have more than one phase, correlation functions correspond- 
ing to each distinct phase must be summed in that fashion which reflects the 
mode of mixing of the various phases. The simple addition of the various 
correlation functions in proportion to their concentrations within the system is 
only valid for systems with completely separated phases. In general, there 
should be cross correlation functions between phases which reflect the 
boundaries between phases within the system. 

This paper derives the correlation function for a non-crystalline material 
with more than one phase. The system is divided up into cells, with each cell 
having a unique phase. The correlation functions relating the interatomic 
distances within each phase and cross correlation functions relating the inter- 
atomic distances between atoms in different phases are defined. In addition, a 
cell correlation function is defined which describes the average size and relative 
locations of the cells within the system. The mixing of the phases is described 
by a "randomness function", which has readily interpretable limits when the 
phases are completely randomly mixed and when the two phases are totally 
separated. 

Though this paper derives in a general way the correlation function for a 
non-crystalline material with more than one phase, particular application is 
made to amorphous carbon, which may exist in two different phases. Previous 
workers [1] have presented a correlation function for amorphous carbon which 
has been shown to be incorrect [2]. Their method of accounting for the 
boundaries between phases is too simplistic, in that the function gives an 
absurd result in one concentration limit. We review the basis for the rejection 
of their correlation function before deriving the true correlation function 
starting from the definition of the structure factor. The method of the 
derivation can be used for other systems, and indeed is valid also for crystal- 
line systems. 

2. Non-crystalline carbon 

Diffraction studies of non-crystalline carbon using electron [3,4], X-ray 
[5-11] or neutron [2,12,13] radiation have shown that the atomic structure 
depends on the precursor material, the method of preparation and the heat 
treatment temperature [14]. These studies have demonstrated that carbons can 
be produced with short-range order exhibiting features which suggest that 
different proportions of materials with short-range order similar to that of the 
two crystalline forms of carbon, graphite and diamond, comprise the v~rious 
materials. The proportion of diamond-like bonding is usually small [2]. The 
earlier diffraction studies [3-6] showed a relatively large amount of tetrahedral 
bonding, though there is now doubt about the validity of these results [2]. All 
the later diffraction studies [7-13] correspond to some extent to a model 
originally proposed by Noda and Inagaki [6], that of small regions of partially 
ordered layers containing trigonally (graphite-like) coordinated carbon atoms, 
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linked by a random network of tetrahedrally (diamond-like) coordinated 
carbon atoms. However, none is consistent with a significant amount of 
tetrahedral bonding, so that the tetrahedral networks have no sizable domains. 

Stenhouse and Grout  [1] have investigated the properties of a model of 
non-crystalline carbon containing both trigonally and tetrahedrally coordi- 
nated atoms in which the size and proportion of each domain can be varied. 
They claim that the correlation function is given by 

g(r) = ( 1  - x)(e(r)gG(r) + [1 - e(r)]gD(r)) + xgD(r), ( 1 )  

where gG(r) and gD(r) are the pair correlation functions for an infinite 
layered graphite-like region and an infinite tetrahedrally coordinated random 
network respectively, x is the fraction of tetrahedrally bonded atoms, and e(r)  
is the probability that two atoms separated by a distance r lie in the same 
graphite-like domain. The model has been shown to fit the electron diffraction 
data of Kakinoki et al. [3] on thin amorphous carbon films and the X-ray 
diffraction data of Franklin [5] on amorphous carbon powder, using 75% and 
50% of tetrahedrally bonded carbon atoms respectively. The comparison with 
the neutron diffraction of Mildner and Carpenter [13] on a glassy carbon 
which showed little evidence for tetrahedral bonding demonstrated that the 
model was inadequate to explain the structure of glassy carbon, except as a 
degenerate case in which the amount of tetrahedral bonding is negligible 
(x = 0). In this case, the correlation function reduces to 

g ( , )  = + [1 - g D ( , ) .  (2 )  

A prominent feature at 18.5 A ~ in the structure factor of the Stenhouse-Grout  
model, which is present only for the model with zero tetrahedral bonding 
(x = 0), corresponds well to the broad peak found at that scattering vector in 
the neutron diffraction data [2]. 

