
Hearing Reseurch. 10 (1983) 217-226 

Elsevier 

Acoustic stimulation alters deoxyglucose uptake in 
the mouse cochlea and inferior colliculus 

Barbara Canlon and Jochen Schacht 
Kresge Hrarrng Reseurch Institute. Uniwrsrty oj Mlchi,qun. Ann Arbor, MI 4X109. L..S.A 

(Received 1 September 1982: accepted 6 December 1982) 

Deoxyglucose uptake and activities of hexokinase and glucose-6-phosphatase in auditory structures 

(organ of Corti. stria vascularis and spiral ligament. modiolar section of Vlllth nerve. inferior colliculu\) 

and non-auditory tissues (heart. kidney. liver) of the mouse were analyzed. [ 3H]Deoxyglucose was given 

as a pulse into the tail vein and uptake was quantitated by microdlssection of tissues and scintillation 

counting. Radioactivity in cochlear tissues was maximal after 45-60 min and declined with a half-life of 

30-60 min. Deoxyglucose 6-phosphate represented ca. 60% of total radioactivity (heart. inferior colliculus. 

> 80%). The ratio of hexokinase to glucose-6-phosphatase actiwty was considerably lower in the auditory 

periphery than in brain. The rank order was inferior colliculus B VIIIth nerve = heart > \tria vaacularis 

and spiral ligament > kidney a organ of Corti = liver. 

Exposure to broadband noise increased glucose utilization In all auditory structures. Uptake was 

maximally (2. to 3-fold) stimulated at moderate noise intensity (55-85 dBA). In addition. the auditor\ 

system showed two salient features: at high intensities (100 and 115 dBA) deoxyglucose uptake decreased 

from the maximum; and the non-sensory tissues of the cochlea (atria vascularis and spiral ligament) 

responded to sound parallel to the sensory structures at all levels of stimulus intensity. There were no 

effects of acoustic stimulation on serum glucose levels. serum kinetics of deoxyglucose. or deoxvglucose 

uptake into other body tissues. 
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Introduction 

Biochemical correlates of acoustic transduction have yet to be established for the 
peripheral auditory system. Paradoxically. a wide variety of noise-induced changes 
in the tissues and fluids of the inner ear have been reported without providing a 
basis for an understanding of sound processing. Effects on DNA and RNA, protein 
synthesis, enzymatic activities, permeability and transport processes may reflect 

various stages in noise-induced trauma rather than molecular events related to 
auditory transduction. Quantitative biochemical studies, notably on high-energy 
metabolites, have failed to demonstrate effects of non-traumatic exposure to noise 
(for reviews, see [6,21,24]). 

Since its introduction by Sokoloff et al. [23], the technique of ‘deoxyglucose 
trapping’ has been widely used to investigate the metabolic response of the central 
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nervous system to physiological .\timuh. In the present study we adapted the 
procedure for the auditory periphery to investigate deoxyglucose uptake in the 

cochlea and the inferior colliculus of the mouse in response to acoustic stimulation 

Materials and Methods 

Deoxyglucose uptake 

Conscious male mice (CBA, Charles River Laboratories), 4- 12 weeks of age 
( 16-25 g), were injected with a single pulse of 5 mCi Zdeoxy-D- I-[ ‘HIglucose 
(Amersham S.A., 40 mCi/mmol)/kg body wt in the tail vein (in approx. 0.2 ml 

saline per injection). Immediately after the injection the animals were placed into a 
sound-shielded ‘exposure box’. At various time intervals animals were killed, blood 

samples taken and the cochlea, inferior colliculus, kidney, liver and heart removed. 
The organs were quickly blotted on tissue paper to remove adhering blood and 

exposed to microwave irradiation (1200 W) for 15 s to arrest enzymatic activities. 
Prior to microwaving the cochlea, the inner ear fluids were absorbed with a cotton 

swab. Tissues were homogenized and aliquots taken for protein determination and 
scintillation counting. Aliquots were also processed for separation of deoxyglucose 
from deoxyglucose 6-phosphate by ion-exchange chromatography 191. 

