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Fundamental theory of the semi-radial singularity mapping dealing with line singularities in the 

stress and strain is presented. Explicitly the brick-type semi-radial singularity mapping element as well 
as the wedge-type one are proposed. Element familization is then described based on the conventional 
polynomial interpolations for the cube and simpfex, with examinations of the elaborate trial function 
spaces. 

1. Introduction 

A variety of finite element interpolations have been proposed not only for the cube [l-6] 
but also for the simplex [7-121. In the singularity elementology with required stress and strain 
singularities those polynomial interpolations are used only to prescribe the element geometry, 
or reversely only to define the approximated displacement field. 

In two-dimensional fracture mechanics, for example, we have plenty of crack elements with 
some peculiar trial functions and polynomial parametric representations [13-16]. A series of 
finite elements with the polynomial trial functions under the singularity mapping are also 
presented [12,17-211. We note in the latter that any higher order elements can easily and 
systematically be produced by the known polynomial interpolations. 

In three-dimensional fracture mechanics treatment of the line (not the point) singularities 
are significant. For such through-wall crack, we have the superposed finite elements by 
Yamamoto and Sumi [22] and Yagawa and Nishioka [23], utilizing the global-local ap- 
proximations of analytical asymptotic and normal isoparametric modes. In more orthodox 
finite element form Stern 1161, Akin 1241 and Hughes and Akin [25] presented the peculiar 
singular trial functions over wedge-type elements with the collapse of a plane of the 
normalized 3-cube. As an alternative mapping applied to line singularities we have only the 
quarter-point mapping by IngrafIea and Manu ]26] also with collapse. 

In this paper we concentrate on the fundamentals of the semi-radial singularity mapping for 

line singularities. Namely the general theory established in two dimensions associated with 
point singularities 112,211 is modified so as to deal unifiedly with the brick-type and 
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wedge-type elements. WC explicitly present the semi-radial singularity mapping for originally 
X-node brick and &node wedge elements with the proof of the realized sin~u~~~riti~~ and strain 
energy finiteness. 

Then we famitize our singularity elements by applying the conventional potynomial inter- 
polations with exa~~jnati~~~?s of the created triat functiorl spaces, Especially for wedge elements 
we utilize not only the collapsed rectangular interpolations widely used in fracture mechanics 
but also the well-known triangular interpolations. 

2. Trial and mapping function spaces associated with line singularities 

We consider a general finite element composed of n nodes depicted in Fig. 1 in the gIobaf 
Cartesian system (x, y, z), which is normalized into the (- 1, 1) cuboid in the local parametric 
system (6, 71.6). In the general form of Lagrange interpolation the trial functj~n kept over the 
etement can be expressed as 

where bi denotes the 4-value at node i. The field shape functions N, should satisfy 

Here 6ij is the Kronecker delta, and & qi and i-, denote the parametric cocjrdinates of node j, 
The trial function space 4 is then uniquely defined as 

Fig. I. Origina! n-node element geometry in the gfobat Cartesian system (x, y. i -). Line singularities exist along the 

central edge composed of nodes 1 to TV. Other side and face nodes are allowed only an the opposite surface. 
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where f and fi represent an arbitrary, sufficiently smooth function and its nodal value at i, 
respectively. 

In the practical finite element analysis the trial function space 9 originally defined in (& q, 5) 
should be recharacterized in (x, y, z) through the parametric representation of the form 

where 

x = [x, y, Z] and xi = [Xi, vi, Zi] . (5) 

Here xi denotes the Cartesian coordinates of node i. The mapping shape functions Mi satisfy 

and hence the mapping function space & can uniquely be defined as 

(7) 

In the isoparametric mapping we preserve the identity of the trial and mapping function 
spaces by 

N;r=Mj, i=l,a..,fz, (8) 

in order to realize the r-reproducibility of the form 

x = i: XjNj . 
i= I 

(9 

In linear fracture mechanics, on the other hand, the trial function space is to be different 
from the mapping function space, since some appropriate singularities are needed in the first 
derivatives of our trial function, say in the stress and strain. The conventional polynomial 
interpolations are thus applicable only to the field shape functions, or only to the mapping 
shape functions. We restrict ourselves in this paper to the use of the polynomial trial function 
space in ([, 77, c). Nameiy, our objective is to develop the peculiar singularity mapping function 
space. Strictly the trial function space should be made for all. the displacement components, 
say u, u and w. However, for simplicity, we use only the scalar trial function 4 throughout this 
paper. 

