
Acta Astronautica Vol. 10, No. 5--6, pp. 319--330, 123 0094-5765/83 $3.00+ .00 
Printed in Great Britain. Pergamon Press Ltd. 

LAMBERTIAN INVARIANCE AND APPLICATION TO 
THE PROBLEM OF OPTIMAL FIXED-TIME 

IMPULSIVE ORBITAL TRANSFER 

FANG-TOH SUN 
National Tsing Hua University, Hsinchu, Taiwan, Republic of China 

and 

NGUYEN X. VINH~ 
The University of Michigan, Ann Arbor, MI 48104, U.S.A. 

(Received 6 January 1983) 

Abstract--To develop an efficient technique for the numerical solution of the Lambert problem, a new Lambertian 
invariant, the ratio of two invariable lengths, is proposed to replace the Gauss ratio of two areas as the main 
iterative variable in the time equation, and iteration schemes are devised for fast convergence under various 
conditions. The problem of minimum fuel 2-impulse transfer between two coplanar circular orbits under fixed time 
of transfer is then analyzed and numerically solved by the technique developed. The use of multi-revolution to 
improve the solution in the long duration case is outlined and numerically illustrated; and the two cases, wherein 
the two circular orbits are in the same direction of motion (uni-rotating), or in oppositedirections (counter-rotating) 
are distinguished and compared. Finally, by extending the study from 2-impulse to 3-impulse transfer a global 
synthesis of the various possible types of fixed time optima under different transfer conditions is briefly presented. 

1. INTRODUCTION 

The problem of minimum fuel impulsive orbital transfer 
in the time-free case has been extensively analyzed in 
the published literature, and a full account of the state of 
the art is found in the excellent treatise by Marec[1]. As 
to the fixed-time case, the Lambert problem itself is 
difficult enough to be dealt with, owing to the transcen- 
dental nature of the time equation and its many different 
forms under different conditions, inherited from the 
classical Lambert's formulation, not to say the optimiza- 
tion, which amounts to searching for the best solution 
from the set of isochronous solutions of the infinitely 
many Lambert problems. In recent years abundant lit- 
erature is found on the Lambert problem, and good 
advances have been made by Battin[2] Godal[3], Sun[4- 
6], and many others for its analysis and solution; but 
investigations on the fixed-time optimization problem are 
rather scarce, and despite of the few fine articles by 
Jezewski[7] Lion[8], Peltier[9], et al. found in the current 
literature, much analytic and computational work has yet 
to be done. 

The following consists of mainly two parts. In the 
first part, the Lambertian invariance will be briefly re- 
viewed, and a new invariant, the ratio of two invariable 
lengths, will be selected to replace the classical Gauss 
ratio of two areas as the main iterative variable in the 
time equation. To make use of this new variable, new 
forms of the time equation will be derived and 
rearranged so that they can be solved by iteration with 
fast convergence. In the second part the problem of 
optimal impulsive transfer under a prescribed transfer 
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time will be treated by the parametrization method. To 
simplify the problem the model of coplanar circle-to- 
circle transfer using two impulses will be assumed, and 
explicit forms of the optimal equations will be derived. 
The highly transcendental equations thus obtained will 
then be numerically solved by the iteration procedure 
developed, and the results graphically displayed and 
examined. After the simplest case of two terminal orbits 
in the same direction of motion, and transfer without 
multi-revolution, is fully investigated, the case of two 
orbits in counter-directions of motion as well as the long 
duration case with possible multi-revolution will be 
briefly treated. Finally, the study will be extended from 
2-impulse to 3-impulse transfer, and the variety of fixed 
time optima under different combinations of radius ratio 
and transfer time will be reviewed and summarized. It is 
hoped that the findings from this preliminary study may 
serve to supplement the existing literature on this 
difficult problem, and help to pave the way for further 
investigations. 

2. LAMBERTIAN INVARIANTS 

Consider a Keplerian trajectory between two terminal 
points Q~ and Q2 with position vectors rt and r2 from the 
field center 0. The well-known Lambert theorem 
concerning the time of flight along the trajectory may be 
written symbolically: 

At = t 2 -  t~ = f(r~ + r2, c, a), (1) 

where c is the chord length Q~Q2, and a is the semima- 
jor axis of the elliptic trajectory (a > 0), or the semi- 
transversal axis of the hyperbolic trajectory (a < 0), and 
a ---, ~o if the trajectory is parabolic. Then by Lambertian 
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invariant we mean any parameter X which is a function 
of rl + r2, c and a, i.e. 

X = X(r~ + r2, c, a), (2) 

where any one of r~ + rz, c or a may of course be absent• 
If a is absent, then X is said to be a geometric Lam- 
bertian invariant. 

