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An analysis is made of the supersymmetry of parafields in Wess-Zumino-type models with two cases in which para- 
bosons and parafermions form a supermultiplet. In ~ase one the symmetry is realized by either the normal superalgebra or 
an infinite Lie algebra as in ordinary supersymmetry. In case two the infinite Lie algebra is intrinsic to the supersymmetry. 
With appropriale symmetry breaking, formulations of these types may be used to explain the generation problem by postu- 
lating unobserved parabosons as supersymmetric partners. The relevance to these models of an infinite Lie algebra construct- 
ed from supersymmetry is mentioned. 

1. hltroduction. The basic idea o f  supersymmetry 
is the mixture of  particles of  different statistics; nor- 
mally taken to be bosons and fermions. It is natural 
to ask if this concept can be extended to parafields 
which generalize normal quantum statistics [1,2]. 
While there are no observed paraparticles in nature, 
the possibility exists for unobserved particles which 
obey this statistics. 

Parastatistical fields obey double commutation re- 
lations [ 1,2 ]. In particular, parafermi relations con- 
tain only commutators as opposed to anticommutators. 
Analogous double commutators among fermionic 
quantities were introduced in a treatment of  the 
supersymmetry algebra by defining commutators of  
fermionic generators as members of  the algebra [3]. 
The resulting Lie algebra is infinite dimensional and 
similar to a Kac-Moody  algebra [4,5]. 

Due to the similarity of  parastatistical commutation 
relations and the infinite Lie algebra derived from 
supersymmetry, it is anticipated that there are repre- 
sentations o f  the inf'mite algebra (for fixed momen- 
tum) realized with parafields [6]. 

In this article we present two modifications of  the 
Wess-Zumino model [7] containing parafields. In the 
first case the parameters are either anticommuting c- 
numbers (ordinary supersymmetry) or commuting c- 
numbers supplemented by a Klein transformation on 

the fermionic generators (infinite Lie algebra [3]). 
The second case utilizes c-number parameters obeying 
commutation relations of  a generalized parastatistical 
type. A discussion of  these cases follows in section 3. 

2. Wess-Zumino lagrangians with parafields. 
Case 1. Following Green, parafields are decompos- 

ed into components: 

@=~b 1 +@2+. . .+~p,  

~= ~1 + ¢2 +. . .  + 4Jp , 

such that 

(1) 

"[~bl, ~b2} = [1'~1, ~21 = O, (2a) 

{4h,~2} = { ¢ 2 , ~ 1 }  = 0 ,  e tc ,  (2b) 

at a space like separation, and each component satis- 
fies normal boson and Majorana fermion equal time 
commutation relations (i = i ,2 . . . .  , p) 

• p 

[¢i(x, t), 4~i(x, t)] = i/5(x - x ' ) ,  

{ ff~(x, t), ff/~(x', t ) ) =  -(74C)a#6(x - x ' ) ,  (3) 

where C(=7274) is the charge conjugation matrix*l .  

,1 C= ('r23'4) all ~,-matrices in Pauli-Dirac representation. 
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Note that eqs. (1)-(3)  are equivalent [2] to the equal 
time double commutation relations of Green [1 ] ; 

[ {~(~, t), 6(x', t)}, ~(x", t)] 

=-i26(x ' -x")cb(x , t ) ,  etc ,  (4) 

and 

[ [4~(x, t), 40(x ', t)], 4~(x ", t)] 

= 2(74C)¢~ 8 (x -x")~bO(x', t) 

- 2(74C)#+8(x' - x")~/a(x,t), etc,  

which define parafields. For simplicity we restrict to 
the p = 2 Green ansatz with the generalization to ar- 
bitrary p obvious. 

TakingA, B, 4 to bep  = 2 parafields in the Wess- 
Zumino model (A scalar; B pseudoscalar; 4 Majorana) 
we have the lagrangian 

x {OuA ' 3~A} 1 z = -+  - + (3 .B ,  a . B )  ~ [¢:, ~41 

- ~ m 2 { A , A )  -~m2{B,B)  -ImI~, 4], (5) 

where we neglect interactions for simplicity. The inter- 
action terms must be appropriately symmetrized in 
order to satisfy locality [2]. The fields in eq. (5) are 
p = 2 parafields as given in eqs. (1) and (2). 