Dissection of the inner ear 
The inner ear was hand dissected under a microscope into three components: (1) 

the ‘organ of Corti’ consisting of receptor cells, supporting cells and nerve fibers; (2) 
the lateral wall tissues, a combined preparation of the stria vascularis and spiral 
ligament; and (3) the modiolar portion of the VIIIth nerve. 

Sound exposure 

The exposure box (40 x 40 x 40 cm) had loud speakers mounted in the ceiling 
and was placed inside a soundproof room in order to obtain the lowest noise levels 

(25 dBA, 42 dBB, 56 dBC). Auditory stimulation was broadband noise (100 Hz to 45 
kHz) at intensities of up to 115 dBA. The spectrum was flat for frequencies up to 20 
kHz and attenuated approx. 20 dB between 20 and 45 kHz. Noise levels were 

measured with a half-inch condenser microphone on the dBA scale. 

Biochemical assays 
Hexokinase (ATP:D-hexose-6_phosphotransferase, EC 2.7.1.1) and glucose-6- 

phosphatase (glucose-6-phosphate phosphohydrolase, EC 3.1.3.9) were analyzed 
with the radioactive substrates, [ 3 HJdeoxyglucose and [ 3 Hldeoxyglucose 6-phos- 

phate, respectively. Deoxyglucose was obtained from Sigma (St. Louis, MO., U.S.A.) 
and [ 3H]deoxyglucose 6-phosphate was synthesized enzymatically [3]. Tissues were 
homogenized in 0.25 M sucrose/5 mM potassium phosphate, pH 7.6, and centri- 
fuged for 10 min at 12000 x g. The supernatant fraction was assayed for hexokinase 
in (final concentrations) 40 mM potassium phosphate, pH 7.6, 40 mM KU, 5 mM 

ATP, 5 mM MgCl,, 0.1 mM (10 nCi) deoxyglucose, total volume, 100 ~1. The pellet 
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was suspended in 50 mM sodium cacodylate, pH 6.5. and assayed for glucose-6- 

phosphatase with 0.1 mM (10 nCi) deoxyglucose 6-phosphate, volume 100 ~1 [7]. 

Protein [ 141 and glucose [2] were determined spectrophotometrically. 

All values of deoxyglucose uptake were calculated from the radioactivity in the 
tissue per pg tissue protein and corrected for serum levels of [-?H]deoxyglucose. 
Serum glucose levels were not taken into account as they did not change with noise 
exposure. Furthermore, a ‘lumped constant’ necessary for the calculation of absolute 
metabolic rates [23] cannot be obtained for individual cochlear tissues. Even if it 

were technically feasible to measure arterio-venous differences between the 
labyrinthine artery and the vein of the cochlear aqueduct, these would only reflect 
the combined metabolism of the whole cochlea and the vestibular system. 

Results 

Deoxyglucose uptake 

Deoxyglucose uptake in the organ of Corti. lateral wall tissues, and VIIIth nerve 
was maximal between 45 and 60 min (Fig. l), when the ratio of deoxyglucose to 

deoxyglucose 6-phosphate had also reached an equilibrium [4]. A rapid decline of 
radioactivity thereafter indicated a short half-life of the radioactive compounds in 

TABLE I 

PHOSPHORYLATION OF [sH]DEOXYGLUCOSE AND ENZYMATIC ACTIVITIES IN MOUSE 

TISSUES 

Phosphorylation (in Go): Animals received a pulse of 5 mCi [ ‘H]deoxyglucose/kg body wt and were 

killed at 60 min. Tissues were analyzed as described in Methods and deoxyglucose 6-phosphate was 

separated by ion-exchange chromatography [9]. There was no difference of phosphorylation with varying 

noise intensities. Numbers are means* S.D. with number of animals in parentheses. Enzymatic activities 

(in vitro) were determined from initial rates (l-3 or 2-5 min) as described in Methods. Ratios are taken 

from means of duplicate experiments. 

