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We propose a Glashow-Iliopoulos-Maiani mechanism for extended technicolor theories and illustrate it in an explicit 
model. We find that flavor changing neutral current effects are adequately suppressed if m t .~ 50 GeV. 

1. Technigim. Technicolor [1] (TC) is a very attrac- 
tive idea, which might address several of  the fundamen- 
tal puzzles of  modern particle theory, but for the fact 
that it seems to lead to a phenomenological disaster. 
The SU(2) X U(1) breaking induced by TC must be 
communicated to the light quarks and leptons by 
some interaction which breaks the global chiral flavor 
symmetries. Fundamental  scalars can do this commu- 
nication, but such scalars are no more attractive than 
fundamental Higgs mesons. The only other possibil- 
ities would seem to be extended technicolor (ETC) 
gauge interactions which cause transitions between 
light fermions and technifermions or a dynamical 
model in which light fermions and technifermions are 
both built out of  the same constituents. To date, all 
such schemes have been plagued by flavor changing 
neutral current (FCNC) effects which are too large. 

In this paper, we suggest a solution to the FCNC 
problem in TC theories. We will describe the solution 
in the language of  ETC and then exemplify it in a 
specific ETC model. However, we believe that our 
mechanism is more general and applies to consti tuent 
models as well. 

The problem with ETC theories is associated with 
the structure of an ETC gauge group. The ETC gauge 

generators and the corresponding gauge bosons are of  
three types: flavor (F), symmetry generators associ- 
ated with transitions between flavors; TC generators; 
and generators associated with transitions from ordi- 
nary fermions to technifermions. This last type is re- 
quired to generate light fermion masses. Henceforth, 
we will reserve the name ETC for these transition gen- 
erators and gauge bosons. The flavor and TC generators 
must exist because of  they are produced by communi- 
cation of  ETC generators with their adjoints. It is the 
flavor generators that cause the trouble. Typically, 
flavor gauge boson exchange contributes to AS = 2 or 
AC = 2 processes, or to both.  These effects cannot be 
suppressed by simply increasing the flavor gauge 
boson masses, because anything which increases the 
flavor gauge boson masses also increases the ETC gauge 
boson masses, which in turn decreases the light fermion 
masses. 

To evade this snare, we turn to a generalization of  
the Glashow-I l iopoulos -Maian i  (GIM) mechanism 
which banished FCNC effects from the standard model. 
In the standard model, there are no FCNC effects in 
lowest order because the gauge interactions have a 
very large flavor symmetry,  SU(n) × SU(n) × SU(n) 
(× irrelevant U(1)'s) for flavors. This flavor symmetry 
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allows us to move the mixing angles in the quark sector 
from the charge 2/3 (U) quarks to the charge -1 /3  (D) 
quarks or back at our convenience. FCNC effects can 
appear only when both U and D quarks are involved, 
as in the usual box diagram. 

It is clear that this flavor symmetry argument cannot 
be trivially generalized to ETC. For one thing, in ETC 
theories, there are more gauge interactions. For the 
flavor interactions to have a flavor symmetry, the 
flavor gauge bosons must be degenerate. What is worse, 
the quark mass matrix cannot have the flavor symme- 
try, because the quarks are not degenerate. But the 
quark mass matrix comes from the gauge interactions. 
Thus the gauge interactions cannot have the flavor 
symmetry either. 

The solution is simple: 
Break the flavor symmetry where there is no mixing. 
Introduce mixing only where there is flavor symmetry. 
We will illustrate this mechanism in a toy model of 

quarks, in which the ETC group is a semisimple group, 
SU(N)L × SU(N)u × SU(N)D. We ignore leptons and 
put in the ETC breaking by hand with fundamental 
scalar fields, in order to simplify the discussion and 
concentrate on our TECHNIGIM mechanism. 

In the remainder of this section, we describe the 
model in words. In section 2, we describe it in tech- 
nical detail. The casual reader may want to skim (or 
skip) section 2 and proceed to section 3 which con- 
tains our conclusions and speculations. 

LH SU(2) doublets of quarks and techniquarks 
transform like N's of SU(N)L , denoted ~AL, where A 
is an SU(N)L index which runs from 1 to N [and 
SU(2) indices are suppressed]. 