The singularities exist along the central edge of the original element of Fig. 1, which is 
composed of nodes 1, . . . , m. Any curved central edge is allowed for generality. We normalize 
the n-node element into the (-1, 1) cube of Fig. 2 parametrically in (5, 77, l). An alternative 
normalization illustrated in Fig. 3 with collapse of the 5 = - 1 surface into the central edge is 
also dealt with. In the former, any side nodes are allowed on the central edge of 6 = n = - 1 
with side and face nodes on the opposite surfaces of 5 = 1 and n = 1. In the latter, any side and face 

nodes can be placed on the opposite surface of 6 = 1 with side nodes on the central edge. 
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Fig. 2. Normalized 3cube in the local parametric system 
(5, 7, g). On the opposite surfaces of [ = 1 and n = I any 
side and face nodes can be placed. The central edge of 
.$ = n = - 1 is composed of RI nodes. 

Naturally on the central edge of zj = q = - 1 

-g)(f) = 2 X,Mi (- 13 - 1’ 0 
i-l 

Fig. 3. Normalized cube in the local parametric system 
(5, 7, &) with collapse of the c = - I plane into the central 

edge of 5 = n = - 1. On the opposite surface of t = I any 
side and face nodes are allowed. The central edge after 
collapse is composed of m nodes. 

(10) 

where x0 denotes the Cartesian coordinates of a point on the central edge by 

-G = [x0, yo, &J . 1 

Let r denote a vector from (,Q, y,,) 

Y = [x - fo, y - yoj . 

Then the two-dimensional radius r 

to (x. y) such that 

(12) 

emanating from (xo, yo) can be written as 

r = llrll = {(x - xo)2 + (y - yo)2}“2 . (13) 

In our problem O(r” -‘) line singularities are needed in the first derivatives if+,/,lax and a+/$y, 
say in the stress and strain along the central edge. Here h is the singularity constant, which is 
positive below unity (0 < h < I). 

3. Relation between Euclidean and nondimensional radii 

Using (4) the Euclidean radius r of (13) can be expressed as 
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r= ([~Xi{Mi(5.~,~)-"i(-1,-1~i#12+ [Z xiM.(5,%O]2 
17m 

Naturally (10) can be generalized as 

and hence (14) can further be written as 

r = CI C (-ul - XO)M 2 + 2 (yi - y())Mi}2]“z . 
1 >nr I { I>+72 
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(14) 

(15) 

(16) 

On behalf of the Euclidean radius r, we introduce the nondimensional radius p so that it 
takes zero on the central edge and unity on the opposite surface. Let us embed the constant 
and p terms in our mapping function space such that 

l=iM,, 
1-l 

p= 2 Mt. 
i>m 

Then the nondimensional radius can be written as 

p= 1-k Mi. 
,=I 

We introduce here the MT functions by 

MT=p ‘Mi, i>m. 

Substitution of (20) into (16) then gives the relation between r and p of the form 

r = p 
i>m 

2 (y; - Y~~)M:}~]“~ . 
i>m 

(17) 

(18) 

(1% 

(2(J) 

(21) 

If all the MT functions by (20) are bounded throughout the region of interest especially on the 
central edge, then p is proportional to r at least within the vicinity of the central edge, i.e. 
O(r) = O(p). The singularities may thus sufficiently be treated by p instead of r. 

Obviously MT should satisfy 

MT((j- v,, 5,) = &j, i > m , (22) 
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and 
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l= c M:j:. 

I ‘,,, 

We further substitute (10) into (15). Then we have 

M,(~,a,i)=M,(-l.~I,i)~M,(~,11,5)- i= l,...,m. 
1-I 

Using (19) (24) can be rewritten as 

M,(5,rl,5)=(1-~)~(-l,-l,i), i= l,...,Mr. 