Tissue Deoxyglucose h-phosphate 

(% of total radioactivity) 

Enzyme activities 

(Hexokinase,’ 

glucose-h-phosphatase) 

Organ of Corti 56k 10 (28) 
Lateral wall tissues 63+ 9 (28) 
Inner ear fluids lo+ 7 (5) 
VIIIth nerve 76i 8 (15) 
Inferior colliculus 84_+ 4(12) 
Heart 82k 5 (18) 
Kidney 47+ 9 (13) 
Liver 29k 14 (7) 

1.6 

3.5 

6.5 

14.3 
5.5 

2.2 

1.5 

a Not determined 



the inner ear tissues. in the organ of Corti deoxyglucose 6-phosphate comprised 55?4 
of total radioactivity, in the lateral wali tissues 63% and in VIIIth nerve and inferior 

colliculuc about 80% (Table I). For comparison, heart showed a conversion to the 
phosphate of 82%. while kidney and liver were lowest (approx. 40%). Inner ear fluids 
contained almost no phosphorylated product. 

Enzymutic activities 
The activities of hexokinase and glucose-6-phosphatase of cochlear tissues were 

compared to those of the inferior colliculus, kidney, heart and liver. Assays were 
carried out with 25-50 pg of protein for 3-5 min since under these conditions 
enzymatic rates were linear with respect to both time and protein. Activities for 
inferior colliculus were typical for structures of the central nervous system, high 

hexokinase and low phosphatase activity [7]. In contrast, cochlear tissues had lower 

hexokinase levels and higher phosphatase activities (Table I). 

Effects of acoustic stimulation 
Noise exposure increased the levels of deoxyglucose in all auditory tissues 

(Fig. 1). Since the 60 min time point showed optimal incorporation, phosphoryla- 

tion, and a clearly established effect of noise, it was chosen for subsequent experi- 
ments (Fig. 2). Deoxyglucose uptake in both the cochlear tissues and the inferior 
colliculus increased two- to three-fold with auditory stimulation of moderate inten- 
sity (55-85 dBA). At higher intensities (100 and 115 dBA) the rate of glucose 
utilization decreased but still remained somewhat higher than at rest. Radioactivity 

in inner ear fluids apparently did not follow this pattern. After corrections for 
inter-animal differences in serum radioactivity the fluids contained 165 + 45 dpm at 
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Fig. 1. Time course of deoxyglucose uptake into cochlear tissues. Animals received a pulse of 5 mCi 
[ 3HJdeoxyglucose/kg body weight and were killed at times indicated. Deoxyglucose uptake was de- 
termined as described in Methods. Values are means+S.D. for 3 to 6 animals each. o, no sound 
exposure; 0, exposure to 45 dBA; A, exposure to 100 dBA white noise during the time of the experiment. 
CB57/J mice (6- I2 weeks old) were used. 
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Fig. 2. Response of deoxyglucose uptake to noise exposure. Animals received a pulse of 5 mCi 
( 3H]deoxygIucose/kg body wt and were killed after 60 min of exposure to the noise levels indicated. 
Deoxyglucose uptake was determined as described in Methods. Values are meansfS.D. from 3 to 8 
animals each. Differences between 25 dBA and 85 dBA and between 85 dBA and 115 dBA are significant 
at P < 0.001 for ail tissues. 
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25 dBA(n=7), 222& 110 dpm at X5 dBA (n-5) and 2441 127 dpm at 115 dBA 
(n = 4). 

Several parameters were tested to determine possible systemic responses to notsth 
exposure. Kinetics of [3H]deoxyglucose in the serum remained unaltered by noise 

exposure as did serum glucose levels. This was established both for early times (to 
60 s) where the peak of serum radioactivity occurred and for later times corre- 

sponding to the conditions of sound exposure (Fig. 3). 

Moreover, glucose utilization in the renal cortex, liver and heart appeared to be 
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Fig. 3. Time course of serum radioactivity and gh~cose levels. Animals received a pulse of 5 mCi 

[ 3 Hjdeoxyghtcose/kg body weight and were exposed to noise as described in Methods. For radioactivity, 

58 serum samples were analyzed for the time of 2-60 s after exposure (n = 16 at 25 dBA, n = 24 at 85 

dBA, n = 18 at 115 dBA); at later times (IS, 30,45, 60 and 90 min) 3-6 samples were analyzed at each dB 

level. Serum kinetics did not differ with noise exposure (P :, 0.5; two-way ANOVA). Data from all sound 

exposures was combined to construct the curves by polynomial best-fit. Glucose values are from 

individual samples at 25 dBA (0), 85 dBA (0) and 1 I5 dBA (A). Serum glucose levels at 60 min were 