We have pointed out [2] that there is an inconsistency in the correlation 
function (eq. (1)) of Stenhouse and Grout. The function e(r)  is a correction 
factor which compensates for edge effects in a finite-sized model [15], and is 
therefore determined by the size and shape of the graphite-like domains, which 
also give rise to the shape and breadth of the diffraction peaks. For negligible 
tetrahedral bonding (x = 0), the correlation function is given by eq. (2). For a 
layered domain of infinite extent, e ( r ) =  1 for all r, so that the correlation 
function becomes gG(r) ,  that of single-crystal graphite. For a finite-sized 
model, however, e ( r ) =  l for small r, but at large r, e(r )  approaches zero. 
Hence, in the limit of large r, the correlation function given by eq. (1) 
approaches gD(r),  that of diamond. This result is independent of x, the 
amount of tetrahedral bonding, and in particular is given even when x = 0, 
corresponding to no tetrahedrally bonded regions at all! Hence the correlation 
function of Stenhouse and Grout  is not correct and a more general expression 
must be found for the correlation function for a system containing two phases. 

In the limit of small r, it is reasonable to expect the correlation function to 
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be given by 

g ( r )  ----- ( l  --  x ) g G ( r )  + x g D ( r ) .  ( 3 )  

However there must be at least one other term in this expression which is 
negligible at small r, but which would give the correct limit to the correlation 
function at large r. 

It may be possible to make an approximation which is better than that (eq. 
(1)) of Stenhouse and Grout, by introducing two functions, eG(r) and eO(r), 
which are the probabilities that two atoms that are separated by a distance r lie 
in the same graphite-like and diamond-like domains respectively. We can 
define the correlation function by 

g(r) = (1 - x)(eG(r)gG(r) + [1 -- eG(r)]  go(r)) 

+x(eO(r)gO(r) + [1 -- eO(r)]  g0( r ) ) ,  (4) 

where 

go(r) = (1 -- x)gG(r) + xgD(r) (5) 

is the average correlation function for the totally phase-separated sytem. This 
is similar in form to that of Stenhouse and Grout, except that they have 
defined the average correlation function go(r) as equal to that for diamond 
gD(r). By eq. (5), this also means gG(r)=gD(r) so that their correlation 
function corresponds only to one phase. 

The correlation function defined by eq. (4) may be rearranged to give 

g(r) = (1 - x)gG(r) + xgD(r) 

+x(1  - x)[eC(r) - eD(r)]  [ g G ( r )  -- g D ( r ) ] .  (6) 

In the limit of small r, the correction factors for both phases, e~(r) ,  and e D ( r ) ,  
tend to unity, so that the correlation function reduces to that of eq. (3), with 
the correct limits at x = 0 and I. In the limit of large r, both eG(r) and eD(r) 
tend to zero, so that the correlation function again reduces to eq. (3). However, 
this approximation may still not be good enough, since an adjacent domain is 
either graphite-like or diamond-like and not a domain with an average correla- 
tion function. This means that there are cross correlation terms which have 
been neglected, so that even eq. (6) may not go to the correct limit at large r. 

In this paper we consider the general problem of a system that has many 
regions which contain one of two types of bonding or phase, and relate the 
system correlation function to individual and cross correlation functions. 
Though the treatment is presented for graphite-like and diamond-like carbon 
regions, the mathematics are sufficiently general, in fact, for any two phase 
problem of non-crystalline substances. 
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3. Theory 

Consider a system of cells, labelled by the subscript M, of atoms, labelled 
by the subscript j ,  of size sufficiently large that one can speak meaningfully 
about a correlation function for the atoms within each cell. The intensity of 
radiation scattered by the system as a whole as a function of the scattering 
vector Q is given by 