(23) 

(24) 

(25) 

4. The semi-radial singularity mapping for line singularities 

Expecting O(p” -‘) derivative singularities we impose the semi-radial field condition on the 
trial function of (1 1 bY 

PA = c 
,>m 

which guarantees 
displacement field 
that 

N, . (26) 

that the p* term is reproducible. Since h is positive below unity the 

has no singularity. We also realize the constant field condition as usual such 

1~2 Ni. 
i=l 

Then the nondimensional radius p can be defined as 

(27) 

In order to assure that the lowest terms associated with the nondimensional radius are ph 

(except for p”) we must restrict the other field shape functions also. Let us introduce 

NT=p-“Ni, i>m. (29) 

Then noting that each N, (i > m) takes the value zero on the central edge, NT should be 
bounded everywhere. Furthermore, the following hold 



Notice that the NF functions of (29) satisfy all the conditions needed for the MT functions of 

(20). 
On the singularity mapping that we arc concerned with we further impose the beautiful 

correspondency to the conventional isoparametric mapping without any contradiction to the 
preceding arguments. Namely at the limit of A = I, the mapping shape functions should be 
identical to the field shape functions as in (8). and consequently the singularities should be 
extinguished. WC thus naturally put 

MT = NT. i > I?1 , (32) 

which yields 

M, =p’ "N;, i>m. (33) 

We next consider other shape functions contributing to the central edge. Since no sin- 
gularities are needed in the z-directional derivative of our trial function, we have iso- 

parametrically 

M,(-l,-l.<)= Ni(-l~-l+~), i= l+...,~~t. (3) 

Then (25) can be written as 

M;=(l-p)Ni(-I,-I,<), i= l....,mt. (35) 

Our singularity mapping shape functions can thus uniquely be determined by (33) and (35) 
from the polynomial field shape functions. This is the semi-radial singularity mapping for line 
singularities. If we eliminate p in (33) and (35) by using (19) and (28) then the semi-radial 
singularity mapping shape functions can directly be connected with the field shape functions 
such that 

M~={I-(l-~N,)il*]Ni(-l~-l.~)~ i= l,...,nr. 
I=1 

Mi= (l-AN,)-“‘I*N,, i>m. 
1-I 

(36) 

(37) 

4.1. Semi-radial singularity mapping for an s-node brick 

Consider, for instance, an original g-node brick element of Fig. 4 with the nodal placement 
of 

x1 = X2 = x5 = X8 = y, = y, = y, = y(j = 22 = z?J = 24 = 25 = 0 , 

x3= x4= x6= x7= x, y4= ys = y7= y8= x .?1= zfj= 27= zs=z. 

We adopt the well-known trilinear interpolation basis by 

(38) 
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(a) 03) 
Fig. 4. The original X-node brick element geometry. (a) Rectangular brick in the global Cartesian system (x. y. 2). 
(b) Normalized cube in the local parametric system (E, 7). 6). 

N, = i(1 - 5)(1- 77)(1 + 0, N2= A(1 - I$)(1 - q)(l- 6). 

N = 81 + 5)(1 - q)(l - 0, NJ = i(l + [)(I+ q1)(1- 0 3 

Ni = i(1 - 5)(1+ ?)(I - 0, N=i(1+5)(1-77)(1+5), 

N = k(I + [)(I + q)(l + L>, N=i%~-t)U+dU+O~ 

which guarantees the satisfaction of the constant field condition (27). 
Then the nondimensional radius is defined as 

(39) 

Fig. 5. Typical constant p lines on the .$-q-plane in linear fracture mechanics due to d\/p = f(3 + [ + r) - 6~) 
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pA= l-N,-N;?=$(3+~+~-&& (W 

Notice that p by (40) is independent of 5 and identical to the nondimensional radius in the 
quadrilateral semi-radial singularity mapping dealing with the two-dimensional point sin- 
gularities [21]. Typical constant p lines with A = i are shown in Fig. 5 on the constant c-plane. 
In particular we emphasize that p by (40) is monotone along the ray emanating from the 
central edge on the constant l-plane. 