Of the many Lambertian invariants found so far, the 
one of direct concern here is the quantity rpk which is 
the distance from the field center to the trajectory point 
Q,k,t where the velocity vector is parallel to the chord- 
line Q~Q2 (Fig. 1). This Lambertian invariant, discovered 
by Battin[2] from Levine's Theorem [10], has also been 
found by Sun[4] from Hamilton's isochronous hodo- 
graph [3], but it was Battin who made a good use of it in 
his symmetric transformation of the Lambert problem. 
Directly associated with this invariant, Vinh[ll]  further 
shows that the distance p from the field center 0 to the 
point D where the vector r,k intersects the chord Q~Q2 
(Fig. 1), is also an invariant, since 

p = rV~tr2 cos = + ~ / ( r l  + r2 + c)(r, + r2 -  c), 

(3) 

where OR is the range angle, which is related to the 
central angle 0 by: 
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hodograph analysis, and relevant formulas are found in 
the same paper. However, it should be noted that the 
direction of rpk is an invariant of the 2-terminal tra- 
jectory family over a fixed base triangle, but not a 
Lambertian invariant. 

To facilitate the subsequent development we introduce 
the invariant ratio: 

A = (r, + r2 + 2p)/4r, k. (5) 

It can be shown that A is related to the two basic 
Lambertian invariants a and/3 by: 

cos 2 -~(a - /3)  -- cos 2 g, (6E) 
A= 

cosh 2 ~(a - /3)  = cosh 2 g, (6H) 

where a and/3 are given by: 

r l + r 2 + l _  sin ~ r l + r 2 - l =  sm ~, (7E) 

• 20/ 41al [smh ~ 41al [sinh 2 , (7H) 

and for convenience we have put 

I 
g = ~(,~ -/3). (8) 

~ 0<=0R~ar, (4) 
OR= 2at 0 if ar=<0R~27r ' 

Equation (3) shows that p is a geometric invariant, 
independent of a; and: 

0~-0 according as 0R-~ ~r. 

The upper expressions in eqns (6) and (7) are for the 
elliptic trajectory, while the lower ones, for the hyper- 
bolic trajectory• Such a convention will be followed 
throughout thispaper  unless otherwise indicated. It will 
be seen later that this invariant ratio A will be the main 
iterative variable to be used in the solution of the Lam- 
ber problem. Besides, the ratio 

For a fixed base triangle OQ1Q2, the fixed length IP[ 
implies that D is a fixed point, and so is the direction of 
rpk. It follows that all two-terminal trajectories through 
the same two terminal points and moving in the same 
direction around the field center will have their peak 
points lying on a fixed straight line. This deduction 
confirms the previous findings by Sun[12] through the 

O 

Fig. 1. Lambertian invariant lengths. 

e = 2#l(r,  + r2) (9) 

wilt also be employed in the following development. 
Obviously, E, like p, is also a Lambertian geometric 
invariant, which is related to the range angle 0R by 

/10> 

Hence E always agrees in sign with p, and [E I <- 1. In the 
limiting case of I~1 = 1, we have r~ = r2, the trajectory 
will be rectilinear and ~ = + 1, or - 1 ,  according as 
0R = 0, or 2~r. 

3. SOLUTION OF THE LAMBERT PROBLEM 

By introducing the normalized time of flight 

- -  3 / 2  x/,  2 
K =  At ~ - r  (r--~r~) ( l l )  

the classical form of the Lambert time equation in the 
elliptic case takes on the form: 

tCaUed by Levine and Battin the normal point [10, 2]; and by Sun, 
the peak point [4]. 

/ 2a  \3t2 
=  g-cos sin g), (12E) 



where 

Lambertian invariance and application 

I 
3' = ~(a +/3), (13) 
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When this inequality is not satisfied, then to assure rapid 
convergence the following equation is to be used instead 
of Eqn (18): 

and g is defined by Eqn (8). By using Battin's symmetric 
transformation [2] it can be shown that: 

cos 7 = (cos g - •)/G, (14E) 

G,,2 - , /3{[(  2 2 32•3)'~2+2~rK] '~3 ,+, = ( 2 M , )  4~r K + 2 - - ~  

2 2 32• 3 112 113 
-{[(4"tr  K +2--~i)  -2"trK] , (21) 

r, + r2 _ sin 2 giG, (15E) 
2a 

where, • is defined by Eqn (9), and for convenience we 
have put 

G = 1 - • cos g. (16E) 

Substituting Eqns (14E) and (15E) into Eqn (12E) yields 
the elliptic time equation: 

• "K= G = n f ~ ~ G + 2 g  - sin 2g • }. (17E) 

In analogous manner the corresponding hyperbolic time 
equation is found to be 

~l/2j'sinh 2 g -  2g e}, 
rrK=,_, I. 2sinh 3g G +  (17H) 

where g and • are again defined by Equs (8) and (9) 
respectively, and 

G = 1 - • cosh g. (16H) 

For two fixed terminal points and a specified At, both • 
and K are known, and the single unknown in Eqn (17E 
or 17H) is the variable g. These are the basic forms of 
the time equation to be used for the Lambert problem 
instead of the classical Gauss equation. 