RH singlets of charge 2/3 [-1/3]  quarks and tech- 
niquarks transform like N's of SU(Ar)u [SU(N)D], 
denoted U~R [DAR] where ~ [A]  is an SU(N) U 
[SU(N)D ] index. In all of these SU(N)'s, the first three 
values of the index refer to-flavor, the last N - 3 to a 
TC SU(N - 3). We will use lower case letters (in the 
appropriate type face) at the beginning of the alphabet 
to denote SU(N) flavor indices (1 ..... 3), lower case 
letters at the end of the alphabet to denote TC indices 
(4 ..... N), and capital letters (as above) to denote 
generic indices. 

We introduce symmetry breaking which treats the 
L ETC very differently from the U and D ETC. The 
SU(N)L is broken directly down to SU(N - 3), preserv- 
ing an SU(3) global flavor symmetry of the SU(N) L 

flavor interactions. SU(N)u and SU(N)D are broken 
down to SU(N - 3) in stages, preserving global U(1) 
symmetries but completely breaking the nonabelian 
flavor symmetries. 

Finally, we must couple the various ETC's together. 
We break the three independent TCs down to a single 
diagonal TC. This produces a TC interaction which 
breaks SU(2) × U(1), but it is not enough to generate 
quark masses. 

All of the above symmetry breakings scales are of 
the order of 1 TeV or larger. We introduce mixing 
between the flavor subgroups of SU(N) L and 
SU(N)u and D at a lower scale/a. This produces quark 
masses of order/a. At this point we introduce nontrivial 
flavor mixing by inputting different mixings for L with 
U and L with D. For the simplest form of the mixing, 
we find that to lowest order in/a, only the LH quarks 
get mixed. Then because of the SU(3) flavor symmetry 
of the LH gauge interactions, there is a GIM mechanism 
which eliminates FCNC's in lowest order in/a. Just as 
in the standard model, the mixing can be moved from 
U L to D L without changing the gauge interactions. The 
FCNC's from processes which involve both U's and D's 
are suppressed by extra powers of the small scale/a. If 
/a (which sets the scale of all the quark masses) is small 
enough, the FCNC's will not cause phenomenological 
problems. This leads to a bound on the t quark mass, 
m t ~ 20 GeV. 

2. SU(N) L × SU(N) U × SU(N) o • We begin by list- 
ing the scalar fields and vacuum expectation values 
(VEV's) which break the ETC symmetries. 

SU(N) L is broken by the VEV of a field ¢Aa, where 
a = 1 ..... 3 is a global label and A is an SU(N) L index. 

(¢aa) = M6a~ , (¢xa) = 0 .  (1) 

The global SU(3) of the SU(BOL gauge interactions is 
generated by the diagonal sum of the generators of 
the flavor SU(3)subgroup of SU(N) L and the genera- 
tors of the SU(3) acting on the global label a. 

SU(N)u is broken by the VEV of a field p.~], 
where ] = 1 ..... 3 is a global label and .~ is an SU(N) U 
index. 

(pa/)= PaSaj , (px]) = 0.  (2) 

We will see that a or j = 1, 2, 3 refer to U quark mass 
eigenstates, u, c, t; and that p2 a (x lima" Thus pl 2 >> p2 
>>p3 2 because 1/m u >~ 1/m c >~ 1/m t. 
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SU(N)D is broken by the VEV of XAr where r = 1, 
.... 3 and A is an SU(N)D index 

()tar) = X a 5ar , (Xxr) = 0 .  (3) 

Here, a, r = 1, ..., 3 refer to D quark mass eigenstates 
d , s ,b .  HenceX2>>X2>>X 2. 

The mixing between SU(N)L and SU(N)U is due to 
the VEV of ~A~,  which transforms like an (N, N) of  
SU(N) L X SU(N) U. 

(~.~) = # u V U ,  (~ , , )  = O, 

# 
<}xa > = 0 ,  <}xx) = # U f x x ,  (4) 

where V U is a unitary 3 × 3 matrix. 
The mixing between SU(N)L and SU(N)D is due to 

the VEV of XAA, which transforms like an (N, N) of  
S U ( N ) L  × S U ( N ) D .  