Equations (36) and (37) then yield 

MI = $[I- ((3 + 5 + 7j - ~~/4]l~~](l+ <) f 

M2 = ;[l- ((3 + 5 + ?j - &)/4]1’“](1 - s> , 
M3 = i{(3 + < + r) - &/)/4}-‘+““(l+ &)(I - rl)(l - 5) , 

MA = i{(3 + 5 + rl - 5n)/4]-1+““(1 + 5)(1+ rl)(l - Y) , 

n/r, = $I(3 + 5 + rl - 5rl)/4}-‘+“A(1 - [)(I+ n)(l - f) , 

Me, = :I(3 + 5 + n - 57i+4}--l+“h(l + 00 - rl)(l + 5), 

MT = ;I(3 + 5 + rt - Sn)/4j-‘+t’h(l + &)(I + ??)(I+ 5)) 

M8 = 9{(3 + 5 + q - ~~)/4~-1+*‘A~l - Q(1 + rj)(l + 6) . 

(41) 

Notice that (39)-(41) are adequate for any distorted brick element. The reader can then easily 
verify that the NT functions (i = 3, , . . , 8) related to (39) are bounded everywhere within the 
element, The proportionality of p and r is thus realized within the vicinity of the central edge. 

For the rectangular brick concerned the semi-radial singularity mapping can simply be 
written as 

X = $X{(3 + S$ + T? - &),4}-X+1’A(l + 5) , 

y=~Y{(3+~+~-~~)/4~-t+“A(l+~~, 

z=&z(l+& 

(42) 

4.2. Semi-radial singularity mapping for a 6-node wedge 

We next consider the original 6-node wedge element of Fig. 6 with the nodal placement 
of 

xi = x2= y1= y2= zz= z3= z4= 0, 

x3 = x5= x,, y3= y5= Yi, 

x4=x,= x,, y4= yfi= Y*, 21=25= zg=z. (43) 

We adopt the trilinear interpolation basis of (39) but with collapse of nodes 1 and ir, and 
nodes 2 and 2, (Fig. 6) such that 
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(5 m ” 
Fig. 6. The original h-node wedge element geometry. (a) Wedge-type pentahedron in the global Cartesian system 

(x, y, z). (b) Normalized cube in the local parametric system (5,~. {) with collapse of nodes I and In and nodes 2 and 21,. 

N, = i(l- 5)(1+ !g, N&(1-5)(1-Q, 

N3=&+5)(1-rl)(l-0, N3 = 80 + 5)(1+ T)(l- 6) 3 (4) 

N = ;(I+ 5)(1- v)(l+ 0, N6 = 40 + 5X1 + rl)(l+ 0. 

The nondimensional radius is then defined as 

ph= l-N,-Nz=$(l+&). (45) 

We remark that p by (45) is independent not only of l but also of 7, and the same 
nondimensional radius appears in the triangular semi-radial singularity mapping dealing with 
two-dimensional point singularities [ 12,20,21]. Typical constant p lines with h = i are con- 
toured in Fig. 7 on the constant L-plane. Obviously p by (45) is monotone along the ray 
emanating from the central edge. 

Fig. 7. Typical constant p lines on the E-q-plane in linear fracture mechanics due to d/p = $( I + 5). 
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From (36) and (37) we have 

Ml = i[l- {(I+ 5)/2)““](1+ 5)) W = ;[I - {(I+ 5)/2}““](1- 0, 

M3 = a{(1 + 5)/2}““(1- q)(l- t) , AI, = i{(l+ 5)/2)““(1+ rl)(l- 0, (46) 

M5 = $10 + 5)/2}“A(l - r7)(1+ L), Mcj = :{(l + 5)/2}“‘A(l + n)(l + 5). 

Equations (44)-(46) are adequate for any distorted rectangular prism. Under the nodal 

placement of (43) the semi-radial singularity mapping can thus simply be written as 

x = %<l + 5)/2Y {X1(1 - 77) + X2(1 + rl)) , 

y = %1 + 5)/2)“wm - 7) + Y*(l + q)} , (47) 

.?=;z(l+~). 