To facilitate the numerical solution we employ the 
invariant ratio A defined by Eqn (5), and use relations 
(6E, H) to re-write Eqns (17E, H) in the iterative formt 

where 

~ 1 2 ,  2• A~/2 ~ - - 3 / 2  - -  u i  ~- -  
a i + l -  ~ - -~ ,L '  + G - ,  ] ,  ( 1 8 )  

L =  
(2g-sin 2g)l(2sin ~) 3 (19E) 

[sinh 2 g - 2 g ) / ( 2  sinh § )  3 (19H) 

and i indicates the step of iteration (i = 0, 1, 2 . . . .  ). By 
using A as the iterative variable, the iteration is found to 
converge rapidly for 

• < 0.2(2~rK + 1). (20) 

tA form similar to Eqn (17E) was found by Godal[3] for the 
elliptic case, but no form for the hyperbolic case, nor the 
iterative form like Eqn (18). 

where we have put: 

I" (2g - sin 2g)/sin 3 g, (22E) 
M = ].(sinh 2g - 2g)lsinh ~ g. (22H) 

A detailed analysis on the convergence of the iteration is 
found in Vinh[ll], and the hypergeometric expansion of 
the function M and techniques for its evaluation is 
available in Battin [2]. 

In the parabolic limit, g ~ 0, both equations (17E, H) 
yield the nondimensional time of parabolic transfer: 

Kp = 1 (2 + E)(1 - •),/2. (17P) 

However, when g is near zero, the iterative routine using 
Eqn (21) becomes highly sensitive to error. To remedy 
this situation, let 

I sin2§ (23E) 

~" = 1 - A = [ _ sinh 2 g_ 
2 (23H) 

and 

= 10~r(K - Kp); (24) 

then by series expansion we found: 

= ~  aj~ j. (25) 
j = l  

The first few coefficients in Eqn (25), are found as 
follows: 

_ ( 1  - 0 "2 
al 8A ' 

( l - e )u2137 ,  ll/e'~ 2615(,~ 2 2117(C~ 3 

 (ff] 
a , = - 1  l ~ 6 A  [ 1~8  - 9-~4(;) - ~ ( 2 )  2 

6 0 5 8 3 / E \  6 112391/¢\ 7 69341/e\8"1 

(26) 
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where we have defined 
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The details are again found in Vinh[ll], and it is 
shown there that the series solution is quite accurate for 
near parabolic transfer. 

4, THE OPTLMAL FIXED-TIME, IMPULSIVE TRANSFER BETWEEN 

CIRCULAR ORBITS: BASIC TREATMENT 

4.1 Introductory remarks 
Consider the transfer between two circular orbits Ct 

and C= of radii rt and r2 respectively in the same plane, 
and let: 

n : rdr,. (28) 

For definiteness we assume r :>  rl,  or n > 1, and con- 
sider the transfer from the inner orbit to the outer. This 

is actually no restriction, since the time of transfer will 
not be affected by interchanging r, and r2, and the 
solution will be essentially valid for the transfer from the 
outer to the inner. However, the following two cases will 
be distinguished: 

(1) uni-rotating: C, and C2 in the same rotational 
direction around the field center; 

(2) counter-rotating: C~ and C2 in opposite directions 
of rotation. 

4.2 Formulation of the problem 
With reference to Figs. 2 and 3 we define the nor- 

malized terminal velocity u~ and velocity impulse .f~ by: 

v, : V , / ~ ,  (29) 

( i :  1,2) 

/~ : LAV, I / ~ ,  (30) 

Minor-Angle Transfer 
0 <q/.  : ¢ /< r r  

Major-Angle Transfer 

QI 

C~ 

( ,  
/ 

AV 2 

C 2 
' Q 

Tu 

Fig. 2. Transfer between circular orbits: uni-rotating case. 

A. Transfer in Direction of Ci B. Transfer in Direction of C~ 

Fig. 3. Transfer between circular orbits: counter-rotating case. 



where: 

Lambertian invariance and application 

I,  = la,,,I = I , , i -  ,,od, (31-1) 

f~ = IAv21lX/n = Iv2 -  ~,o21lX/n. (31-2) 

The subscript 0 here refers to the terminal condition 
before applying the velocity impulse. The normalized 
characteristic speed to be minimized is then: 

f = f ,  +f2, (32) 

under the constraint of fixed At or K defined by eqn (11). 
To develop eqns (31) further and to avoid confusion 

we take the transversal- or 0-component of velocity in 
the direction of C, as positive for both cases of uni- 
rotating and counter-rotating; and we will take up the 
uni-rotating case first. In this case, both C, and C2 and 
the transfer trajectory all agree in the direction of 
motion, hence: 