(Xaa) = PD V2a , (Xax) = 0 , 
¢ 

(Xxa) = 0 , (Xxx) = #D6xx , (5) 

where V D is a unitary 3 × 3 matrix. 
The VEV's (4) and (5) break the three independent 

t TC's down to the diagonal TC group at the scales #U 
t 

and #D and mix the (already broken) flavor subgroups 
at the smaller scales #U and PD- 

To analyze the quark masses and FCNC's, we need 
to know something about the gauge boron masses. The 
processes in which we are interested all occur at mo- 
menta small compared to the flavor and ETC masses, 
so the ETC gauge coupling constants are irrelevant. 
The factors of  couplings in the vertices cancel those 
from the masses in the propagators. Thus we will sup- 
press the coupling constant dependence and show only 
the dependence on the scales. We will exhibit the 
masses for #u = #D = 0 and treat the mixings induced 
at the p scales as perturbations. The approximate mass 
eigenstates are shown in table 1. The W's are coupled 
to corresponding generators. For example, wUsffc~ 
couples to TUq~s~ where 

(T~q~)e~ = 8~,'-z):qse for _of 4=q6 , (6) 

(T~s~)cBC = [ ( N - ~ ) ( N -  s~ + 1)] -1/2 

N 

=s~+ 1 

(7) 

Table  1 

W Mass 2 cc  

SU(3)L 2M 2 

U(1) L 2[2(N - 3)M 2 + 3U~ + 3,u'~l/N 
L L M2+#~ +#~ Wax,  Wxa  

w ~  ~ ~ ~ ~ + d, 
W U [2/(N- a)(N- a + 1)1 

3 

X((N-a)2p2a+b=~a+l;~+(N-3),'~) 

W U --+ W D p ~ h p~j --+ #D 

The basis (7) for the diagonal generators of  SU(N)u 
and SU(N)D is convenient because it almost diagonal- 
izes the gauge boron mass matrix for p2 >> p2 >> p2, 
X~>> X 2 >> X 2. Even in this limit, the fields wU 3 and 
W~3 mix with the SU(ADL U(1) gauge boron (whose 
coupling commutes with flavor and TC). However, this 
mixing does nothing interesting [because the U(1) 
couplings are completely flavor symmetric] and we 
will ignore it. 

The VEV (4) induces mixing between WLx and wUx 
proportional to 

2 #u & 6.x v~ ,  (8) 

while (5)induces mixing between WLx and wDx, 

2# D p~) 8xx vDa. (9) 

These mixings produce quark masses through the 
diagram shown in fig. 1, giving a mass term 

- ~ a L M 2 U a R  - ~aLM2aDaR +h.c.  , (10) 

where 

M U =  , 3 p2 '2  [2#UPU A / ( M 2 + p u  +#~)1  U 2 v:a/% + # u ) ,  

(11) 

MD = [2#D/XDA3/( M2 + #U + #D)] Vgl( X2 + #'D2) • 
(12) 

A 3 is the TC condensate, appropriately scaled to make 
(10) and (11) true. We expect A ~ 1 TeV. 

Because V U and V D are assumed to be unitary, 
(11) and (12) can be diagonalized trivially and as prom- 
ised, the mixing is only on the LH fields. In terms of  
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vU(D) 

g,: U(D) R 

Fig. 1. Feynman diagram which produces the U(D) quark 
mass matrix. 

mass eigenstates UaL and DaL , 

~UL= VUUaL , ~D L = VDDaL . (13) 

Thus the KM matrix is 

V = V Ut V D . (14) 

The masses are 

U ,2 ma = [2#UtaU A3/(M2 + taU + ta~)] (p2 + t a ~ ) - l ,  

(15) 
D '2 t a ~ ) - l .  ma = [2#DtaDA3/( M2 +taU + u ~ ) l ( X a  2 + 

(16) 

Now that the model  is completely explicit, we can 
study FCNC. Obviously no FCNC's arise from the ex- 
change of  L, U or D flavor bosom to lowest order in # 
6u U = ta D = 0). The U and D flavor boson masses and 
couplings to the RH quark fields conserve flavor num- 
ber. The L flavor couplings do not conserve flavor 
because V U and V D are different, but because of  the 
flavor symmetry  of  the L flavor boson masses, flavor 
changing can only occur in processes in which both 
V U and V D are relevant. All of the FCNC effects in- 
volving the flavor or ETC gauge bosons are of  order 
ta4. The leading contr ibut ion to a AS = 2 process 
comes from the one-flavor-boson-exchange diagram 
shown in fig. 2, where we have used the flavor sym- 
metry to go to a basis in which V D = I and picked out 
the diagram which gives the dominant contr ibution in 

s 7 
Fig. 2. Feynman diagram which produces the leading ,aS = 2 
effect. 