REMARK 4.1 (on the general polynomial interpolations). Again we emphasize that our trial 
functions are based on the conventional polynomial interpolations in (5, r), l). Then cor- 
responding to (24) the field shape functions contributing to the central edge satisfy 

Ni = Ni(-l, -1,J) 2 Nj, i = 1,. . . , m . (48) 
j=l 

Equations (35) and (36) can thus generally be rewritten as 

M = (l-p)Nl(l-PA), i= 1,. . . , m, (49) 

,=ll-(l-$N,)l’*}N/$N;, i= l,..., m. (50) 

In the more complicated finite elements of Fig. 1 we always encounter the nondimensional 
radii by (40) and (45) corresponding to the normalized cube without collapse and with collapse, 
respectively. Hence p by (40) is termed the intrinsic hypercube nondimensional radius, while p 
by (45) is called the intrinsic simplex nondimensional radius. In the semi-radial singularity 
mapping these intrinsic nondimensional radii should always be used. 

5. Jacobian transformation formulae 

In the general semi-radial singularity mapping the parametric representation can be 
expressed as 

x-xO= C (Xi -XO)M,. (51) 
i>m 

Then using (lo), (29) and (33) differentiation of (51) gives 
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ax/q = c (x, - x&J I-* aNj/a( + (1 - A)N:; +/a(} . 
i>,rr 

ax/&j = 2 (x; - xo){p’ -*aN,/ar] + (1 - A)N:;+I/i,n}, 
I ),?I 

dxxlag = (1 - P)r3Xoldi + c (x, - x,,)C,‘73Ni/ag. 
I >n, 

Here we assume that p is independent of 6. 

(52) 

-5.1. S-node brick singularity element 

The Jacobian relations inherent to the g-node brick element of Fig. 4 can explicitly be written as 

and 

IJI = ;p2- yz, (53) 

at/lax = p”-‘(4A + (1 -h)pP(l- <)(1+ n)}Y/gAfJ. 

~%$/ay = -p^‘(l - A)p-“(1 - t2)X/8AfJ, 

avlax = -p”-‘(1 -A)p?(l- n2)Y/8AjL 
(54) 

i)q/i)y = ,&‘{4A + (1 - A)p-“(1 + [)(l - q)}X/SAfJ, 

dgaz = 2/z, 

ayaz = an/i)2 = ilcjliIx = ayay = 0. 

Here IJ[ denotes the Jacobian and the denominator function f, is given by 

fJ = (2A + (1 - A)p?(l + [q)}XY/SA 

_XY.2(1+5)+2(1+q)-(2-A)(l+O(l+r!) 
4A 2(1+5)+2(1+77-(f+5)(1+77) . 

(55) 

We note that fJ by (55) is positive throughout the region of interest [21]. 

5.2. 6-node wedge singularity element 

The transformation formulae associated with the 6-node element of Fig. 6 can be expressed 

as 

and 

(J( = ,?ZT/8A 

&$/,3x = 2A (Y2 - Y&-‘/T, @Jay = -2A(X, - X&u-‘IT, 

aTlax = - {Y,(l - T)+ Y,(l + d}p-‘IT, 

avlay = {X,( 1 - V) + -&(I + rl)}p-+JT, 

ayaz = 2/Z, aya.2 = avJaz = ayax = allay = 0. 

W) 

(57) 
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Here T denotes twice the area of the triangular surface in the global Cartesian system by 

T = X,Y,+ X,Y, . (58) 

6. Singularity evaluation 

We have defined the semi-radial singularity mapping so that the lowest terms associated 

with the radius r in our trial function are O(r”) within the vicinity of the central edge (except 

for the r0 terms). Therefore, O(r”-‘) singularities may appropriately appear in L$/ax and a+/ay. In 
this section we present a much more direct proof for the preceding two examples. Hereafter we 
denote x and y by x since d+//az has no singularity. 

6.1. g-node brick element 

We consider first the g-node brick element of Fig. 4. It is clear in (54) that the a&Ydx and 
dn/dx terms have O(p*-‘) singularities. In the partial differential formula of the form 

&$/ldx = @&%)(X/dx) + (@G71)(d@x) (59) 

the a$/&$ and a+//ar, terms are polynomials in (5, n, c). Hence the first derivatives a+/& and 
&$/lay have O(p*-‘), i.e., O(r*-‘) singularities as expected. 

