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A connection is established between the semantic theories of concurrency and 
communication in the works of de Bakker and Zucker, who develop a denotational 
semantics of concurrency using metric spaces instead of complete partial orders, 
and Milner, who develops an algebraic semantics of communication based upon 
observational equivalence between processes. His rigid synchronization trees 
(RSTs) are endowed with a simple pseudometric distance induced by Milner's weak 
equivalence relation and the quotient space is shown to be complete. An isometry 
between this space and the solution to a domain equation of de Bakker and Zucker 
is established, presenting their solution in a conceptually simpler framework. Under 
an additional assumption, the equivalence between the weak equivalence relation 
over RSTs and the elementary equivalence relation induced by the sentences of a 
modal logic due to Hennessy and Milner is established. 

0. INTRODUCTION 

In this paper we establish a fundamental connection between the semantic 
theories of concurrency and communication in de Bakker and Zucker (1982) 
and Milner (1980). In de Bakker and Zucker (1982) the authors develop a 
denotational semantics of concurrency using metric spaces instead of 
complete partial orders as the underlying mathematical structures. They 
solve several reflexive domain equations, their method essentially entailing 
the abstract completion of a metric space recursively constructed from 
metric spaces which utilize a Hausdorff distance between closed sets. (See 
Arnold and Nivat (1980) or Nivat (1979) for examples of metric topology 
applied to various problems concerning infinite words, co-CFL languages and 
the modelling to nondeterministic computations.) In Milner (1980) the 
author develops an algebraic framework for specifying and reasoning about 
processes which behave synchronously. Central to his ideas is the notion of 
behavioral or observational equivalence over processes; ideally processes 
which are in some sense externally indistinguishable short of taking them 
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apart are equivalent behaviorally and will be congruent with respect to some 
natural collection of algebraic operations. The conceptual process model 
underlying Milner's approach is the synchronization tree, an arc labeled tree 
over an event alphabet, representing the structure of the communication 
requirements of a process. 

Our intentions in this paper are twofold. First we shall establish Milner's 
rigid synchronization trees (RSTs) as a complete pseudometric space with a 
simple pseudometric distance induced by his weak observational equivalence 
relation. Second, we proceed to establish isometries between the resulting 
quotient space, considered separately with a countable and a finite alphabet, 
and appropriate metric spaces using the de Bakker-Zucker construction. As 
a benefit of these isometrics, note that one does not necessarily have to use 
the complicated notions of Hausdorff distance and the attendant machinery 
of metric space completions; as the processes of de Bakker and Zucker 
(1982) can be represented concretely as RSTs modulo weak equivalence, one 
can work directly with the trees as graphs and use a simple metric defined 
directly on the graph structure. 

While the construction in this paper allows the alphabet to be countable, 
we can prove that our metric space is compact if and only if the alphabet is 
finite. In this case it turns out that the weak observational equivalence 
relation is exactly the elementary equivalence relation induced by the 
sentences of a simple modal logic due to Hennessy and Milner (1980). The 
statement that our space is compact is exactly the assertion of the 
compactness theorem for the Hennessy-Milner logic (HML). Since the HML 
compactness theorem follows from a direct translation into first-order logic, 
this gives us an elegant but nonconstructive proof of completeness for the 
finite alphabet case. 

The rest of the paper is organized as follows: Section 1 is preliminary, 
defining the domain of trees and establishing some necessary properties. 
Section 2 presents the rigid synchronization trees of Milner and defines weak 
equivalence. The third section constructs the metric space and proves its 
completeness. The fourth section recalls the necessary definitions and results 
from de Bakker and Zucker (1982) and establishes the isometries between 
the metric spaces of this paper and those constructed using the de 
Bakker-Zucker method. Finally, Section5 establishes the connections 
between HML and our metric space. 

I.  PRELIMINARIES 

We regard a tree as a directed, unordered graph on a countable set of 
nodes with arcs labeled from an alphaber S. The graph must have the 
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obvious tree shape and arcs leaving the same node may have the same label. 
We define the set of trees ~- as follows. 

DEFINITION. S is a tree (S 6 g-) iff S is a 4-tuple S = (N,E,  I, Vo), 
where 

N 

v o C N  
E c _ N × N  

I : E--, ,F, 

is a set of vertices or nodes; 

is the root; 

is the edge relation, antisymmetric and irreflexive; 

assigns a label to each edge. 

In addition the following properties are satisfied: 

(1) all nodes are reachable from the root: Vv E N -  {vo}(vo, v) 6 E +, 
where E + is the transitive closure of E; 

(2) each node has only one ancestor: Vu, v, w C N, (u, w ) ~  E and 
(v, w) E E implies u = v. 

We say two trees are isomorphic if each can be transformed into the other 
preserving structure and labeling. 

DEFINITION. S = (N, E, l, v0) and S '  = (N', E ' ,  1', v~) are isomorphic iff 
there is a bijection f :  N--, N '  such that 

(1) f(v0) = v~ (identification of roots); 

(2) (v, w) C E ~ (f(v),  f (w) )  6 E'  (identification of edges); 

(3) V(v, w) C E, l((v, w)) = l ' ( ( f (v) , f (w)))  (identified edges have 
same label). 

When S and S '  are isomorphic, we shall write S = S ' .  
The notions of path, path length, and finite and infinite paths are the usual 

ones. We say a tree is bounded if there is a finite bound on all path lengths. 
For a tree S, the height IS[ is the length of its longest path if bounded, ~o 
otherwise. A node is finitely branching if it has finite number of direct 
descendants. A tree is finite branching if all its nodes are. We allow coun- 
table branching at any node. 

The kth cross section S (~) of a tree S is just S restricted so that no path 
has a length exceeding k. 

DEFINITION. For S ~ g-, let the kth cross section of S = (N, E, I, Vo) be: 

S(°)=-({Vo},O,O, Vo),  S (k )=(Nk ,Ek ,  lk, Vo), k>/1 ,  



METRIC SPACES AND SYNCHRONIZATION TREES 105 

where 

E k = {(v, w) ~ E lthe path@o, w) has length at most k}; 

N~ = {v E N lthe path (v o, v) has length at most k}; 

I k = I IEk. 