(Vo)o, = (ve)o2 = + 1; vo~>O, voz>0; (33) 

and following eqns (31-1, 2) we have: 

fl 2 = vl z -  2v., + 1, (34-1) 

/22 = (v22 - 2vez + 1)In, (34-2) 

which, in terms of ~ and g, may be expressed as: 
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4.3 The optimal solution 
To minimize f under the constraint (39) we employ the 

Lagrange multiplier A and introduce the augmented per- 
formance index : 

f = I + x ( ~  - ,rK). (41) 

The optimal condition may then be written as: 

~. Orb = 0, (42) ~0x{/~ + 0~ 

Of+ Orb 
~g A ~-g = 0, (43) 

rb(e, g) - rrK = 0. (39) 

Eliminating X from eqns (42, 43) results in the vanishing 
of the Jacobian 

O(f, rb) _ 0 (44) 
O(~,g)- ' 

which, after carrying out the differentiation and sim- 
plifying, yields the optimal condition: 

f(2n)314n - (n - l)2Ez/'/z f, + f2 . . . . .  

(45) 

where: 

[ 2 = 3 -  n ~ r b  - 2vo,, (35-1) 

3 2 . 2vo,, 
f22 = n - n + 14) - n-37r (35-2) 

• (e, g, n) = 

t {(n + 1)2~X - [4n - (n + l)Ztz]~o}/sin z g, 

- {(n + 1)2eX - [4n - (n + 1)2e2]~o}/sinh 2 g, 

(46H) 

(46E) 

where 

= [4n - (n + 1)zez] ''2 
vo, L ~-n+l-)G J ' (36) 

f sin 2 giG, (37E) 
4~ = "[ _ sinh 2 g/G, (37H) 

and G is defined by eqns (15). It should be noted at this 
point that, in view of eqn (10), ~ is bounded as follows: 

2v~n 
I~1 <-- n + r (38) 

Following eqns (17E, H) derived in Section 2, the time 
constraint may be written as 

zrK = rb(~, g), (39) 

with rb defined by 

J G3/2(2g - sin 2g)12sin 3 g + G~/2E, (40E) 
rb(e, g) 

[G 3/Z(sinh 2g - 2g)/2sinh 3 g + G 1/2e. (40H) 

and 

f 2 ( l - E Z + G ) G ' n +  37rK[E-( l+G)cosg] ,  (47E) 
1" = [2(1 - E 2 + G)G ,/2 + 3~'K[e - (1 + G) cosh g], (47H) 

[ (2cosg+e)G'12x3,rKcos2g, ( 4 8 E )  

oJ = l.(2cosh g + e)G v2 _ 3"rrK cosh 2 g. (48H) 

To apply the optimal equation (45) it is necessary to 
predetermine whether the optimal solution is to be ellip- 
tic or hyperbolic. To do this, we let g--, 0, and found 
that both eqns (46E, H) approach the same parabolic 
limit: 

G = ~(1 - e)'n{(n + 1)zE(4+ 2e - z )  

- (2 + 3E)[4n - (n + l)ZE2l}. (46P) 

Meantime, with g = 0, combining eqns (35) with (36), (37) 
gives 

f,p { 3 -  ( 4 n -  (n + 1)2~2"~m/'n 
= 2k~-~-~ T)~ _ ~  ] j , (35P-1) 
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f f3  2 [4n-(n+l)2ez'~u2"lv2 
2"=' ln-n--rnk2(n+l) (1-e))  j r  (35P-2) 

Substituting eqns (35P), (46P) into eqn (45) yields an 
equation 

F((, n) = 0. (49) 

In particular, at K = 0.5, tO = 180 °, f reaches its overall 
minimum and it can be shown that this transfer tra- 
jectory is the Hohmann tangential ellipse. 

(2) At fixed n, the higher the value of K, the greater is 
the optimal range angle tOR** for minimum f. Figure 5 
shows that as K ~ ~ at n = 2, the limiting value of taR*. 
is 2700 . In general it can be shown that 

With n given, and e restricted to lel --< 2~/n/(n + 1), eqn 
(49) gives the critical value of e*, and the corresponding 
critical time of flight is then: 

K* ~ ( 2  + e*)(1 ,,,/z = - -  E p }  , (50) 

Consequently, with the specified values of K and n in an 
orbital transfer problem we have the criterion: 

K > * elliptic l 
K,::> parabolic optimum. 

hyperbolic ! 
The critical boundary separating the regions of elliptic 
and hyperbolic optimum in the n, K-plane is shown in 
Fig. 4. On the boundary, K* is seen to be monotonically 
increasing with n, with 

lim K* = 2/31r, (51) 

lim tOR** = 2 c o s - I ( - ~ - ~ )  ( n _  -> 1). (52) 

(3) For short duration the optimum may be hyperbolic 
even the time prescribed allows elliptic transfer. For 
example, at n = 2, hyperbolic transfer is optimal for 
K < K* = 0.1175 (see Fig. 5). 