The strain energy within the element can be estimated by 

I I 1 

E= 
III 

(W/W’lJld~ dr7 dl. (60) 
-1 -1 -1 

The G’+/lax term contains O(p*-‘) singularities, but fortunately we have 0(P2-2A) in the Jacobian of 
(53). Thus the integrand of (60) has no singularity, which ensures the boundedness of the strain 
energy. 

6.2. 6-node wedge element 

In the 6-node wedge element of Fig. 6 (57) describes that &$/ax is a product of the p*-’ term 
and another polynomial while av/ax has the p-l term. However, &$/la7 takes a value of strictly 
zero at ,$ = -1, and hence it has a factor of (1 + 0, i.e. p’. It is now clear in (59) that the first 
derivatives &$I& and ~@/ldy have the px-’ factor. 

Equation (56) further ensures that the integrand of (60) is a product of the (1 + 5) term and 
another polynomial, and consequently the strain energy is bounded. 

7. Element familization 

Once the appropriate mapping shape functions are determined for the original nodal 
placement it is easy to place other additional nodes without changing the element geometry 
and also without influence upon the developed transformation formulae. Our semi-radial 
singularity mapping element can thus systematically be familized with the known polynomial 
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interpolation bases. Incorporation of the semi-radial singularity mapping family into the 
existing finite element programs can then easily be attained only by the minor modification of 
the Jacobian transformation routine. 

We present here a few elaborate elements having the reproducibility of I. p*, p’“. p* ‘I-. 
z-2 2 

P r3 z and z2 with the necessary minimum nodal placement. In linear fracture mechanics 

of A = $ the reproducibility of these terms ensures the satisfaction of the global linear field 
reproducibility of (9). It is further associated with the polynomial completeness of degree two 
in (x, y, z) in the isoparametric mapping at the limit of h = 1. 

7.1. The brick singularity family with the rectangular interpolations 

Consider, for example, the 22-node brick element of Fig. 8. Then the held shape function 
are given by 

N 0.0.0 = - A ( 1 - 5x 1 - )( 1 - Lx 1 + v l - 5rl) . 

Nw,, = :(I - 5)(1 - rl)(l - 4”) > 

N = n,n,2 - !?(I - 6x1 - rl)(l + 6)(1 - 6- 5rl) 7 

N o.l.ll= - t5u - 5)(1 - 777(1 - 5). 

N = 0.1.2 - $S(l - 4x1 - 772)u + r> 3 

N = 0.2.0 - $31 - 5x1 + 77x1 - 4x1 + 5+ 6%). 

N 0.7.1 = :(I - 5)(1+ n)(l- !3 > 

N 0,2,2=-~(1-5)(1+rl)(l+~)(l-~+577), 

N = l,O,O - f(I - 52)77(1 - n)(I - 5) 9 

N = 1.0.2 - $(I - <‘Ml - rl)(I + i) > 

N = l.l.0 4(1 - 5?(1 - $)(I - J) * 

N 1.1.2 = tu - 5’N - 772)U + 0 9 

N 1.2.0 = au - 52hu + rl)(l- 0 3 

N 1.2.2 = $0 - 5’hJ(1+ rl)(l + L> > 

N 2,,,.0=-$(1+5)(1-71)(1-~)(l+~+5r))~ 

N = 2.0.1 $(l + ‘$)(I - rl)(l - 63 7 

N 2,0,2=-~(1+5)(1-rl)(l+~)(1-5+5rl)~ 

N 2.14 = aJx1 + ml - r72)u - 0 . 

N 2.1.2 = 65u + 5)(1- 772)(1 + 0 3 

N = 2.2.0 - d(l + 5)(1+ rl)(l - Lx1 + L- 4%) 3 

N = 2.2.1 bu+ 5x1 + rl)(l - 5’) 3 

N 2,2,2=-~(1+5)(1+rl)(l+~)(1-~-577). 

(61) 
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(4 (b) 
Fig. 8. The 22-node brick element geometry. (a) Rectangular prism in the global Cartesian system (x, y, z). (b) 
Normalized cube in the local parametric system (5, 7, 4’). Five face and internal nodes on J = 0 are eliminated from 
the well-known 27-node rectangular Lagrange element [2]. 