EXAMPLES. (1) S (°) is just the root, which we call nil. 

a , ~ ,  have S (°) S(1) ~/~b , (2) For S =  we =nil ,  = 

e 

= , b and S ~ = S f o r k > / 3 .  

We have the following relationship between a ttzee and its cross sections. 

LEMMA 1.1. For any S = (N,E,  l, Vo), let {S (k) } be the set of all its cross 
sections, k >>. O. Then 

(a) Vk>/O,E k~_Ek+l ,andE=( ._)E  k, 

(b) Vk>/O, XkC_Ng+l, a n d N = U N k ,  

(c) Vk >/O, l k ~ lk+ 1, and l = U lk (viewing l k as a set oforderedpairs 
(ek, a) from E k and S). 

Proof (a) Ek~_Ek+ 1 directly from the definition. Now clearly E k ~ E  
for all k so 0 Ek ~ E. Let (v, w) ~ E. Then there is a path (v 0, w) in S and 
therefore (v, w ) E  E k for any k not less than the path length of (v 0, w). 
Therefore (v, w) E U E~, whereby E ~ U Ek. 

The proofs of (b) and (c) are similar. 
This lemma suggests that any tree can be represented as a union of its 

cross sections, leading to the 

DEFINITION. Let {Sg} ~_ g-. {Sk} is a cross-sectional sequence (written 
(Sk) an XSS) iff 

(1) each S k is bounded, say with maximum path length of b(k); 

(2) Vm >/k, S~2 ~ = S~ ~k~. 

The last condition ensures that the b(k)th cross sections of S k, Sk+ 1 ..... are 
all isomorphic, that is, only the leaves of S k with path length b(k) can be 

643/57/2 3-2 
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extended to form Sk+ 1. For convenience, in any sequence (Sk), we shall take 
S o to be the nil tree and b(0) = 0. 

DEFINITION. Let (Sk) be an XSS. The union tree of (Sk)  is 

U Sk = (U Nk, ~J Ek, U lk, VO). 

We collect some facts about XSS which will be useful later. 

LEMMA 1.2. Let  (Sk) be an XSS. 

(a) k <<. n implies b(k) ~ b(n), 

(b) Sk = S~ ~k', 

(c) V m > ~ k V j ~ b ( k )  S ~  ) = S ~  j), 

(d) (.J S k is a tree and ((.J Sk) {b~k)) = S k. 

Proof. Straightforward. 

We wish to define two additional operators on trees, prefixing and joining, 
enabling us to create complex trees from simpler ones. 

Notation. S[v/w] means the tree S with the node w replaced by v. 

DEFINITION. For S = (N, E, l, v0) and a E Z let 

aS = (N~.) {l) a},E ~) {(Ua, /)0~}, l[..) {((Ua, UO) , a~}, Ua) , 

where v a ~ N. We call aS a prefixed (sub)tree. 

DEFINITION. We say {Sk} are disjoint i f  {Nk} are pairwise disjoint. 

DEFINITION. 

of {Sk} is 
Let {Sk} ~ g-, S k = (N k, E k, I k, Vo,k), {Sk} disjoint. The join 

s k :  0 sk[vo/Vo, ]. 

For k finite, for example 2, we often write ~ S k as $1 + $2. So S + T is the 
tree obtained by joining S and T at the root. We view the expression S + S 
to be well defined, representing the join of two disjoint isomorphic copies of 
S. We represent by S n the joining of n copies of S for l~<n~<eg. In a 
similar spirit, S + T will always be taken to be well defined through an 
inessential relabeling of nodes if necessary. 

LEMMA 1.3. aS and ~ S k are trees. 
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Proof. Clear. 

Finally we establish another representation of an arbitrary tree. 

LEMMA 1.4. For S E g-, there is a set {aiSi} c_ g- such that S = ~ aiS i. 

Proof Clearly we can represent S as the join of its prefixed subtrees. 

For convenience we shall often represent our tree algebraically. For 
example, ab + ac represents the tree with two paths ab and ac joined at the 
root. The expression a(b + c) represents the tree with a emanating from the 
root leading to a fork with labels b and c. Here juxtaposition binds tighter 
than joining, unless overruled by parenthesization. 

As will be evident shortly the structures of interest to us are actually 
isomorphism classes of trees, structures with unlabeled nodes. For 
convenience we shall hereafter refer to such structures with labeled arcs and 
unlabeled nodes as trees and to a tuple (N, E, l, v0) as a representation of the 
particular tree in mind. 

2. RIGID SYNCHRONIZATION TREES AND WEAK EQUIVALENCE 

In the spirit of Milner (1980) we regard a rigid synchronization tree 
(RST) as the unfolding of a state transition graph of a nondeterministic 

b 

machine. For example, given the transition system ~ - - ~  

we associate the RST b / N a  . Note that state names are no longer 

important; the tree nodes are nameless. The arc labels are chosen from an 
event alphabet Y', reflecting the communication requirements of the process 
from its environment. We depart from Milner (1980) and allow the nodes to 
have countable branching. 

Nondeterministic choice exists in the tree ab + ac. Given an a, the 
machine must choose between two paths, arriving at either a state where 
only b is acceptable or one in which only e is. Now consider the tree 
a(b + e). If  viewed as acceptors, both of these trees are equivalent, accepting 
the language {ab, ac}. But are they equivalent behaviorally? After one step 
the second tree is in a state where either a b or c is acceptable, and so it 
never deadlocks on input from {ab, ac}. However, the first tree can deadlock 
on either ab or ac; after a has been consumed it will be in a state waiting for 
a specific event and will fail if the environment offers an incompatible input. 
Note that nondeterministic trees do not necessarily "choose correctly"; they 
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react only to the current event, not to future ones. Since the trees behave 
differently on inputs from {ab, ae}, it is reasonable to maintain that they are 
not equivalent behaviorally. 

Several different equivalence relations have been proposed to describe 
behavioral or observational equivalence (Milner, 1980). The relation 
appropriate for this paper is the weak equivalence relation and is defined as 
follows: 

Notation. When we write S - + a T  we mean there is some a transition 
from the root of S leading to T, or that a T  is a prefixed subtree of S. 