(meansh SD. from five animals per group): lO.O+ 2.4 mM (25 dBA). 11.5 f 1.1 mM (85 dBA), and 

11.3*0.8 mM (115 dBA). 
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TABLE II 

EFFECT OF ACOUSTIC STIMULATION ON DEOXYGLUCOSE UPTAKE IN NON-AUDITORY 

TISSUES 

Animals received a pulse of 5 mCi [‘H]deoxyglucose/kg hody weight and were kllled after 60 min. 

Deoxyglucose uptake was determined as described in Methods. Numbers are means+ S.D. with number 

of animals in parentheses. 

Tissue Deoxyglucose uptake 

25 dBA 85 dBA I I5 dBA 

Liver 2.2 * 0.5 (9) 3.4+ 1.9 (11) * I.91 0.4 (7) 

Kidney 4.5 + 2.3 (8) 7.lk3.3 (ll)** 4.5 * 2.8 (7) 

Heart 16.5 i 5.2 (3) 14.lk4.9 (3) 19.1* 10.3 (3) 

Differences between 85 dBA and 25 dBA (one-way ANOVA): * 0.10 > P > 0.09: ** 0.08 > P > 0.07 

independent of the auditory stimulus (Table II). However, since the somewhat 

elevated deoxyglucose levels in kidney and liver had P values between 0.05 and 0.1. 
the data were more closely inspected. Further analysis showed that of the 11 animals 
exposed to 85 dBA, 7 gave a cluster of values indistinguishable from controls at 25 
dBA (4.9 + 1.4 for kidney; 2.2 + 0.6 S.D. for liver). Two animals each had higher 
uptake into either kidney or liver, and only two animals showed increased uptake 
into both kidney (13.1 and 9.7) and liver (6.1 and 4.5). In addition. results from two 
small groups of animals (n = 4) exposed to 70 or 100 dBA did not differ signifi- 

cantly from control values. In contrast, all values in all stimulated (85 dBA) cochlear 
tissues were higher than all corresponding control values and the significance of 
these differences was P < 0.001. 

Discussion 

Glucose utilization in the inner ear exhibited two salient features: (1) a biphasic 

response to the sound stimulus, and (2) a response to sound of the non-sensory 
tissues of the lateral wall of the cochlea. Before the significance of these findings can 
be assessed, however, it seems indicated to discuss the application of the deoxyglu- 
case technique to the inner ear. 

Deoxyglucose ‘trapping’ in the cochlea differs from that in brain in that the ratio 
of deoxyglucose 6-phosphate to deoxyglucose is considerably lower and the half-life 

of radioactivity is shorter. Such results are suggestive of a high glucose-6-phos- 
phatase activity in the organ of Corti and the tissues of the lateral wall as confirmed 
by direct enzymatic analysis. The rank order of activities in brain (high hexokinase, 
low phosphatase), kidney and liver (low hexokinase, high phosphatase) is in good 
agreement with previously reported enzymatic activities on 2-deoxy-2-fluoro-I>-glu- 
case [7]. The enzymatic pattern of the cochlear tissues is apparently closer to body 
tissues such as kidney or liver than to the central nervous system. High glucose-6- 



phosphatase activity may cause dephosphorylation and loss of deoxyglucose post- 
mortem from tissues where surgical access is difficult and time consuming as in the 
cochlea. Our technique of arresting enzymatic activities by microwave irradiation 

and microdissection of the tissues should minimize artifacts. 

It is interesting that deoxyglucose uptake was maximally stimulated at physiologi- 
cal levels of sound (55-85 dBA). The effects of noise can only be observed when 

control animals are completely shielded from ambient noise confirming for the 

cochlea what had been demonstrated for central auditory pathways [22]. Compari- 
son with previous reports of deoxyglucose trapping in the inner ear is difficult 

because of the use in those studies of tissues embedded for light or electron 
microscopy [18,19,20]. Such preparations may retain only a fraction of the trapped 

deoxyglucose and of this a significant amount may be associated with glycogen 

granules [12,18]. In their radioautographic study in the gerbil, Ryan et al. [19] 
observed sound-stimulated deoxyglucose uptake in the VIIIth nerve but not in stria 
vascularis and only marginally in the organ of Corti. Not only the differences in the 
analytical methods but also in the sound stimulus and species preclude a direct 
comparison with our data. 