Here the triple index (i, j, k) designates a node having the parametric coordinates of (i - 1, j - 
1, k - 1). This elaborate trial function space contains the original space by (39) and hence the 
reproducibility of 1, pA, p”-’ Y and z inherent to the original trial function is automatically 
preserved. For the systematical development of (61) see [6]. 

Notice that (61) satisfies the p2* reproducibility such that 

(3 + 5 + n - 57j)*/16 = 1 - (No,o,o + No,,~ + N.o.2) - i(No,,,o + N0,1,2 + ~LOJJ + &o.*) 

- &(N,*,o+ N1.1.2) . 
(f32) 

In the same manner we can prove that p 2A-2r2 and z2 are reproducible in (61) under the 
parametric representation (42). 

Thus the general rectangular polynomial interpolations yield a series of brick-type sin- 
gularity elements. In particular we note that not the Serendipity but the regular Lagrange 
nodal placement is preferable on the surface of { = 2 1. 

7.2. The wedge singularity family with the collapsed rectangular interpolations 

If we degenerate the surface of 5 = - 1 into the central edge of 5 = r) = -1, then the 
conventional rectangular interpolations can also be applied to the more elaborate wedge 
elements. In the preceding example such degenerating techniques give 

N o,*,o= No,o,o+ N”,,,o+ No.2.0 = -a<1 - C$)(l- 5)(1+ 5’ 6)) 

N (),*,I = No.o.1 + N,.,, = t(l - 5)(1 - c’), (63) 

N 0.*,2 = No.o,2+ No,,,*+ No,2,2 = -$(l - 5)(1 + s)(l + [- s), 

The other field shape functions in (61) are valid in this case also. 
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Fig. 9. The 17-node wedge element in the global Cartesian system (x, y, z). In the 22-node cube of Fig. 8(b) the 
5 = - 1 plane in degenerated into the central edge of 5 = 7 = ~ I 

Thus we have the 17-node wedge element of Fig. 9, the trial function space of which 
involves 1, ph, p’“. phP’r, p2”--2~z, z and z* under the semi-radial singularity mapping of (47). 
We remark that the regular Lagrange nodal piacement is desirable on the surface of < = -+ I 
instead of the Serendipity one. 

7.3. The wedge singularity family with the triangular interpolations 

Let us introduce another local parametric system (CO,, w2, wg, 6) defined by 

Here wi, w2 and w3 are the 2-D volume (i.e. area) coordinates related to 5 and 77 [12]. 
For a B-node wedge element of Fig. III where two face nodes 

previous 17-node wedge, we apply the famous triangular interpolations 
Then the field shape functions can be written as 

N o.*,o = -A(1 - y)(2-2w, + $3, N,,~,,, = %(I -S’), 

N o.*.? = - $,(I + <)(2- 204 - 0, N,,,,,,, = 2w,o2(1 - 0. 

are eliminateh in the 

by using W, w2 and 03. 

N - 2w,02(1 + ,$), 1.0.2 - N,.z.,, = 203w,(l - t), N,.z,z = 2~3~1(1 + i)’ 

N 2,0,0 - - - $ 02( 1 - l)(2 - 2~2 + C), N2.o.x = W( 1 - Y”) > 

N 2,o.z = - -:wz( I + 5)(2 - 20.12 - 0, Nz1.0 = 2~+3t 1 - ~9 1 

N 2.1.1 - - - 3wzoJ 1 -I- &), Nz.2.o = - i w4 1 - 1)(2 - 2~3 + 6) 3 

N 2.2.1 = w4 1 - Y’h N2.2.2 = - ; wj( 1 + .9(2 - 20.3 -- Y) . 

(65) 

Substitution of (64) into (65) then gives 
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&‘I 
Fig. 10. The 15-node wedge element geometry. (a) Triangular prism in the global Cartesian system (x, y, 2). 
Normalized cube composed of only side and corner nodes in the local parametric system (5, v,[) with collapse. 