S(Q)  = (1} '~. • e x p ( i Q - ( R  M + ~))12), (7) 
M j 

where R g is the radius vector of the center of the Mth  cell, and ~ is the radius 
vector of the j t h  atom in that cell relative to its center of mass. The sums are 
extended over all atoms j within each cell, and over all cells M within the 
system. The brackets denote an ensemble average of all atoms within the 
system. The sum of squared terms over all cells can be separated into two 
sums, one over M = M '  and the other over M ~ M'. The sum over M may be 
interchanged with the brackets denoting averaging to give 

S(Q)  = E ( ] E  exp(iQ-~)]2> 
M j 

+ E <exp[iQ'(RM--RM,)]Y'. e x p [ i Q . ( ~ - ~ , ) ] ) .  (8) 
M*M' jj' 

This is analogous to earlier expressions for the scattering from molecular 
fluids [16]. The first term is the " inner"  scattering and the second the "outer"  
scattering, which refer respectively to interference effects within molecules and 
to those between distinct molecules. In the present case, we interpret the sums 
over M to represent sums of average structure factors, and identify two types 
of cells, labelled G and D, each with a number of cells, n G and n D, respec- 
tively. The total number  of cells is n c = n G + n D, and the proportions of G 
and D type cells are given by (1 - x)  = no / (n  o + r/D) and x = r /D/ ( r /G + r/D) 
respectively. We also identify a structure factor for each type of cell, given by 

ro  = E exp( iO,  rj) 
JG 

and 

F D = Y'. exp( iQ.  ~) .  (9) 
JD 

Then the normalized differential cross-section for the material may be written 

S(Q)  = (1 - x )nc  F2 + xnc F2 + Y'~ e x p [ i O - ( R  M -  RM,)] 
M,~ M" 

>( ( PMGM,G Fg -}- I~MDM,DF2D "4- PMGM,DF~ FD -}- PMDM,GFGF~) ), 

(lO) 
where the factors PMGM'D, PMGM'G, PMDM'G and PMDM'D are joint probabili- 
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ties that cell M is of type G and cell M '  is of type D and so on. 
These probabilities may be written in terms of a randomness function a by 

the following equations: 

PMGM'G = (1 -- X) 2 + X(1 -- X)a(R  M -  RM, ), 

eMD 'D = X 2 + x ( 1  - x), (RM - R M , )  

and 

PMGM'D = PMDM'G = X(1 -- X)[I  -- a(R M -  RM,)], (1 1) 

where a(R M - R M ,  ) is a parameter which expresses the deviation from ran- 
domness of the cells. Note that a(R M - R M ,  ) denotes a function rather than 
an algebraic expression. That there is only one function a follows from the 
requirement that 

PMGM'G + PMGM'D = 1 - x 

and 

PMDM'D + PMCM'D = X. (12) 

The limits on the size of a can be obtained by noting that the probabilities 
PM~M'C, PMDWD and PMGM'D must be greater than zero and less than unity. 
These conditions require that a be less than unity and greater than the larger of 

- x / ( 1  - x )  and - ( 1  - x ) / x .  That is, a = 0 gives total randomness with the 
G and D type cells totally mixed, and a = 1 gives totally separated G and D 
phases. Substituting the values of the probabilities into eq. (10) gives 

S ( Q ) = ( 1 - x ) n c F Z + x n c F ~  + Z exp[iQ'(RM--RM')]  
M~M'  

× [1(1 - x ) F ~  +XFDI z +x(1 - x ) a ( R  M-RM,)IF G -  FDI2]. 

(13) 

We now develop some relationships which illuminate the meaning of the cell 
correlation functions. Let X(r) be the probability that the cell at location r is a 
D type cell. Then the joint probability that the cell at location R -  R M - R  M, 
is also a G cell is given by 

PMDM'G = X ( r ) [ l  -- X(r + r ) ] ,  (14) 

where the vinculum denotes an average taken over the entire system of volume 
V. Then the proportion of D type cells is given by 

fd3rX(,'). (l,) 
In terms of the joint probabilities, the concentration fraction x is also given by 

X = PMDM'G + PMDM'D 

= x ( l  - x ) - x ( 1  - x ) a ( R )  + X ( r ) X ( r  + R) ,  (16)  
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so that 

X ( r ) X ( r +  R) x (17) 
a ( R ) -  x(1 - x )  (1 - x ) "  

This can be used as the definition of a (R) ,  the randomness parameter, 
introduced for the definitions of the joint probabilities in eq. (11). For R = 0, 
we obtain 

a ( 0 ) -  X ( r ) 2 -  X----~2 (18) 
x(1 - x )  

For a = 0 ,  X 2---.~2, and the phases are totally randomly mixed. For 
X(r)  X(r  + R ) =  x, a = 1, and the two phases are totally separated, so that 
PMGM'D -'= PMDM'G = O! 