By a method similar to that in ref. [7] we take 
Majorana fermionic charges given by 

S ~ =-i fS~d3x 

i (6) 
= - ~  f (~'xa X(A - i3,5B) + m (A + i75B), ")'4 4)  ad3x" 

Note the symmetrization in eq. (5) and eq. (6) elimi- 
nate fields of different Green index in bilinear terms. 
From S ~ and the commutation relations of parafields 
[eqs. (3) or (4)] we have the transformations; 

[S a, A/]= 47 , [S a, B/] = 075 4/) a , 
{S <x, 4~} = i [3u CA - i75B)7  v + m CA +Bi75)l /~c tt3 , 

(7) 
where ] = 1,2. The anticommutator, 

(S ~, SO) = iCvvC)P", (8) 

is the same as normal supersymmetry and gives the 
standard supersymmetry algebra for anticommuting 
parameters e. The use of commuting e parameters, 

supplemented by a Klein transformation [8] on the 
fermionic generators, leads to an infinite Lie algebra 
as shown in ref. [3]. In eq. (8), pu is constructed 
using symmetrized bilinears as in eq. (5). It should be 
noted that S '~ in eq. (6) is a normal Majorana fermion- 
ic generator as contrasted with a parafermionic gener- 
ator. The latter possibility is considered in case 2. 

Case 2. We define parafermionic parameters, e/~, by 
commutation relations (no sum on repeated Green 
indices heretofore) 

{el/, el/} = O, (9a) 

and 

[ei/, e~k I = 0 ( / ~  k ) ,  

(ei/,ek])=O q ~ k ) .  (9b) 

Consider the lagrangian in eq. (5) assuming 

[A~, 4]1 = [+e~, '/91 = 0 ,  (t0) 
with para commutation relations, eq. (2a), among 
bosonic and fermionic Green components. Define 
conserved generators; 

st1 =-i f [(CA l +~a)/,f~, 42> 

+ ((A t -- iB1)/V~- , 4i-) ] d3x,  (1 la) 

s+2 = - i  f [((A2 + te2)/,,,,~, 4+> 

+ ((A2 - ~2)/ , , /T,  4~->1 d 3 x ,  ( l i b )  

S12 = - i f  [<(A1 -iSl)/',F, 4~> 

+ ((-41 + iBI)/V~, 42)] d3x, (1 lc) 

s21 = - i  f [((A2 - i~2)/'4~, 4]'> 

+((A2 + i B 2 ) / ~ ,  4i-)] d3x,  (I ld) 

where 

(,#, 4>-- a:(va~44), (t2) 
and 
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S = S  1 +S 2 ; 

[[S% S~], S ~ ] = 2iSe'(TuC)#~ pu 

- 2i(7uC)~t~PuS~ • 

Note ~i= are chiral Majorana fields with Green index 
i. In eqs. (11) we take the massless case for simplicity. 
It is trivial to include mass terms in which all fields 
have the same mass. The following relative para com- 
mutation relations are assumed between the fields in 
eqs. (1 1) and between fields and parameters: 

[A 1,B1] = [A 2,B2] = {A1,B2}= {A2,BI}=0, (laa) 

{ei], ~kj}=O, [ei/, ~k]=O (j--/=k), (14b) 

[eii, Ai] = [ei/,Bi] = 0 ,  

{eq, Ak} = {eij, Bk} =0 (/:/= k) .  (14c) 

With these relations we have the transformations 

[ ssSss , ( &  + i & < ) / v ' Y l  - - ; - 8f lce#~ k , (15a) 

[eflSyl,(Ax = sdiz [ ( i * 0 ,  ( l Sb )  

• ~ + [~ssSss, ¢~] = ia,~ [(A t ~- ,Bk)/Vr2-]'l, e#7, (15c) 