the limit that the KM angles 0 2 and 0 3 are small. This 
gives a contr ibution to the AS = 2 hamiltonian of  the 
form 

- 2 2 2  2 4  4 (ds) (SlC 1/2p2)taU/M , (17) 

where we have approximated [(N - 2)/(N - 1)] 1/2 ~ 1 

and ignored terms of  order rnc/m t and mu/m c. To satis- 
fy the phenomenological constraints, we must have 

AS 2 = (ta4/2p~M4)<~ 10 -11 GeV - 2  . (18) 

We can put  the constraint (18) in a more useful form 
by eliminating #U and P2 in flavor o f m  c and mt, using 
(15). This gives 

AS 2 3 2 ,2 ta,2)4(p2 ,2 3 12 ,4 = +taU) /32M4A #U mcrn t (1ll + #U + D 3 

(19) 

To make AS 2 as small as possible, we should choose 
t t 

P3 = 0 and take #U and taD as small as possible. But 
the ta's are the scales at which the TC interaction co- 
alesces from the separate TC subgroups of  the three 
ETC groups. They cannot be smaller than the TC scale, 
or the mechanism we have used in generating the quark 
masses breaks down. So we take 

w r 

taU = taD = A .  (20) 

Now we find that the minimum of  AS 2 as a function 
of  M occurs for M 2 = 2A 2, which gives AS 2 = 
2 m c m 3 / A  6 or 

m t <~ 20 GeV (A/350 GeV)2(1 GeV/mc)l /3 . (21) 

This may be barely acceptable. 
Before going on to general conclusions in section 3, 

we make a few technical comments.  The global SU(3) 
symmetry of  (1) and the global U(1) symmetries of  
(2) and (3) cannot be exact global symmetries of  the 
theory because they are spontaneously broken by (4) 
and (5). That is no problem. Only the VEV's are re- 
quired to have the symmetries. For  example, the VEV, 
(1), can arise naturally if the ~ interactions have a per- 
mutat ion symmetry,  but  not  an SU(3) symmetry.  Thus 
we need not worry about Goldstone bosons produced 
by spontaneous breaking of  the flavor symmetries. As 
in the usual GIM mechanism, they are only symmetries 
of  the gauge interactions, not  of  the full theory. 

The constraint (21) that we found from considering 
the AS = 2 processes is the strongest bound on the pa- 
rameters of  the theory. AB = 2 processes mediated by 
the flavor bosons are much smaller than the corre- 
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sponding effect from the box diagram. Similarly, if we 
minimize the strength of  AC = 2 (and AT = 2) process- 
es by taking ~k 3 = 0 ,  these flavor boson contributions 
are much smaller than the box diagram. 

3 . . . .  a n d  all that .  It would be overstating the case 
to claim that this model  is beautiful. But it works, for 
light quarks. Can we include leptons? Not without  fur- 
ther enlarging the ETC group. We have not  eliminated 
the flavor interactions. I f  leptons are included in the 
same ETC groups as the quarks, we get a very large K 

/ae decay. Thus we need still more factors in our 
ETC gauge group. Explicit models will be discussed 
elsewhere. 

More interesting, it seems to us, is the possibility 
that a mechanism like ours could arise dynamically in 
a subconsti tuent model. In a model of  this kind, both 

quarks and techniquarks are built out  of  the same sub- 
constituents, and they are light because the dynamics 
o f  the binding forces leaves some chiral symmetries 
unbroken. These are in turn broken by weaker gauge 
interactions which produce the analogs of  the ETC 
interactions. Because our mechanism is essentially 
group theoretical, involving the flavor symmetry  prop- 
erties of  the ETC and flavor interactions, we can hope 
to find a dynamical model  with the same structure. 
Perhaps, in this way, we can avoid unwanted inflation 
of  the ETC group. 
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