DEFINITION. For S, T ~  g-, S is weakly equivalent to T, S - w  T, iff 
V k S  --k 7", where the equivalences ----k are defined as 

(1) S = o  T for all S, T; 

(2) S =k+l T 

¢=> Va E Y~ VS' ~ g-, S--* a S '  ~ ~T'  ~ g- ~T-~ ~ T '  and S '  ~k T '  and 

Va E Y~ VT'  C U, T--* a T '  ~ 3S'  ~ g" ~S _~a S '  and T '  =k S ' .  

We write S -= T for S :-w T. 

An alternate way of presenting (k + 1)-equivalence which we shall find 
convenient is 

S --=k+l T<:~ for every prefixed subtree aS '  of S, there is a prefixed 

subtree aT '  of T such that S '  --=k T '  (and vice versa). 

EXAMPLES. (1) (ab + ae) ~ a(b + c) since they are ~2. To see this, note 
that nodes are --1 if the set of events which can occur next are the same. The 
tree b + c is E 1 to either b or c. 

(2) Let Ak be the tree consisting of a single path of length k, labeled 
entirely with a's: aa ... a. Let A ,  = ~2 Ak,  k ~> 1. So A ,  has arbitrarily long 
finite paths of every length and a countably branching root. Let A,o be the 
infinite tree aa .... and let A~ = A ,  + A~,. Note that for all k, A ~ ) =  A ~,k) as 
each kth cross section contains one path each of lengths 1,..., k -  1 and a 
countable number of paths of length k. We claim that Ao~ - -kA ,  for all k 
and thus A o~ =- A , ,  as can be seen from 

LEMMA 2.1. I f  S ~g) = T ~k) then S - k  T. 

Proof. Induction on k. For k = 0 the result is immediate. 
Assume the lemma holds for k. 
Suppose now S~k+l)= T tk+l). As the prefixed subtrees of S and T are in 

1-1 correspondence, we can write S ~k+l) = ~ aiS} k) = ~ aiTl  k) = T ~k+l), 
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where SI k) = TI k). Therefore, by the induction hypothesis we have S i =-k Ti. 
Clearly now we have S--k+l  T. 

We remark that the converse is false: a + a = a, but not isomorphic. 
Finally, we collect some easy and useful facts. 

LEMMA 2.2. (1) S =_k T implies Yj <<, k, S =-] T, 

(2) S ~k T implies Vj>/k, S -~ jT ,  

(3) S--k S~k) --kS~"), n >~k. 

Proof Straightforward. 

3. THE METRIC SPACE OF R S T s  

In this section the completeness of the metric space on g- induced by the 
weak equivalence relation is demonstrated. For topological definitions and 
related items, the reader is referred to Dugundji (1966). 

We define the metric on g-. 

DEFINITION. For S, T C g-, let dw(S, T) = 2-k, where k --- maxj S - j  T. If 
the maximum does not exist, we take k to be infinite. 

As k-equivalence examines no nodes which are a distance greater than k 
from the root, we see that the larger value of k, the more alike the two trees 
are, the smaller the value of d w. 

EXAMPLES. (1) dw(a + b, a) = 1 since S ~1 T, 

(2) dw(a + ab, a) =- ½ since S -1 T but S ~2 T, 

(3) d w ( a + a , a ) = d w ( A . , A ~ ) = O .  

LEMMA 3.1. (~-, d~) is an ultra pseudometrie space. 

Proof. (1) dw(S, T) =- 0 ¢:, Vk, S =--k T¢:~ S =- T (pseudo), 

(2) dw(S, 70 = dw(~, S), 
(3) dw(S, T) <~ max(dw(S, U), dw(U, T)) (ultra). Let dw(S, T) = 2 -k 

and suppose (wlog) d~(S, U) < 2-k. Then S --k+ ~ U. Since both S ------k U and 
S --k T, we have U =--k T. However, U ~k + l T as S ~k + I T. Therefore, 
dw(U, T) = 2-k  

We define the notions of Cauchy sequence and limit. 

DEFINITION. (Sn) is a Cauchy sequence (CS) iff 

Vk ~ 0, 3N Vm, n >/N, Sm ~--k Sn" 
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DEFINITION. S is a limit of a CS (S. )  (written S E Llim S.~) iff 

V k ) 0 ,  3 N V n ) N ,  S ~ k S , .  

Remarks. (1) The above definitions are equivalent to the more usual 
presentations, for example, Ve > O, 3N Vm, n >/N, dw(gm, Sn) < ~. 

(2) We must deal with equivalence classes of CS limits. Recall that 
(g-, dw) is a pseudometric space and if S ,  = Z ; = I A ;  (for example S 3 = 

a +aa +aaa), we have that (S~) is a CS, and for all n A ,  =_~ S,==_~A~, 
and, therefore, {A,, A co } _ j i m  S , j .  

Proceeding to the completeness proof, we will establish that any XSS (S, )  
in (if', dw) is a CS with a well-defined constructible limit, the union tree: 
U S,  c j i m  S , j .  An operator on trees, ~ ,  yielding a fully expanded coun- 
tably branching tree in a sense made precise below, will be defined and 
shown to possess the following spcial properties: 

(1) weak equivalence is the same as isomorphism, that is, 

c~(S) = ~ (T)  ~ c~(S) - ~ ( T )  for bounded S, T, 

(2) for any bounded S, S =- T(S) .  

Now given a CS (S,) ,  ~(S~ ")) will be shown to be an XSS (due to (1)) and, 
therefore, possesses a limit which by (2) is the same as the limit of (S~); the 
completeness of (g-, dw) follows directly. 

LEMMA 3.2. I f  (Sn) is an XSS, then it is also a CS in (g-, d~). 

Proof. Recall (S~) is a CS <~ Vk/> 0, 3N Vm, n >~ N, Sm =k Sn. We have 
two cases: 

(a) (S , )  is bounded (i.e., {b(n)} is bounded). Then after some N 0, 
Vm, n>/N o, S ~ = S , .  Then for any k, S~mk)=S(f ~ and so Sm=-kS~ 
(Lemma 2.1). 