(b) 

N o,*,o = - au - 5)O - 00 + 5 + 0 2 No,*J = +(I- [)(I- l’) , 

N 0,*,2 = - t0 - 5)(1+ OU + 5 - 47, N,o,o = 31 - 5’)(1 - rl)(l - s> , 
N 1,0,2 = b(l - 5’)O - rl)(l + 0. N1.2.0 = $U - 5’)U + rl)(l- 0, 

N 1.2.2 = iu - 5’)(1 + n)(1+ 5) 

N2,o.o = - ik(l + 5)(1- rl)(l - l-)(3 - 5 + rl + 2l+ 5~) > 

N2.0.1 = fU + 5)U - r))O - L’), 656) 

N2,0,2=-~(1+~)(1-rl)(l+5)(3-5+rl-25+5rl), 

N2.1.0 = :(I + 0’0 - q2)(1 - 0, N2.1.2 = $0 + 5)‘(1- ~~~10 + S), 

N - -&(l+ 5)(1+ q)(l- 0(3- 5- rl +25- 5q), 2.2.0 - N2,2,,= 8U + [)(I+ d(l- J’) 2 

N 2.2.2, = - i% + 5)(1+ 77)(1+ L-)(3 - 5 - rl - x - 6%) . 

It is then easy to verify that the constant, p*, p2*, phP1r, p2A-2r2, z and z2 terms are 
reproducible in our trial function based on the interpolation basis by (66) under the semi-radial 
singularity mapping of (47). In this example the p2A reproducibility can be expressed as 

+(I + ()‘= N2,0,0+ Nz,o,l+ N2,0,2+ N2,1,o+N2.1,2+ N2.2.0 

+ N2.2.1 + N2.2.2 + f(N,,,o + N,o,2 + N1.2.0 + N1.2,2) . (67) 

We note that the preceding collapsed rectangular interpolations in (5, q) require 17 nodes to 
realize the concerning reproducibility, while 15 nodes are enough according to the triangular 
interpolations in (ol, m2, 03). Thus applications of the famous complete Lagrange inter- 
polations for the simplex [9, lo] may in general be preferable to the wedge-type finite 
elements. 
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Fig. 11. Compact tension specimen. (a) Specimen geometry. (b) Stress intensity factor across the thickness. 
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8. Numerical example and concluding remarks 

The problem we have solved for verifying our mapping is the compact tension specimen of 
Fig. II(a). Computed stress intensity factors are depicted in Fig. 11(b) where wedge elements 
of Fig. 9 are used. The results are in good agreement with those by Yamamoto et al. [22] and 
Yagawa et al. [23] due to sophisticated superposition methods. We emphasize that the 
semi-radial singularity mapping for line singularities can easily be incorporated into any 
existing finite-element program with only minor modification of the Jacobian transformation 

routine. 
In the singularity elementology, introduction of the nondimensional radius p on behalf of 

the Euclidean radius r is of great significance. Naturally p must resemble r as close as possible, 
and hence the intrinsic hypercube nondimensional radius or the intrinsic simplex one should 
always be used. It is demonstrated that the ph reproducibility plays an important role in the 
semi-radial singularity mapping. We further pay special attention to the reproducibility of the 
ph and pA-’ Y expansion terms in selecting more elaborate trial function spaces. Therefore, 
applications of the regular Lagrange family for the cube developed by Argyris [l, 21 as well as 
the complete Lagrange family for the simplex also clarified by Argyris [7,9] are of great 

importance. 
In linear fracture mechanics of A = $ our elaborate elements of Figs. 8-10 realize the 

reproducibility of X, y and z by (9). It is rather difficult to separate the effects due to the 
reproducibility of p2” (i.e. p) and pzAe2 2 Y from those due to the global linear field reproduci- 
bility related to x and y. For general A (yielding noninteger l/A) the x and y terms are never 
reproducible in our semi-radial singularity mapping elements. However, yet we have no 
consensus on the necessity of the global linear field reproducibility in general fracture 
mechanics. 

Crack elements with line singularities are introduced in [16,24-261 by combining the two- 
dimensional singular space with the perpendicular polynomial space, say in the form of a 
tensor product. They are applicable only to the constant thickness plate with straight crack tip 
line. We remark that our semi-radial singularity mapping is designed so that line singularities 
along the curved crack tip can be treated even for a variable thickness wall. Evidently, our 
mapping shape functions are not always separated in variables. 

In some cases A could also vary across the thickness. It is noted that the semi-radial 
singularity mapping is adequate even for A = A(l) but with appropriately modified trans- 
formation formulae. 
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