Now if we note that 

( F~F D + FoR*D) = ( F 2 + F 2) -[F G - FD[ 2, (19) 

then eq. (13) may be rearranged to give 

S(Q) = (1 - x)nc  Fg + xnc F2 

+ Y~. (1 - x ) F  2 exp[iQ. (R M-RM,)]  
M ~ M '  

+ Y~, xF 2 e x p [ i Q - ( R  M-RM,)]  
M=eM" 

E x(1 - x)[1 - a(R M -  RM,)]JF G -  FD] 2 exp[iQ. (R M -  RM,)]. 
M.,~ M" 

(20) 

We note that the cross-sections for systems of completely G or D type cells are 
given by 

E 2 +  E F~ 2 exp[iQ (R M RM,)] SG(Q) = nc c " - 
M=_M ' 

and 

SD(Q)  = nc F2 + E Ft~ exp[iQ. (R M -  RM,)] (21) 
M * M '  

respectively. Hence eq. (20) may be rewritten 

S(Q) = (1 - x)SG( Q) + xSD(Q) 

- Y'~ x ( 1 - x ) [ l - a ( R  M-RM,)][F o -FD[  2 e x p [ i Q . ( R M - R " , ) ] .  
M--M" 

(22) 

We now introduce the atomic density functions fo provide further insight 
into the formulation. The structure factor Fc, for example, is defined in eq. (9), 
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Y~ exp[iQ- (~ - ~,)]. (23) 
JG J 'o 

Consider also an atom density function YG(r) defined by 

yG(r) = Y'~8(r -- 5) '  (24) 
Jc; 

which is the atom density for a G type cell. Then the square of the structure 
factor may be expressed by 

r p r '  IFo12= f d 3 r f d 3 r  ' e x p [ i Q - ( r -  ) ]YG(r)YG() .  (25) 

A pair correlation function gGc(R) is defined for a single cell by 

g G G ( R )  = f d3R ' ~R '~ ~R' , J YG[ )Y~[ + R )  (26) 

so that eq. (25) becomes 

[Fc[ 2 = fd'R fd3, ' exp(iQ. R ) y ~ ( r '  + R)y~(r ' )  

= fd3r exp(iQ • r) goo (~). (27) 

Similarly 

IFol z = f d 3 r  exp( iQ-r )g~c( r  ). (28) 

Also the expression F C F~ is given by 

FGF~= Y~ e x p [ i Q . ( 5 - 5 , ) ] .  (29) 
JOJ'D 

Using the atom density functions YG(r) and 3,o(r) to define a pair correlation 
function gGD(r) between cells, 

goD(, )  = f d 3 , % ( " ) v o (  r' + ~), (30) 

the expression for FGF ~ is given by 

FGF~= f d 3 ~ f d 3 ,  ' e x p [ i Q . ( r - - r ' ) ] y G ( r ) ' / D ( r '  ) 

= f d ~ R f d 3 ,  ' exp(iQ. R)vo(r '  + R)vo(r ' )  

= fd ' ,  exp(iQ-r)goG(r) .  (31) 
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We also define the cell correlation function G(R) by 

G(R)= E ~(R-RM+RM), 
M ~  M" 

so that 

f d 3 R G ( R )  exp(iQ. R)--  ~ exp[iQ. (R M-  RM,)]. 
M * M '  

297 

(32) 

(33) 

Substitution of all these correlation functions, gGG(r), gDD(r), gGD(r), 
gDG(r) and G(R) into the expression for S(Q) in eq. (20) gives the following 
result for the cross-section of the entire system: 