(b) (S , )  is not bounded. Choose N such that b(N)>~k. Then as 
S __~(N)) (Lemma 1.2b) we have Vm, n>/N,  S~  ) S~ k) (Lemma 1.2c) N - -  ~N 
and, therefore, S m =--k S, (Lemma 2.1). 

THEOREM 3.3. Let (S,)  be an XSS. Then L_limS,~ ex&ts and 
U Sn 6Llim S~z. 

Proof. U S,  exists by Lemma 1.2d. Now as (U Sn) (b(m)) = am 

(Lemma 1.2d) we have U S,~b(m)Sm (Lemma 2.1). As in Lemma 3.2 we 
have two cases: 
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(a) (Sn) is bounded. Clearly 0 S .  = S m for some m and, therefore, 
U Sn ELlim S,~. 

(b) (S,)  is unbounded. We establish 

Vk ~ O, 3N Vm >/ N, U S ,  =-k Sm. 

Given k >/0 find N ~> 0 such that b(N) ~/k. Now 

Vm >/N, U Sn ~b(N) Sm and SO U Sn ~---k Sm" 

Our c~ operator is defined as: 

DEFINITION. For any bounded tree S, let ~ (S)  be 

where IS] ~° is understood to be co copies of S joined at the root. 

To aid the intuition, ~ (S)  can be constructed for any bounded tree S as 
follows: 

(1) mark all leaf nodes as ready; 

(2) repeat until the root is marked ready: 

if all of the descendants of a node are ready, 
then replace each prefixed subtree of the node with co copies 

of the subtree and 
mark the node ready; 

F ° r e x a m p l e ' i f S = ~ b ' t h e n ~ ( S ) = ~  ' ' ' o  

where ~ = , ~ ~  

LEMMA 3.4. For S bounded, ~ ( S )  is a tree. 

Proof. Straightforward. 

The utility of Y-trees becomes evident in the following theorem and 
corollary in which weak equivalence is seen to be the same as isomorphism. 

THEOREM 3.5. Let C = ~ ( S )  and D = ~ ( T )  for some bounded S, T. 
Then C ~ k  D ¢> C (k) = D (k). 

Proof. (~)  Lemma 2.1. (~)  Induction on k. 
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Case k = O. Immediate. 

Assume for k. 

Case k + 1. Suppose C-----k+1 D. Partition the prefixed subtrees of both C 
and D into ( k +  1)-equivalence classes. As C--k+~D, these equivalence 
classes of C and D are in l -1  correspondence. Now consider a representative 
of any (k + 1)-equivalence class of C and a corresponding representative of 
D; they will be of the form aC' and aD', where C' =--k D'. By the induction 
hypothesis C'~k)=D '(k) and so (aC')(k+l)=(aD') (k+l), or the represen- 
tatives of corresponding (k + 1)-equivalence classes of prefixed subtrees have 
(k + 1)-isomorphic cross sections. Therefore, the two trees obtained from C 
and D by the joining of their (k + 1)-representatives are (k + 1)-isomorphic. 
As C and D are bounded ~-trees, every representative prefixed subtree of C 
or D contributes co copies of itself to C or D. So the number of subtrees 
represented by any class is ~o. Therefore, we have C ~k+ 1)= D(k+ 1). 

COROLLARY. Let C and D be as in Theorem 3.5. Then C - D ¢:~ C = D. 

Proof As C, D bounded, just take k as the section height of C or D. 

The last result we need prior to proving completeness is 

LEMMA 3.6. For S bounded, S - ~ ( S ) .  

Proof We show Vk S--k ~ ( S )  by induction on k. 

Case k = 0. Immediate. 

Assume for k. 

Case k + 1. Let S = ~. aiSi, ~ ( S ) =  [~. ai~(Si)] °'. 

Now S ~ g + I ~ ( S ) ¢ >  VaVS',  s - ~ a s '  implies ~C', ~ ( S ) ~ ° C '  and 
S'  =--k C', and vice versa. If aiS i is a prefixed subtree of S, then ai~(Si)  is a 
prefixed subtree of ~(S) .  We have S i ~-k ~ (S i )  by the induction hypothesis 
and so the required C' exists. A similar argument for the reverse direction 
establishes the lemma. 

We are now ready to prove 

THEOREM 3.7. (~,  dw) is complete. 

Proof Let (Sn) be any arbitrary CS in (g-, dw), that is, 

Vk ) O, ~N Vm, n >~ N Sm ~k Sn. 

By passing to a subsequence if necessary, we can assume Vk, Vn ~ k, 
Sk=--kS ~. Consider now the sequence (S~kk)). Clearly (S(k k)) is a CS as 
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S(k k'=-k ~',~"', gn ) k .  Since S~k k, is bounded, S¢k k,-- c~(S(kk' ) by Lemma 3.6. 
Therefore, (S(k k)) has a limit iff (~(Stkk))) does. Since e ( k ) -  ~k+l)  Ok =k°h+l  we have 
~(~(k)'~= ~:~(K,(k+l)'~ ~(s(k)) (k) ~(s(k+ll))(k)  by Theorem3.5. Wk J--k~Wk+~ J SO that = 
Since ~(S(kk)) (k) = ~(S(k~)), we have that (~(S(kk))) is an XSS and has a limit 
(Theorem 3.3). 

Finally, we observe that by construction (Sk) has the same limit as (S(kk)), 
completing the proof of the theorem. 

At this point we would like to remark that our construction not only 
incorporates countably branching trees, but requires them for our space to be 
complete. That arbitrary finite branching is not enough can be seen from the 
following. Recall that A~ is the tree aa ... a ( j  times). Now suppose that 
S --k Aj for j < k. Then all paths in S must necessarily have length exactly j. 
For the case when j = k, all paths in S must have length at least j. 

Now suppose S -=k+~ A , ,  where we now write A ,  -- ~ aAj f o r j  a natural 
number. Then for all j ~< k there is a prefixed subtree aS] of S such that 
Aj-=k Sj.. By the above, each Sj is different, establishing 

LEMMA 3.8. I f  S=-kA , ,  then S has at least a k-way branching root. 