The above observations show that whenever K ~ 0.5, 
the optimum is less economical than the Hohmann. 
However, if the transfer time prescribed is K > 0.5, we 
can still use the Hohmann transfer by letting the space 
vehicle stay on the original orbit for a sufficient time &to 
before the impulsive transfer is started, so that the 
effective time parameter is: 

K - Ko = 0.5, (53) 

where 

V - "  2 x3/2 
(54) 

which can be obtained directly from eqn (50), since 
e* - 0 as n ~ ~. With the nature of the optimal solution 
thus predetermined, the appropriate form of eqn (45) as 
well as that of eqn (40) may now be chosen, and solution 
of this pair of equations will give the optimal values of e 
and g for minimum [. 

A typical graph illustrating the numerical solutions for 
the case n = 2 at several values of K is shown in Fig. 5. 
From such graphical display we observe that 

(1) At fixed distance ratio n, for each value of K 
prescribed there is an absolute minimum f, which occurs 
at 

o.6d 

tO <1800 according as K~- 0.5. 

ELLIPTIC REGION 

Limiting /t'K ~ = 213 
0.60 T ; , C - . - ~  . . . .  

, , ' r j "  
/ ~ / T  HYPERBOLIC REG[ON 

0.40 i ( /  Case 

t Uni- rotating 
0.20 f Counter-rotating C= 

in direction of C z 

' ' ' ' 7.MOO ' O0 0"0~1.00 3.00 5.OO 9. 

Transfer  
Trajectory 

T 

TI 

Tll 

11100 

is the time parameter corresponding to At~ The required 
delay period Aft, is determined from eqns (53), (54), and 
the effective time of transfer is then At - Ato. Thus when 
such a delay is allowed, the optimum solution will always 
be Hohmann for any K > 0.5. If this is not allowed, then 
the optimal elliptic solution can only be improved by 
resorting to multi-revolution, as presented in the next 
section. 

5. LONG DURATION TRANSFER WITH MULTI-REVOLUTION 

If N is the number of complete revolutions to be made 
in addition to the net arc connecting QI and Q2, the time 
equation (17E) needs be simply modified as follows: 

7rK=G"2{2g+27rN-sin2gG+E}. (55) 
2sin 3 g 

The convergence character in solving this equation is 
essentially the same as solving eqn (17E), and the opti- 
mal equation (45) still stands with eqn (40E) replaced by 
eqn (55) in the defining equation of ~. 

To determine the maximum possible value of N for a 
given K, it is important to note that there exists a 
minimum time of transfer [5] for each N > 0. A direct 
differentation of eqn (55) gives 

r/ = r z / r ,  

Fig. 4. Boundary of critical optimum. 

2 G.2 2 - e c o s g - e  2 
Kmi. = ~ -  ~ o s  g - e cos 2 g - e' (56) 
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tl t- 
o 

;51 I 
d o "  ' 4~  ° ' 8b' ' t~o" ' ,do ° ' ~ o "  ' 2,:o" ' ~ '  ' 3 / o " '  ~ o '  

Ronge Angle I//R 

Fig. 5. Variation of characteristic speed with range angle, and the optimal solutions (rz/r~ = 2). 

where g satisfies the equation: 

2sin 3 g(4G 2 + e 2 sin z g) 
21rN + 2g - sin 2g = 3G(2cos g - e cos 2 g - e)' 

(57) 

In the particular case of e = 0, eqns (56), (57) reduce to 

2 
Km~, = ~ sec g (58) 

and 

I g + Nzr = gtan g(2 + cos 2 g), (59) 

an approximate solution of which may be written[5]: 

8 
Kmin-~ (N +1){ 1 3(2N + 1)2"n'2]' (60) 

which shows that Kmin is slightly less than N + 0.5, and 
tends to this value when N is large. It should be noted 
that in deriving eqns (56) and (57) we have tacitly 
assumed that lel ,~ 1. When e = +1, they fail to apply, but 
it can be easily shown that 

g = 0, Kmin = N/2%/2, (61) 

since the net transfer arc now is null, and the minimum 
time trajectory consists of just N complete rectilinear 
circuits on a fiat ellipse. On the other hand, when e = -1,  
we found that eqns (56), (57) are still valid, giving: 

V~ g 
Km~. -- ~ sec ~ (62) 

and 

2~g + NTr) = 1  ~ta n g / "  + cos2§). ~[,z (63) 

A close examination of these equations shows that the 
net transfer arc in this case is not simply a complete flat 
ellipse, so that Kmi. = (N + 1)12~/2 as we might expect, 
but a rectilinear segment. An appropriate solution[5] for 
this case is: 

Kmi N + I {  8 } 
-~ 2~2  1 3(N+l)2"tr 2 ' (64) 

which shows that Km~. does tend to the value ( N +  
1)/2V~ at large N. 