S(Q) = (1 - x),cfd3r exp( iQ-r )gGc(r  ) 

+x~cfd ~, exp(iQ, r)gDo (r)  

+ (1 - x)fd~r exp(iQ, r)goo(r)fd~RG(R) exp(iQ-R) 

+ x f d  ~` exp(iQ, r)goD(r)  fd3RC (R) exp(iQ. R ) 

-x (1  - x) f d~r exp(iQ, r)[gGG(r) + goD(r) -- gGo(r) -- goG(r)] 

× fd3RG(R) exp(iQ. R)[1 - a (R) ] ,  (34) 

Performing the inverse Fourier transform gives the following result for the 
system correlation function: 

g(r) = (1 - x)ncgGG(r) + XnCgDO(r ) 

+ fd3RG(R)((1 - x)gGG(r -- R)  + XgDD(r -- R)) 

- x ( 1  - x)fd3RG(R)[1 - a ( R ) ] [ g G G ( r - -  R )  

+gDD(r-- n ) - -gGD(r - -  R ) -  gDG(r-- R)].  (35) 

In terms of the correlation functions for networks of infinite extent, 

gG(r) = n c g c c ( r  ) + f d 3 R g c c ( r  - R ) G ( R )  

and 

gD(r) = r/CgDD(¥ ) + fd3RgDD(r- R ) G ( R ) ,  (36) 
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this last result can be expressed as 

g(r) = (1 - x)gG(r) + xgD(r) 

- x ( 1 -  x) f daRG(R)[1--a(R)][gGG(r-- R) 

+ g D D ( r - -  R)--gGD(r-- R)--gDG(r-- R ) ] .  (37) 

Notice that the system correlation function g(r) is expressed in terms of g(;(r) 
and gD(r), the correlation functions for graphite-like and diamond-like regions 
of infinite extent, in proportion to their abundance, plus a term that expresses 
cross correlations, which will be shown to give rise to small-angle scattering. 

4. Discussion 

We now consider various limiting cases as examples. For x = 0, g(r) = gG(r) ,  
the correlation function for an infinite cell having graphite-like order. Similarly 
for x = l, g(r)=gD(r), the correlation function for an infinite cell with 
diamond-like order. For a = l, g(r) = (1 - x)gG(r) + x g O ( r ) ,  the correlation 
function for a totally phase-separated system, and is equivalent to eq. (3). For 
the case of a = 0, the system comprising totally randomly mixed cells of types 
G and D, the correlation function is given by 

g ( , )  = (1 - x),,~goo(,.) + ~,~go~(,,) 

+ f d 3 R G ( R ) ( ( 1  - X)2gGG ( r  -- R)  + X2gDD ( r  -- R)  

+x (1  -- x)[gGD(r-- R) + gDG(r - -  R ) ] ) .  (38) 

The difference between the approximation given by eq. (3) and the correct 
correlation function for the two mixed phases (eq. 37)) is F(r) ,  where 

F(r) = x(1 - x) f d3Ra( R)[1 - ,~(R)] [g~G ( " -  R) + gDD(r- R) 

- g c D ( r -  R)  - g D G ( r -  R) ] .  (39) 

This difference is largest for the totally randomly mixed case (a  = 0), and zero 
for the totally phase-separated system (a  = 1). Its evaluation requires knowl- 
edge of the cell correlation function G(R), i.e. the average size and relative 
locations of the cells of the system. 

We need to know how all the functions introduced in section 3 depend on 
the distance r. The composite correlation function g( r )  is defined in eq. (37) by 
the individual infinite correlation functions of each phase in proportion to 
their relative amounts found in the composite, plus a cross correlation term 
which is written in terms of a cell size R and which depends on the cell 
correlation function G(R) ,  on the pair correlation functions between cells and 
on a randomness function a (R) .  The pair correlation function between cells is 
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Fig. 1. A schemat ic  d iagram of  an a t o m  correlat ion funct ion gDG(r) for a cell  as a funct ion  of  r. 
T h e  dis tances  be tween  peaks  are, o f  course,  typical  a tomic  spacings,  gDG must  go to zero as r 
b e c o m e s  large c o m p a r e d  wi th  a cell  size. The  funct ions  g G c  and gDD will  be qual i tat ive ly  similar.  

defined by eq. (30), and may be described by a typical schematic diagram 
shown in fig. 1. Note  that the functions gDD(r),  goc(r)  and g D c ( r )  are 
correlation functions for atoms within cells, and therefore tend to zero for r 
large compared with the cell dimensions. 