THEOREM 3.9. Without countable branching, (g-, dw) is incomplete. 

Proof (AI ,A  ~ +A 2 .... ) is a finitely branching CS with limit A , ,  which 
by the lemma is not equivalent to any finitely branching tree. 

4. AN ISOMETRY WITH A METRIC SPACE OF DE BAKKER AND ZUCKER 

En route to their denotational semantics of concurrency, de Bakker and 
Zucker wish to find a metric space (P, ds) which solves 

P ~  {po/U ~ ( z  × P), (4.1) 

where 3 c refers to the set of all subsets closed with respect to d B. A space 
which works is the one obtained by completing the space (L)P , ,  L.)d,), 
where: 

DEFINITION. We let (P , ,  d , )  be a series of metric spaces defined by 

P0 = {Po}, 

P,+l = {P o IL - )~ (S×P , ) ,  

do(P, q) = 0 

Po is the nil process, 

9 is the power set operator, 

for all p, q E P0, 
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and 

d.+l(p ,q)=O for P = q =  Po, 

= 1 for P = P0 or q -~ P0, but not both, 

= max(supp,~p q'~qinf d'.+ l(P', q'), q'~qsup infp d'.+ l(P ' ,  q '))  

for both p, q ~_ 22 × P . ,  

where 

d'n+l(p',q')=O 

= 1  

= d.(p", q")/2 

= 1  

for p '  = q' = Po, 

for p '  = P0 or q'  = P0, but not both, 

for p' = (a, p"), q' = (b, q"), and a = b, 

for p' = (a, p"), q' = (b, q"), and a 4: b. 

Note that d n + 1 is the Hausdorff metric distance between the subsets of P ,  + 
induced by the metric d~,+ 1 on the points of Pn + 1. 

DEFINITION. Let (P, dB) be the completion of (U P . ,  U dn). 

THEOREM 4.1 (de Bakker and Zucker, 1982). (P, de) satisfies (4.1). 

We wish to establish isometrics between spaces of RSTs and spaces 
constructed under the de Bakker-Zucker (BZ) method above. If  22 is coun- 
table their solution space is quite large, for example, c a r d ( P l ) =  2 ~' and 
card(P~+l) = 2 card-p"). So in P2, for example, processes exist which exhibit 
uncountable nondeterminism, such as the process {(a, Q)] Q c P1}. This 
necessarily precludes any isometry with an RST space; our construction, 
because it does not admit uncountable nondeterminism, leads to spaces with 
smaller cardinality. However, isometrics do exist between two important 
RST spaces and appropriate BZ constructions: the space (g- /=,  dw) with 22 
finite and the same space with 22 countable (the space of Section 3). For the 
finite case the appropriate BZ construction is the obvious one over a finite 
alphabet. It turns out that this construction also satisfies the domain 
equation (4.1) over finite 22. For the countable case we must restrict the 
power domain operator used in constructing the spaces P~ to the collection 
of all countable subsets. This is sufficient to induce an isometry as now, no 
P ,  contains processes with uncountable nondeterminism. 

DEFINITION. (1) Let (P~,, d , )  be like (Pn, d , )  except 22 is understood to 
be finite. Let (P ' ,  de) be the completion of ( 0  P',, 0 dn). 
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(2) Let {P~', d,} be like {Pn, dn}, where 3 ( . )  is understood to be the 
collection of all countable subsets. Let (P",ds}  be the completion of 

(U P", U d.). 

The rest of this section will establish the isometries and investigate the 
domain equation in each context. We will establish the isometries through 
the quotient space of reduced trees. After the definitions we first show that 
bounded reduced trees exist and are unique, justifying their use as a quotient 
space. 

DEFINITION. For any trees S and T, S arbitrarily extends T, S E T, just 
when S can be embedded into T at the root, preserving structure and 
labeling: 

S E T ¢ > v  s for any representations of S and T, (Ns ,Es ,  l s ,vs)  and 
! (N  r ,  Er,  lr, vr), 

there is an injection 0: Ns ~ Nr  such that E)_c E r and lrlE's = ls,, 

where {u, v} E E~ ¢> {4-1(u), O-l(v)} ~ E s and similarly for l~. 

Assume henceforth for any tree S we have a fixed representation in mind. 
Whenever S t-- T via 4, we refer to 4 as an induced injection between (the 
nodes of) S and T. If 4(u) = w then we say the nodes u and w are associated; 
we also refer to the subtrees rooted at u and w as associated. We say that 4 
respects weak equivalence, or that 4 is respectful if it has the additional 
property that for any associated subtrees S '  and T'  we have S '=- T '(k), 
where k =  IS'I. So, for example, if S -  = r and S E  T via 4, ~ is respectful if 
associated subtrees are equivalent. 

DEFINITION. For bounded S and T, S is reduced with respect to -= and E 
iff whenever S - T we have S__ff T via some induced injection respecting 
weak equivalence. 

EXAMPLE. Consider the weakly equivalent trees S = Y~ aS k for k ) 1 ,  
where S k=  1 + ... + k and T =  S + aS 1. It is easy to see that S and T are 
equivalent under E.  However, S is reduced while T is not. (No injection 
from T to S establishing the V--relation respects equivalence.) 

We turn now to establishing the existence and uniqueness of reduced trees. 

THEOREM 4.2. (Existence of reduced trees). For bounded trees, within 
each weak equivalence class there exists a reduced tree with respect to E.  

Proof. Clearly within any weak equivalence class all trees have the same 
height. So we proceed by induction over the height of the class. 
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Case h = 0. Immediate, as the only tree in this class is nil. 

Assume for h. 

Case h + 1. Let IS I= h + 1, where S = ~ aiS  i. Let S'  be the tree with 
exactly one prefixed reduced representative (as guaranteed by the induction 
hypothesis) for each equivalenc e class represented by the prefixed subtrees of 
S. Clearly S _= S'. Now for any T ~  S' ,  the equivalence classes represented 
by the prefixed subtrees are the same. By construction S' has precisely one 
representative from every class. To show S' is reduced, we construct an 
injection 0 respecting equivalence by first associating an equivalent prefixed 
subtree in T for every prefixed subtree in S' ,  say aT"  for aS",  and then by 
letting ~ assume the values of the equivalence respecting injection 0" between 
S" and T" guaranteed by the induction hypothesis, that is, (~lNs,, = (/'. 