With the Kml, associated with a given N thus deter- 
mined, a careful analysis enables one to infer the fol- 
lowing: 

(1) The maximum possible number of complete rev- 
olutions is Nmax = m, if: 

m _-< K(1 + tr2)m < m + 1, (65) 

where m is an integer >_- 0, and tr is a parameter related 
to e by: 

2,~ 
= 1 - - U ; '  or o" = 1 - v ' ~ .  (66 )  
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(2) With m found for a specified K, the time equation 
(55) with N = m will give two distinct solutions, a unique 
solution, or no solution according as K is greater than, 
equal to, or less than K,,~.. 

(3) If N,,ax = m, then there exist two distinct solutions 
for each value of N = m - 1, m - 2  . . . . .  1; and one solu- 
tion for N = 0. A detailed analysis on the number and 
nature of the multi-revolution solutions is given in [5]. It 
should be mentioned that the parameter ~ defined here 
always agree in sign with (, and that: 

e=, 0 ¢ ~ a =  0 
-I -I 

Furthermore, it is related to the Lambertian invariants 
rl + r2, c, and p as follows: 

a 2 = (r, + r 2 -  c)/(r,  + r2 + c) = [2p/(r, + r2 + C)] 2. 
(67) 

To facilitate the solution the lines of minimum transfer 
time are plotted in the K, a-plane as shown in Fig. 6, 
from which the maximum number of complete rev- 
olutions that can be realized may be readily assessed and 

= 

f l  

- I .00 -0.60 -0.20 0 0.20 0.00 1.00 

O = *. [ ( r l  ,,r2 - c )  / ( r ,  . r 2 . c ) ]  ~ 

Fig. 6. The minimum time boundaries and the regions for multi- 
revolution transfer. 

the number of solutions predetermined once the time 
parameter K is specified, in accordance with items 2 and 
3 stated above. 

With the possible number of complete revolutions 
determined, the optimization problem can be handled in 
the same manner as in the non-multi-revolution case by 
solving the optimal equation (45) in elliptic form, 
together with the time equation now replaced by its 
modified form (55). However, the following compli- 
cations are to be noted: 

(1) For each N E [1, N,~ax) there are two distinct solu- 
tions given by the time equation (55), and the same is 
true for N = Nmax and K > Km~,. Consequently, two 
optimal solutions will be provided by eqns (45) and (55) 
to each N assigned, and they are to be compared. 

(2) The overall optimization will consist of selecting 
the one giving the lowest f from the m + 1 sets of 
optimal solutions corresponding to N = 0, 1 . . . .  , 
N..~( = m )  

Consequently for fixed n and K, the variable N is yet 
to be optimized in addition to ( and g. Thus the problem 
is much more involved; and further analysis is needed 
for its treatment, and efficient iteration routine has to be 
developed. However, despite of these complications the 
following simple rule can be easily verified: 

If K = q/2, q being any positive odd integer, then the 
optimal solution for the multi-revolution case will be 
Hohmann, with the optimal number of revolutions: 

N** = (q - 1)/2, (68) 

where the subscript ** indicates 2-impulse optimum. For 
example: 

q = l  K = 0 . 5  N**=0 ,  

q = 3  K = l . 5  N * * = I ,  

q = 5  K = 2 . 5  N**=2 .  

The optimal trajectory will all be identical--the Hoh- 
mann transfer ellipse. This is the best we can expect 
from multi-revolution; and whenever K ~  q/2, the opti- 
mal solution will give a higher f. For illustration purpose 
a few numerical results are summarized in Table 1. 
These figures show that in the long duration of transfer 
the characteristic speed can be prohibitively high if 

Table 1. 

I<:=3.25 

N f * *  ~** 

"0 0.83990 258.366 ° 

1 0 .64483 245.4 ° 

2 0.44610 224.1 ° 

3 0.43807 124.6  ° 

4 0.95394 64 ° 

5 1.46976 31.1 ° 

6 

N o t e :  

Optimal solution for long duration transfer with multi-revolution (at rdr~ = 2) 

1(--3.5 I(=3.75 

f * *  ~** f * *  ~** 

0.85386 259.086 ° 0.86624 259.710 ° 

0.67041 247.4 ° 0.69285 249.1 ° 

0.48728 229.4 ° 0.52256 233.6  ° 

0.28446 1800 0.32930 202.8 ° 

0.80516 77.2  ° 0.67090 91.5 ° 

1.2S467 43.3 ° 1.08905 54.1 ° 

1.98287 6.4 ° 1.56714 26.15 ° 

The  f i g u r e s  u n d e r l i n e d  a r e  t h e  o v e r a l l  o p t i m a l  a t  

t h e  o p t i m a l  v a l u e  o£  N * * = 3 .  
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multi-revolution is not applied; but by using the optimal 
number of complete revolutions, it can be effectively 
reduced, and the fuel economy is coasiderably improved. 
In the most favorable case, K = q/2, even the Hohmann 
solution can be achieved by taking N = (q - 1)/2 as spe- 
culated above. A comprehensive presentation of the 
multi-revolution case is, however, beyond the scope of 
the present paper. 