The cell correlation function G(R) depends on the size R 0 of  the typical 
cell, and a schematic diagram is shown in fig. 2. This function is zero for small 
values of  R, rises to a peak at R = R 0, and for R >> R 0 goes to a value of 
n c~ V, where V is the volume of  a typical cell. 

G (R) 

, c /v  

0 I ~ R 

R o 

Fig. 2. A schemat ic  d iagram of  the c e l l - c e l l  corre lat ion funct ion G(R). At  large R this funct ion 
goes  to the constant  nc/V. 
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The various cross correlation functions in eq. (37) may be viewed schemati- 
cally by considering F(r). The gOG, gDo and goD functions are defined as non 
zero only within individual cells, and therefore at small r, whereas G(R) is zero 
at small values of R. Hence, F(0) = 0. At large r, F(r) becomes 

- x)G(r)[l - .(r)]fd3R[gcc(R)+ gDD(R) F(r) x ( 1  

- -gGD(R)  - - g D c ( n ) ] .  (40) 

The volume integrals of gG6, gDD and gGD are N 2, ND 2 and N G N  D respectively, 
where N G and N D are the number of atoms within a G and D cell. Hence F(r) 
is a functional only of G(r) [1 - a(r)].  At large r, a(r) tends to zero, and G(r) 
goes to no~V; hence F(oo) = x(1 - x)  ( N  G - ND)2nc/V. This function will be 
zero at small r, have oscillations characteristic of gGG, gDD and gGo, though 
modified by G(r) ,  and will rise to a value of x(1 - x)  (N  G - ND)2nJV. This 
is shown schematically in fig. 3. 

The values of the correlations function for infinite regions, gG(r )  and 
gD(r),  at large values of r are given by NEnc/V and N2DnJV respectively. 
Hence the approximation given by eq. (3) at large r is [(1 - x)N~ + xN2o]nJV. 
On the other hand, the inclusion of the cross correlation term F(r) gives 
[ (1  - -  x ) N  G -I- XND]Erlc/V for g(r) (eq. (37)) at large r. We conclude that the 
correlation function given by eq. (6) is not strictly correct because the cross 
correlation term has been neglected. 

Since the function F(r) is nonzero only at large r, the Fourier transform of 

F (r) 

x(1-x) (N o- ND )2 nc/V //  
Fig.  3. A schemat i c  d i a g r a m  of  the c ross  co r re l a t ion  f u n c t i o n  F(r) as  a func t ion  o f  r. This  f u n c t i o n  

is zero  a t  smal l  r ,  has  osc i l la t ions  cha rac te r i s t i c  of  the a t o m  co r r e l a t i on  func t i ons  a t  i n t e rmed ia t e  

va lues  of  r ,  a n d  will g o  to x ( l  - x ) ( N  G - ND)2n~/V at  la rge  r. 
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F(r)  will only produce scattering at small angles. Then if the small-angle 
scattering can be removed correctly from the experimental data, the effective 
g(r )  that is determined will be given by eq. (3) to a good approximation. We 
have not included explicitly the effect of pores or voids in these calculations, 
though we know that there will be pores in any real carbon system. We should 
point out that pores will also contribute only to small-angle scattering and, to 
the extent that the small-angle scattering can be removed, will not change the 
validity of eq. (3). 

5. Conclusions 

The correlation function for a non-crystalline material with more than one 
phase has been derived from first principles. It has been shown that, except for 
the completely phase-separated system, the simple addition of the correlation 
functions of the various phases in proportion to their concentrations within the 
solid is incorrect. There is also a term which expresses the cross correlation 
between the two phases, and this term depends both on the abundances of the 
two phases and on their degree of mixing. This cross-correlation term gives rise 
to small-angle scattering in the experimental diffraction pattern. 