To demonstrate uniqueness we need some preliminary results. 

LEMMA 4.3. I f  S is bounded and reduced then all of  its prefixed subtrees 
are pairwise nonequivalent. 

Proof  Suppose not. Let T be S with only one prefixed subtree of S for 
each equivalence class represented by the prefixed subtrees of S. Clearly 
T - S ,  but no --respecting injection between S and T can exist, 
contradicting the hypothesis that S is reduced. 

LEMMA 4.4. I f  S is bounded and reduced then so are all o f  its subtrees. 

Proof If suffices to consider just prefixed subtrees. Let aS'  be any 
prefixed subtree of S and let T' be a reduced tree equivalent to S' ,  as 
guaranteed by Theorem 4.2. Let T be the tree S with the prefixed subtree aS'  
replaced by aT' .  Since S is reduced, any --respecting injection 0 between S 
and T must associate S'  and T' by Lemma4.3. Furthermore as T' is 
reduced, for any Q' = T'  there is an induced injection 0' between T' and Q' 
respecting equivalence. So now O]Ns, o O' is an ---respecting injection 
between S'  and Q'. As Q' is arbitrary, S' is reduced. 

THEOREM 4.5 (Uniqueness of reduced trees). I f  S and T are bounded 
and reduced then S ~ T implies S = T. 

Proof  By induction on the heights of S and T. 

Case h = O. T h e n S = n i l = I :  

Assume for h. 

Case h + 1. Let S =--T and both be reduced, where S =  Y~ aiS i and 
T =  ~. b iT  i. By Lemma 4.4, S i and Tf are reduced for every i. Since {aiSi} 
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and {b i Ti} are pairwise nonequivalent by Lemma 4.3, the sets are necessarily 
in a 1-1 correspondence under - .  Now by the induction hypothesis the 
elements under the correspondence are isomorphic. Therefore S = T. 

DEFINITION. For any bounded S, let ~ ( S )  designate the reduced tree 
equivalent to S. Let R n denote the set of all reduced trees of height at most n. 
Let ( ~ ,  dw) be the completion of ({,_) R n, dw). 

EXAMPLES. ( ] )  S = a + a, ~ ( S )  = a, 

(2) S = a + a b + a c + a b , ~ ( S ) = a + a b + a c ,  

(3) S = ab + a(b + b), ~ ( S )  = ab. 

We note the follows consequences of the existence and uniqueness 
theorems. 

COROLLARY. (1) S--  3?(S)for S bounded; 

(2) (~/----, dw) = (~-/-=, dw). 

Proof We prove (2). Since ~ is a closed subspace of g-, we have 
immediately ( ~ / - , d w )  C (g-/-,dw). Now let S C  g-. Recall that 
S = (,J S(n); we have S (n) _= ~ ( S  In)) by (1). Therefore, (3(S{~)))  is a CS in 
(3~/=-, dw) and has some limit T C ~ .  Clearly, T - S .  

With the reduced trees in hand we can proceed to establish the isometrics. 
We first must verify 

THEOREM 4.6. (g-/=--, dw) is complete when 22 is finite. 

Proof The results of the last section can be quoted in toto as they only 
require card(S) ~< ~o. 

As the proofs for establishing the isometrics for either cardinality of S are 
identical we let g~, ~ ,  P, etc., stand for both spaces in what follows. Since 
( ~ / - ,  dw)= (g-l==-, dw), to demonstrate the isometry between (g - / - ,  dw) 
and (P, d~) it will suffice to establish an isometry between (U R~, dw) and 
({,.I P~, d~) as then their completions, (5~/_--, dw) and (P, riB), will necessarily 
be isometric and thereby our desired result follows. 

DEFINITION. Let 0: U Rn-~ {,,) Pn by O(nil) = Po; ~(~ aiSi) = 
{(ai, O(Si))}. 

THEOREM 4.7. q) JR, is a bijection between R, and P,. 

Proof Induction on n. 

Case n = 0. Immediate. 

Assume for n. 
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Case n +  1. ~ is 1-h  Let S, TERn+ I , and suppose ~(S)=O(T ). 

Now if ~t(S) = O(T) = P0, then by the induction hypothesis, S = T = nil. 
Suppose now that ¢(S)=O(T)v~p0. Then S = Y ~ a i S i  and T = ~ b s T  s for 
Si, T i E R s .  

• . {(a i, ¢~(S/))} = {(ba., ~i(Tj))}, 

.'. V i, 3j(ai, O(Si) ) = (bj, ~i(Tj)) and vice versa, 

. . by the induction hypothesis ¥i, Sja iS  i = b~Tj and vice versa, 

.'. ~ a i S t - Y ~ b j T  s and, as S and T are reduced, we have S = T  by 
Theorem 4.5, 

. ' .  ~b is 1-1. 

is onto: Let pEP~+~. If P = P o ,  choose O-~(p)=nil .  Else 
p = {(a/, p/)}, where Pi E P,  and card (p) ~< co. By the induction hypothesis 
~i is onto Pn. Denote by qi-l(pi) the unique (4 is 1-1) element of R,  such 
that ~(~-m(p/))=Pi.  Let ~ l ( p ) =  y~ ai~-l(p,) .  Because ~ a(pi)ER~ we 
have a /~- l (p / )  E R~+ 1 and as card({ai(b-l(pi)}) <. 09 we have # - l (p )  E g-. 
It remains to show ~-a(p) is reduced. All prefixed subtrees of gi-l(p) are 
mutually nonisomorphic, else then we would have ai(~ l (pi )= ajO-l(pj) for 
i#=j, which means (a;, Pi) = (aj, pj), a contradiction. As each prefixed 
subtree is reduced, each represents a different equivalence class 
(Theorem4.5). For any S - # - ~ ( p )  a respectful injection can easily be 
constructed. Therefore, ~- l (p )  E Rn+ 1 . Furthermore, ¢i(O-l(p)) = 
{(ai, Pi)} = P, "" ~ is onto. 