6. THE UNI-ROTATING TRANSFER VS COUNTER-i~TAT1NG 

TRANSFEII 
So far we have restricted ourselves to the uni-rotating 

case. When the counter-rotating case is concerned, the 
transfer may take either of the two modes: (I) in the 
direction of Ct, or (II) in that of C2. Let T denote the 
transfer trajectory in the uni-rotating case, and T, and 
T. ,  the transfer trajectories for Modes I and II respec- 
tively in the counter-rotating case. By keeping vet posi- 
tive in the direction of Ct for all cases, then the charac- 
teristic speeds of the three cases may be written as 
follows: 

f = f, + f2= (3- n2~Cb+ l -  2Vo,) '/2+ ( 3 2~b 2vo,'~ '/2 
. + 1  

(69) 

fl=fil-~-fl2=(3--nR~)÷|--21JO,) 1/2 

n--r/r) , (70) 

ftl = f,,, + fn2 = ( 3 -  ~2t~ + 2Vot)'~l/2 

(3 2 ,  2vo,'~ ',z 
+ n + l  n~Tr] ' (71) 

where rot is given by eqn (36). 
It should be noted that, for a given t, the value of n is 

restricted to the range [1, nmax], where 
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Fig. 7. Variation of characteristic speeds with distance ratio: 
uni-rotating versus counter-rotating. 

shown by the dashed lines in Fig. 4. Denoting 

Af = ft-f; Aft., ' = fi,-ft, (77) 

an examination of Fig. 7 shows that Af decreases mono- 
tonically as n increases for all I~1 < 1; and Afl. ,  = 0 at 
n = 1, or n . . . .  and reaches its maximum at some inter- 
mediate value of n if ~# 0; but it increases monotonic- 
ally as n increases if e = 0. Furthermore, it is easy to 
verify from eqns (69) to (71) that at e--0,  and when 

nmax = (1 + X/1 --"S-~)2/E ~ (72) f=f,=N/2-1, fn=~/2+l; Aft.n=2 

according to the inequality (38); and at n =. n . . . .  we have 
vex = 0. With this in mind, a comparison of eqns (69) to 
(71) shows that for the same E, k, and n (hence the same 
4~ and vo,), we have 

f </t</n for I < n < n .... (73) 

for all K > 0. 
Now by keeping n and K constant, and letting the 

range angle 0R vary from 0 ° to 360 o the variations of f, ft 
and .f. with OR are shown graphically in Fig. 8. An 
examination of these typical curves shows that, for n > 
1, and K > 0: 

and at the endpoints: f < f t < f ,  for 0°< OR <360 ° , 

n = l :  f<fi=fn, (74) f = / t  = f .  for 0R = 0, or 360 °. 

n = n,..x: / = I t = I n  if e~0.  (75) 

Besides, we note the special case of t = 0 (1800 transfer), 

nmax ~ ~o f = f l  < fix. (76) 

Such a comparison is shown graphically in Fig. 7. The 
effect of counter-rotating on the critical boundary is 

Furthermore, f and f, each has an absolute minimum at 
nearly the same 0R and Af is greatest there; while .fii 
may have several stationary points on the range 0 < 0R < 
3600 . 

Summarizing these observations we may now con- 
clude: 

(1) So far as the characteristic speed is concerned, the 
transfer in the counter-rotating case is more expensive 
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Fig. 8. Variation of characteristic speeds with range angle: uni-rotating versus counter-rotating. 

than in the uni-rotating case; and among the two modes 
of transfer for counter-rotating, the transfer in the direc- 
tion of the outer circle (Mode II) is definitely unfavor- 
able, and should be avoided whenever possible. 

(2) Changing from the uni-rotating case to the mode 1 
of the counter-rotating case, the optimal range angle is 
practically unchanged, but the increase in the charac- 
teristic speed is quite significant. For example, Fig. 8 
shows that at n = 2 and K = 0.5: f, ~ 5f at the optimal 
point (Hohmann). 