[eitSit, ff ~ ] = i a u [(A t +- iB/)/x/-~i-r~e h ( /4 : l ) t ,  lSd),  

where 

e~ = } (1 -+ 7s)eij (i,j  = 1 ,2) .  (16) 

Define charges 

S 1 =(Sll  +S12), S 2 =($21 +$22) ,  (17a,b) 

and observe easily the commutation relations (/= 1,2) 

{S s, S/} = i(vuC)at3Pu, (18a) 

and 

[S~, S~] = O. (18b)  

Note that eq. (18a) is the normal supersymmetric com- 
mutation relation for each Green component whereas 
eq. (18b) is a result of the parastatistics of the fields• 
The proof of eq. (18a) follows as in the usual manner; 
we show the proof of eq. (18b) in the appendix. 

Eqs. (18) are parafermi commutation relations for 
fixed momentum and imply the double commutation 
relation for 

(19) 

(20) 

As is described in ref. [3], the repeated commutator 
of operators on the RHS ofeq.  (20) leads to an infinite 
Lie algebra of the Kac-Moody type. Because neither 
the commutator, IS a, SO], nor the anticommutator, 
(S% St3}, can be written linearly in terms of the gene- 
rators of the transformations, the infinite Lie algebra 
[3] is intrinsic to this symmetry• 

Note that by singling out S a as a generator of the 
infinite Lie "algebra, we are considering a subalgebra of 
the total supersymmetry algebra. The algebra generat- 
ed by S t, S 2 and the Poincare group is closed allow- 
ing commutators and anti-commutators. The algebra 
generated by S a and the Poincare group is closed al- 
lowing double commutators of the parafermi type as 
in eq. (20). As a result, the corresponding paraferm- 
ionic parameters, e ~, 

(21) Ec~ = e?l +e~l 2 +e~l +e22,  

should satisfy the double commutator 

[[e a, e~ll,e a] = 0 .  (22) 

3. Discussion. The commutation relations of in- 
dependent fields ass been discussed extensively in 
the past [8]. It has been proven that fermionic fields 
can be changed from relative anticommutators to rela- 
tive commutators by appropriate Klein transforma- 
tions without changing physical content• However, 
this is not the case for bosons because there is no con- 
served boson number operator (with the exception of 
conserved charges associated with the bosons such as 
the strangeness quantum number). Therefore the exis- 
tance of a paraboson in supersymmetric relation with 
parafermions (case 2) may imply significant experi- 
mental consequences. For example, an arbitrary 
Yukawa interaction between parafermions and para- 
bosons is not allowed due to the violation of locality 
[2]. However, it may be possible to construct local in- 
teractions between supersymmetric partners with 
gauge bosons which are supersinglets. Certainly this 
possibility exists within superspace formulation [9] 
of supersymmetry. 

The superspace concept may be applied to para- 
supersymmetry by defining a parafermionic, rather 
than fermionic, extension of Minkowski space. The c- 
number parameters, 0% would satisfy the condition 

[[0% Oal,0 8] = 0 .  (23) 
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Also, 0 should have appropriate relative pararelations 
with parafields and parafermionic generators. 

The formulation discussed in case 2 is different 
from standard parafield theories in that the Green in- 
dex is not confined in a form shown in eqs. (2) and 
(4). The possibility of Green components as indepen- 
dent fields implies double commutation relations 
among components which are more general than 
Green's ansatz. This possibility will be discussed further 
in a forthcoming publication. 

In conclusion, we mention possible phenomenolo- 
gical implications of these ideas. First, due to the exis- 
tance of a wider class of representations, the infinite 
Lie algebra (allowing the possibility of paraparticles) 
may explain multiplicities of various particles. For 
example, the generation problem may be understood 
by a model in which parabosons are related to para- 
fermions prior to symmetry breaking. In such a mod- 
el the generation symmetry would be an internal sym- 
metry between independent Green fields. In another di- 
rection, the parastatistical nature of certain particles 
connected in supersymmetry and the liberation of the 
Green index (as in case 2) suggest the possibility that 
the breaking of supersymmetry may split Green com- 
ponent masses. This could mean that the experimental 
non-existance of paraparticles is simply a low energy 
effect, and only at sufficiently high energies all Green 
components are observed. 