Some immediate observations can be made regarding the application of the 
theory developed in this paper. The diffraction data of an amorphous system 
which is known to have two phases should be normalized to the correct 
density. An improper normalization of the experimental data can produce a 
large effect in g(r)  and errors in the measured coordination numbers. The 
usual procedure [17] is based on the effective exclusion of an atom from the 
immediate neighborhood of another atom, so that for distances r less than the 
closest interatomic distance, the correlation function g ( r )  is zero. This has the 
same effect as normalizing the structure-independent differential cross-section 
( S ( Q )  at large Q) with respect to some average value go of the atom number 
density. The question is what is this average value. It is related to the value of 
g(r )  at large r. The Stenhouse-Grout  model gives gO, which is obviously 
incorrect. The value given by eq. (5), which is the average of the densities of the 
two phases in proportion to their abundances, is valid provided that the 
small-angle scattering has been removed from the experimental data. In the 
general case, where there are correlations between the two phases, the correct 
value of go is given by 

g 0 = [ ( 1 - x ) ~ + x ~ ]  2. (41) 

This result obviously has the right values in the limits for x = 0 and x = 1, and 
includes an additional cross term for arbitrary x. 

l:t is also possible to examine the effect of the pores within the scope of this 
paEer by treating the carbon material as one phase and voids as a second phase 
of this two-phase problem. Assume that all cells with atoms can be treated as 
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G cells (now labelled C), and that all D cells have no atoms within them, so 
that there is no differentiation of bonding between domains. This means that 
the typical pore size is greater than that of the domains. Hence, the pair 
correlation function gG~(r)  = g c c ( r )  exists, whereas the functions gDD(r )=  
gDc( r )  = gGD(r )=  0. Then the system correlation function (eq. (37)) reduces 
to 

g ( r )  = (1 - q~)gC(r) - q,(1 - e p ) f d 3 R G ( R ) [ 1  - ~ ( R ) ]  g e c ( r -  R) ,  

(42) 

where 4~ is the porosity of the system, so that (1 - q,) is the volume fraction of 
the material, and gC(r)  is the correlation function of this composite carbon 
material of infinite extent. The parameter a is interpreted as a randomness 
function of the pores. The second term in eq. (42) corresponds to the 
small-angle scattering caused by the pore system. If this is subtracted from the 
experimental data, the correlation function is that of the composite material, 
modified by the factor (1 - q , )  which can be neglected by suitable normaliza- 
tion of the scattered intensity at large scattering vectors [13]. 

For the case where there are pores within the system, the normalization 
procedure requires the value of go to be gC (the microscopic density) if the 
small-angle scattering is subtracted or not measured, or (1 - q,)gC (the macro- 
scopic density) if it is included. The value of go which is strictly compatible 
with the experimental neutron diffraction data on glassy carbon [13] is not 
well-known. The macroscopic density is influenced by a large-scale ( >  250 .A,) 
pore system, which gives rise to small-angle scattering in the range Q < 0.025 
A-~ which was not observed. Various density measurements have been re- 
ported [18] for this particular carbon, 0.923 gcm -3 bulk density, 1.41 gcrn -3 
by helium pycnometry and 1.49 gcm -3 by mercury intrusion porosimetry. 
These are all smaller than the microscopic crystallographic density (2.25 
gcm -3) of graphite. Since the experimental data include measurement of the 
scattering for Q > 0.065 A -  l due to small-scale voids, the value of go chosen 
for normalization is that obtained by mercury intrusion. That this is a 
reasonable choice may be seen from the transform of the small-angle scattering 
data [13]. This function gives a local density (2.16 gcm-3)  very close to that 
expected for crystalline graphite, whereas it far from the value for diamond 
(3.5 gcm-3).  This is further evidence that glassy carbon contains at most only 
a small fraction of tetrahedrally coordinated carbon atoms. 
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