7. A GLOBAL SYNTHESIS 

From the previous analysis we see that the overall 
optimal solution for the fixed-time, 2-impulse transfer 
between circular orbits is the Hohmann tangential ell- 
ipse, and the optimum time parameter is 0.5. When this is 
exceeded, the optimal solution will no longer be Hob- 
mann, but the intersecting ellipse, with a higher charac- 
teristic speed, but we can still achieve the Hohmann 
optimum by using the delay period, or in sufficiently long 
duration transfer we may improve the non-Hohmann 
solution by using multi-revolution. 

However, the 2-impulse Hohmann transfer is optimal 
only when n < 11.94, and when this ratio is exceeded, the 
optimum will be the 3-impulse, biparabolic transfer in the 
time-free case, according to Hoelker[13] and Marec[4]. 
In the fixed-time case the biparabolic transfer is not 
permitted, since the transfer time would be unbounded, 
and another mode of transfer has to be considered. A 

simple substitute for the parabolic transfer is Hoelker's 
3-impulse bielliptic tangential transfer. Let n,, = r,:/rt, 
where re is the radial distance of the conjunction point, 
where the two half-ellipses meet, then as shown by 
Hoelker[13], when 11.94 < n < 15.58, in order the biel- 
liptic tangential transfer to be more economical than the 
Hohmann n,, has to exceed some critical value n* 
governed by the equation: 

n , - I  + ~ J n c + n _ n - l ~  ~ / !  
Vh~(nc + l) - -  nn,. Vn tn  u 

(78) 

which expresses the condition of equality between the 
two characteristic speeds in the bielliptic and Hohmann 
cases, n* is found to be the real root of eqn (78) other 
than n, = n. Consequently, in the fixed-time case there 
exists a lower bound for the time parameter 

1~ (n* + 1"~ 3'2 + In* + n~3:2"~ 
K, = ~ t ~ VT-f : C ; - ~  : ) 11.94< n -5 15.58, 

(79) 

which is the transfer time along the bielliptic tangential 
trajectory, with n,, = n*. From formula (79) we found 
that at the points: 

n = l l . 9 4 : n * = ~ ,  K * = ~ ,  

n = 15.58: n* = 15.58, K* = 1.788. 
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satisfying the time constraint is better than the Hohmann 
transfer with delay. 

It can be proved by perturbing the Hoelker's transfer 
that we can always find a three-impulse bielliptic inter- 
secting transfer with the same time constraint while 
yielding a smaller characteristic speed. But the im- 
provement is small and hence, when K > K~ and n > 
15.58, Hoelker's bielliptic tangential transfer may be 
considered as the optimal. However, when K <K~,  
Hoelker's transfer is no longer possible; it can be shown 
by the same analysis that there exists a new lower bound 
K~' such that, when K~' < K < K~, a three-impulse in- 
teresting bielliptic transfer satisfying the time constraint 
with smaller characteristic speed than the Hohmann 
transfer can be found. This new lower bound is given by: 

K ~ , = I f l + /  2n \3'2r 2 In--+--T) [1--tan-'( 2+Z Zh"211'j JJ 
(81) 

where 

Z = (3n + 1) (-n-+--~' (82) 

Fig. 9. Regions for optimal transfer. Hence we may say that, for n > 15.58: 

When n > 15.58, the higher the value of no, the better will 
be the fuel economy, hence on this range the minimum 
value of nc is n, and instead of eqn (79), we have the 
lower bound: 

( 2n "¢'21 r~= ~{1+ ~ - ~ /  j. (80) 

The boundaries K -- K~ and K = K~, as shown in Fig. 9, 
delimit the region in which Hoelker's bielliptic transfer 

K~'<=K<K~: the optimal solution is intersecting 
bielliptic, 
0.5 _-< K < K~': the optimal solution is Hohmann. 

The derivation of formulas (81), (82) is too long to be 
included here owing to the limited space. 

To give a global view of the situation, the various 
possible optimal solutions in different regions in the n, 
K-plane is summarized in Table 2, and graphically 
depicted in Fig. 9. 

Table 2. Nature of optimaltransferin n, K-regions 

Distance Ratio Fixed Duration Nature o~ the Optimal 
Transfer  Tra jec to ry  

n r 2 / r  1 K = ^+ ¢ ~ r 2 ~  5/2 
= ~-~<rl+r z, 

* 2-impulse, hyperbolic K < Kp 

* 2-impulse, parabolic n ~ 1 K = Kp 

* < K < 0.5 2-impulse, elliptic, Kp 

nonHohmann 

i ~ n ~ 11.94 K ~ 0.5 2-impulse, elliptic, Hohmann 

0.5 < K < K~ 2-impulse, elliptic, Hohmann 

11.94 < n < 15.58 
K > K~ 

n => 1 5 . 5 8  

3-impulse, bielliptic, 

tangential 

~0.5 $ K < K~' 2-impulse, elliptic, Hohmann 

K~' ~ K < K~ 3-impulse, bielliptic, 

intersecting 

K ~ K~ 5-impulse, bielliptic, 

tangential 
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