The authors would like to acknowledge P. Tataru- 
Mihai for sending his manuscript before publication. 
We are also indebted to Jacques Leveille and Hans 
Wospakrik for useful information and discussions. This 
work is supported in part by the US Department of 
Energy. 

Appendix. Proo.f of  eq. (18b), [S~, S~2] = 0. From 
eqs. (1 1) and (17) we have 

[S~'S#2] = e=* ~ I  (l!e)J'-'+~ "1" '+2m~'(e) + I~,~ + !(4~,+ ) , (AI) 

where 

I ( 0  : f d3x d3x ' 1~,# 

X ( Ia  x [(A 1 + i~B 1 ) /X/~  l , a v [(A] - ieBj ) / x / ~ l  

X (')'x~f4 ~e))a('yu7 4 ~7(e))l~} , (A2) 

I(+) = f d3x d3x ' 2 ~  

X ( [a x [(A 2 - i+B2)/x/2-], a~ [(A~ + ieB~)/x/-2)] ] 

X (7X74 ~+))a(7u74 ~(e))~} , 

x [axI(A 1 +i£Bl)/vff]a~i(a ~ - id6)/vS] 

I4") = fd3x  d3x' a~ 

X OX [(/12 - i ~ 2 ) / ~ - 1  ~v [(.4 '1 + ieS] )/qT] 

X ((Th')'4ff, l(e))a,(~v'y4¢'2(-e))f3} ] . (A2con'd) 

By using canonical commutation relations for fields 
with the same Green index and parastatistical relations, 
eq. (2), between fields of different index, we obtain 

'(1 + "rs)b'<,' X [(c- l~( l  + 75)74"//7A 

+(C -1 ~-(1 +75)7A7/74~(1 + 75))~',~'1 

x ~'a! ~ '  ) ,  (A3) 

where the Fierz transformation, 

X,~rlY;3 ~ =I~A (7AC)co(yTc-17AX)~r ~ , (g4) 

has been used with C = the charge conjugation matrix. 
In eq. (A4), 

A = I, 75 ,7  u, i7~75, Our • (A5) 

From the projection operator }(I + 75)in eq. (A3) 
one has immediately that the sum is restricted to A = 1, 
3'5, o#v- Because of the symmetry of C.rA (symmetric 
for A = 7~, ouu; antisymmetric for A = l,  75,7~75), 
the summation is further restricted to A = our with 

( . ,  v) = (4, k ~ l ) ,  

= (k, l ) ,  (a6) 
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for the coefficient o f  ~ ' a l f f ~ ' ,  where k, 1 4: 4. Simi- 
larly, 

1 \ ' + A  

X [(C -1 ~-(1 +75)74717A)O'a' 

1 (1 + 3'5 ~'~' ( A 7 )  + (  C-1 ~ )"/A 7l"/'4) 1 ~  ~1 ~ , 

where, by arguments similar to above, A is restricted to 
our with (/~, v) in eq. (A6). One easily concludes 

l(e)  +i(2e2 = 0  (e=+_l)  (AS) 1 ~x/~ 

from partial integration and commutivity of ~k I and 
~2 for e = +1. A similar argument applies for e = - 1 .  
Continuing, we have 

/3(e) +I (e )  = - f d 3 x  

X 3 x [(A 1 + ie-B1 )/x/~'] 0 v [(A 2 - ieB2)/,¢~-] 

X [~-(1 +- 75)(7~.3'47v - 7v747x)C]a$ ,  , (A9) 

which vanishes directly for k = v or h = 4, v = l or h 
= l, v = 4 (1 = 1 ,2 ,  3). The remaining case, (~, v) = (k, 
1) (k ~ l; k, l = 1 ,2 ,  3), vanishes by partial integration. 
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