COROLLARY. () is a bijection between 0 R .  and 0 Pn. 

THEOREM 4.8• 0 is an isometry between 0 Rn and () pn. 

Proof. We shall establish that VS, T E R n ,  dw(S,T)=dn((b(s),O(T)) 
from which the conclusion follows. We proceed by induction on n. 

Case n = 0 :  dw(S ,T)=O since S = T = n i l  and do(O(S),O(T))= 
do(Po, Po) = O. 

Assume for n. 

Case n + 1: we shall establish 

V S, T E R,+ ~, dw(S, T) = 2-k ¢¢. d,+ l(O(S), ~(T)) = 2 -k 

We let S = ~ aiS i and T =  Y~ ajT s. 
Induction on k. 

Case k=O.  d w ( S , T ) = O v > S = T  (Theorem 4.5) ¢>~(S)=~(T)¢> 
dn+ 1(~(S), O(T)) = 0. 
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Assume for k. 

Case k + l .  We know dw(S,T)=2-(k+l)<~>S=--k+lT and S~k+2T .  
We claim that S=k+lT¢:>d,+l((J(S),  0(T))~<2 -(k+l). If the claim is 
established, then the induction and theorem follow as 

dw(S , T) = 2 - ( k + l )  <=> 2 -(k+2) < d.+l(O(S), O(T)) <~ 2 - ( k + l )  

<:> d,+ l(0(S), 0(T)) = 2 -(k+ 1). 

The first inequality above arises from the claim and the fact that 
S ~k+2 T. It remains to establish the claim• 

Claim. S ~-~-k+l T<=> d.+,(O(S), O(T)) ~ 2-(k+') 

Proof (=>) S==-k+ l T ~  Va VS'S-+a S '  => 3 T ' T ~  a T' and S'  -----k T' and 
vice versa; 

• . d.((~(S'), O(T')) <. 2-k  by the induction hypotheses for n and k, 

• • d',+l((b(aS'), O(aT')) ~ 2 (k+l), 

• . i n  f d ' + , ( O ( a S ' ) ,  O(ajrj)) ~ 2 -(k+ ') 
J 

Since S ~k+l T, Vi infj d',+l((b(aSi ), O(ajTi) ) ~ 2 -(k+ ' ) ,  

we have sup infd', l((b(afSi), O(ajTj)) ~ 2 -(k+l) 
i j + 

A similar argument establishes supj inf i d',+ 1(', ") ~< 2-(k+ 1), 

• . d . + l ( O ( S  ), O(T) )  ~ Z -(k+') 

( ~ ) Suppose now d,+l(•(S), O(T)) ~< 2 -(k+l). Then 

sup inf d'+ l(O(aiSt), 0(bj. Tj.)) ~< 2 -(k+ 1), 

• ". Vi, ~jd'~+l(O(aiS,), (b(bjTi)) ~ 2 -(k+l), 

. ' .  Vi, 3j a; = bj and d,(O(Si), O(Tj)) ~ 2 k. 

By applying the induction hypotheses for n and k we have 
dw(Si, Tj)~< 2 k and so it follows Si=- k Tj. Therefore, one half of the 
definition of (k + 1)-equivalence is satisfied. We obtain the other half from 
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supj inf i d" + 1(., .) ~ 2 -  (k+ 1). This completes the proof of the claim and the 
theorem. 

Let us consider now the relationship of (P' ,  dB) and (P", d~), the spaces 
constructed over finite and countable alphabets, respectively, to the domain 
equation (4.1). In de Bakker and Zucker (1982), ~ was arbitrary and, 
therefore, we can say (P' ,  dB) solves (4.1) for finite •. As for (P", dB) the 
construction took only countable subsets at each stage. Consider the 
following CS in (P", d~): 

Xo={Po}, X,+I={Po}U{(O,X'),(1,X')IX'EX,}. 

Informally we may think of X n as the set of all sequences over {0, 1 } with 
length at most n. Via the isometry we associate with each Xn the tree S,  
consisting of each sequence joined at the root, for example, $ 2 =  
0 + 1 + 00 + 01 + 10 + 11. As representatives of j i m  S,~ in (~" / -= ,  dw) we 
may choose Y' S,  or (more judiciously) the tree consisting of just the join of 
all the finite sequences. Both are countably branching trees. However, the BZ 
construction has a specific limit representative in mind, the one closed with 
respect to d~, which gives for lira X,  the uncountable set of all finite and 
infinite sequences. (Note the countably branching tree suggested by the 
isometry is weakly equivalent to the limit representatives above.) We feel the 
space of reduced trees will satisfy a domain equation like (4.1) given a 
suitable extension of the notion of reduced trees to the unbounded case. 

5. A CONNECTION WITH PROGRAMMING LOGIC 

In this section we treat the case when our RSTs are labeled from a finite 
set Z. We introduce the small modal logic HML (Hennessy and Milner, 
1980). It turns out that for any trees S, T, S - T iff for every ¢; C HML, 
S ~ 0 <=> T ~ ¢;. We exploit this fact to show that completeness of the space 
(g-,dw) is a consequence of the compactness theorem for HML. This 
theorem in turn follows from the compactness theorem for first-order logic, 
so we have an alternative proof of completeness in this case. Finally, we 
observe that if our metric space is compact, then the HML compactness 
theorem follows as a consequence. 

These results are in a sense already known in model theory. The relation 
---- can be defined on arbitrary first-order structures, and the equivalence 
~ ' - ~  iff for all sentences 0, d ~ = ~  is part of the Ehren- 
feucht-Fraisse characterization of elementary equivalence (Monk, 1976); 
HML can be considered as a fragment of first-order logic and the general 
theory applied. However, the proofs in the HML case are simple and 
revealing, so we think it worthwhile to present them here. 
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The set of formulas HML is given by the inductive clauses, 

(two Boolean constants), 

imply 4 A gt ~. HML and 7 4 ~ HML (Boolean operations), 

4 E HML and a E L" imply a(¢) E HML ("possible" modality). 

The formula a(4 ) is to be read: "From the initial state (root) it is possible 
to execute the atomic action a and arrive in a state satisfying ¢." Note: Z is 
henceforth finite. 