Noise, particularly at high intensities, can cause stress to an animal [16]. It 
appears, however, that general systemic responses do not influence deoxyglucose 

trapping in the inner ear. Serum glucose levels and kinetics of [3H]deoxyglucose 

remain unchanged over the intensities given. Furthermore, deoxyglucose uptake into 

non-auditory tissues is not dependent on acoustic stimulation. Therefore. the ob- 
served changes seem specific for the auditory structures. 

A striking feature of glucose utilization in the auditory periphery is the decrease 

at high stimulus intensities, the reasons for which remain speculative. Sound-induced 
increase in hair cell permeability has been reported [7] but we do not find the 
increased radioactivity in the inner ear fluids that would be expected if such a 

change were occurring. Moreover, since VIIIth nerve and inferior colliculus follow 
the pattern of the cochlear tissues, a genuine stimulus-related phenomenon is 
suggested. A somewhat similar phenomenon of decreased glucose utilization at high 
stimulus intensities has been reported for the retina [ 151 and damage to retinal rods 
was suggested as the cause. The decrease we observe in the cochlea could similarly 
result from injury to hair cells and represent a noise-induced threshold shift. Hair 
cell damage due to noise trauma is well documented [ 1 l] but highly variable with 
exposure conditions and animal species. Preliminary results from our laboratory 
indicate that exposure to 115 dBA for 60 min does not induce permanent metabolic 

damage to the cochlea. 

It should be considered that a biphasic response to sound stimulation can also be 
observed in electrophysiological responses of the ear. For instance, the cochlear 
microphonic potential rises with stimulus intensity of pure tones and decreases with 
overstimulation [24]. While differences in experimental parameters (pure tones of 
short duration in anesthetized animals in eiectrical recordings; continuous broad- 
band noise and conscious animals in our study) do not permit direct comparisons it 
is nevertheless possible that the same mechanisms underly the electrophysiological 
and metabolic observations. These might include the stapedius reflex, efferent 



inhibition or adaptation [5,17]. More likely, a reduction in local blood flow and 

consequent ischemia could be responsible for the decrease. Vasoconstriction of 

cochlear vessels in response to sound of high intensities has been reported [IO] but 
remains controversial [ 11. Morphological and histological investigations under the 
conditions of our experiments are needed to test these hypotheses. 

The other salient finding of our study is the response of the non-sensory tissues of 
the cochlea to acoustic stimulation. The stria vascularis and the spiral ligament do 
not receive innervation, yet their deoxyglucose uptake is stimulated parallel with that 

of organ of Corti, VIIIth nerve and inferior colliculus. The functional role of the 
stria vascularis is presumed to be the maintenance of the endolymphatic potential. a 

resting potential crucial for the function of the auditory end-organ. Electrical 
activity of the receptor cells in the organ of Corti could alter potassium or sodium 
fluxes in the endolymph and thus provide an electrical feedback from the hair cells 

to the stria vascularis. Another explanation for the coupling of metabolism between 

the lateral wall tissues and the organ of Corti is the possible effect on blood flow of 
the sound stimulus. Control of blood flow in the cochlea may be located at the 

modiolar level where a vasomotor innervation is present 1131. Thus, if both the 
increase and decrease of glucose utilization are paralleled by increases and decreases 
of cochlear blood flow, then the organ of Corti and the lateral wall tissues should be 
equally affected. 

In summary, the increase of glucose utilization of the auditory periphery with 
moderate acoustic stimulation provides a good analogy to central auditory structures 
and their response to physiological stimuli. The specific features of glucose utiliza- 
tion in the cochlea, the decrease with high noise intensities and the response of the 
non-neural tissues require further investigation. The first phenomenon may represent 
an early stage of noise-induced trauma while the second may provide new insights 
into cochlear physiology. 
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