DEFINITION (Semantics of HML). Let S be an RST over S, and let 
4 C HML. We say S satisfies 4 (S ~ 4) in case we can apply the inductive 
clauses 

S ~ tt always; 

S ~ f f  never; 

S ~ 4 A ~ '  iffS ~ 4 and S ~ ~/; 

S ~ 9 4 iffnot (S ~ 4); 

S ~ a ( 4  ) i f f ( JS ' ) (S  a S ' a n d S ' ~ 4 ) .  

We proceed to develop some facts about HML and the relation =. 

DEFINITION. The depth 14t of an HML formula is given by 

I ttr = Iff l  = o; 

1941=141; 

Let HML,  = {41141 ~ n}. 

14 A ~/I = max(141, ]~l); 

la@l  = 1 + 141. 

LEMMA 5.1. For all T, U, and n, if T =-n U then for all 4 ~ HMLn 

Proof. Easy induction on n. 

The converse of Lemma 5.1 requires a little work, and is false unless X is 
finite. 

DEFINITION. Two HML formulas 4, ~' are logically equivalent iff for all 
T, T ~  4 iff T ~  ~,. 

643/57/2-3-3 
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LEMMA 5.2. For each n, the relation of logical equivalence restricted to 
HML,  has only finitely many equivalence classes. 

Proof Use induction on n; the proof amounts to finding a DNF for the 
formulas in H M L , .  Here the finiteness of Z must be used. 

THEOREM 5.3. For any n, and any T, U, if for all 0 ~ HML n, T ~  ~ ¢:~ 
U ~ O, then T =~ U. 

Proof. Again, by induction on n. The result is clear when n = 0. Assume 
it for k, and all T ' ,  U', and ~ ~ HML k. Suppose T-~ ~ T' .  Let 

F k = {01  .... , Op} 

be the set of representatives of the equivalence classes of logical equivalence 
restricted to HML k, and suppose O 1 ..... O~ are the formulas in F k satisfied by 
T' .  Then T ~ a ( O  1A ... A O i A ~ O i +  ~ A ... A~Op). This is a formula in 
HMLk+ ~, so by hypothesis, U satisfies it too. This gives a tree U'  with 
U ~  ~ U'  and T '  and U'  satisfying exactly the same formulas in F k. Since F k 
is a complete set of representatives for logical equivalence, T '  and U'  satisfy 
exactly the same HML k formulas. By inductive hypothesis, T '  =k U'.  The 
case U--* ~ U'  is, of course, exactly similar, so the proof of Lemma 5.3 is 
complete. 

COROLLARY 5.4. S = T i f f  V 0 ~ HML, S ~ 4 ¢> T ~ 4. 

COROLLARY 5.5 ("Master formula" theorem for HML). For each n >/0 
and each T, there is a formula 4(n, 73 such that 

(i) T ~  O(n, T ). 

(ii) For any U, if U ~ O(n, 73 then U =-~ T. 

Proof. As in Theorem 5.3 let F~ be a representative system for logical 
equivalence in HML~. Given T, let 

4(n, 73=A {4 c r . I  T 4}, 

A / ~  {~# ] 4 C Fn and not T ~ 4}. 

Clearly, T~4(n ,  7 3 . Further, if U ~  4(n, 73 then U and T agree on all 
formulas in F~ and thus on HML n. The result follows from Theorem 5.3. 

THEOREM 5.6 (Compactness theorem for HML). Let F~_ HML. 1f for 
any finite A ~_ F there is a tree T such that T ~ 4 for all 4 C A, then there is 
a tree U such that for all 4 C F, U ~ 4. 
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Proof We translate (the semantics of) HML into first-order logic. For 
each a C 22 let a be a binary relation symbol, and let k be a constant symbol. 
Let L be the first-order language determined by these symbols. 

For each 4 C HML, we define a formula 4 " C  L with at most one free 
variable. Let tt* be some fixed tautological sentence i n L ,  and let f f * =  
~(tt*). Further define 

(4 A = (74)*  = 

(a(4))* = (a(x, y) A 4*(Y)), 

where y is the free variable in 4 '  (if one exists ) and x is a new free variable. 
For any set F of formulas in HML, let 

r *  = / 4 * ( k )  14 r / .  

Now F* is a set of sentences in L, and it is easy to show:that F* has a coun- 
table model if and only if F has a countable tree model. Now Theorem 5.6 
follows from the Compactness theorem for first-order logic. 

We can now prove that (g' ,  d~) is a complete metric space. Let (Tk) be a 
Cauchy sequence of trees. By passing to a subsequence if necessary, we may 
assume that for all k, T k =--k Tk+l" Now define 

r =  {4(k, l k 11, 

where the 4(k, Tk) are given by Corollary 5.5. We claim that for any U, if 
U ~  4(k, Tk), then for a n y j  ~ k, U ~  4(J, Tj). The proof is by induction on k, 
and k = 0  is trivial. Now if U ~ 4 ( k + l ,  Tk+ 0 then by Corollary5.5, 
U_--k+ 1 Tk+ 1. Since Tk+ l =--k Tk, we have U=- k T k. But 14(k, Tk) I ~ k, so by 
Lemma 5.1, U ~ 4(k, Tk). The claim follows by induction. 

From the claim, if A is a finite subset of F, then A has a tree model. By 
Theorem 5.6, F has a tree model T; that is, T ~  4(k, Tk) for all k. By the 
corollary again, we have T=_ k T k for all k; that is, dw(T, Tk)~ 0 as desired. 

Finally, we observe that from the compactness of (~-, d~) we can derive 
the compactness theorem for HML. Let F be an arbitrary set of formulas 
such that every finite subset has a tree model. Enumerate F =  {4~, 42,--}. For 
each i let A t be the set {41 ..... 4i}. Then each A i has a tree model T i. Since 
(g-, dw) is compact, the sequence (Ti) has a convergent subsequence, say to 
some tree T. It is easy to see that T is a tree model for F. (The compactness 
of (g-, dw) can be proved directly. One need only show completeness as in 
the previous sections, and the use the fact that N is finite to show that for 
any e, a finite number of e-spheres cover g-.) 
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