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Analytical solutions for the electrical potential are developed within a rectangular domain under 
dirichlet and Neumann boundary conditions. Examples enable us to examine currently used numerical 
techniques. All solutions are applicable to the boundary element method as typical fundamental 
solutions. 

1. Introduction 

In potential theory, the boundary element method is recognized as a powerful numerical 
tool. Usually it works with the simple fundamental solution based on the whole- or half-space 
scalar Green function. In the case of a uniform and isotropic domain connected only to 
isolated regions, a Fredholm integral equation of the second kind with respect to the potential 
can be derived [l, 21 which is solved numerically by using piecewise polynomial trial 
functions [3-71 kept over every boundary elements. As is presented in this paper, if we 
practice numerical quadratures in computing the integral equation, then unacceptable results 
are obtained within the vicinity of the boundary surface. In the case of analytical integrations, 
on the other hand, we have highly accurate boundary-element solutions everywhere. However, 
analytical integrations are not always possible, and hence more complicated fundamental 
solutions should be considered in the boundary integral approach. 

This paper is devoted to the analytical solutions of electrical potential within the simple 
rectangular domain. We utilize the image method in conjunction with a conformal mapping, 
and the solutions are given in the form of infinite series. Examples are then presented under 
Dirichlet and Neumann boundary conditions. 

Through the weighted residual formulations, we further derive a general integral equation. 
Here attachment of the positioning constant to the governing equation is of great 
significance [8]. Under the Neumann boundary condition, we have the Fredholm integral 
equation of the second kind with respect to the potential. The problem is then solved 
numerically based on the whole-space scalar Green function. Typical finite-element solutions 
are also compared to exact values. 
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2. General infinite fissure problem 

The problem we first consider is the two-dimensional infinite fissure R of uniform and 
isotropic conductivity (T embedded into the universal whole-space 0, of conductivity oi, (Fig. 

1). Two walls rt; and Th lie at y = h and y = -h, respectively. A dc point source of current 
intensity I is placed at XZ = (x:, yz) with a no th er source of -I at x, = (xi, y;) both within R. 

The electrical potential at x = (x, y) in R denoted by 4(x,) is governed by 

aV”qf+) + 16(x - x:) - 16(x - x7) = 0 ) x E R ) (1) 

while the governing equation for the potential &(x) in J2,, can be written as 

nF24%(~) = 0 3 ys-h or hry. (4 

Here V* denotes the Laplacian with respect to x, and 6 is the Dirac distribution. 

The boundary conditions that apply to this problem are 

and 

aa+)/ay = ~d4&)l~y, y = r+ h . 

The natural Dirichlet boundary conditions 

that 

(3) 

(4) 

at infinity should further be satisfied such 

and 
IIX - XII -+ co and JJx - x;JJ + ~0 , (5) 

lb - 4-t cc and [Ix - XJ\[ + ~0 . (6) 

Here II . )I designates the usual norm in (x, y). 
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Fig. I. Geometry of the infinite fissure problem. The infinite fissure R of conductivity (T is embedded into otherwise 

uniform and isotropic whole-space 00 of conductivity CO. The boundary interfaces r;l and Th are expressed as y = h 
and y = -h, respectively. 
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2.1. For the general infinite fissure problem, the potential 4(x) in R can be written 

1 m 

where 

4(x) = & C Knln[R,(x, x;)I&(x, x:)] , - h 5 y 5 h , 
n=-co 

R,(x, xs) = [(x - xs)’ + {y - (- 1)“~s - 2rW211”, 
and 

The infinite summation is taken with respect to the integer n. 
The potential &(x) in L?, too can be expressed in an infinite series form such that 

4”(x) = (l+ m 2=a 2 K”ln[R,(x, K)/R(x, ~31, Y 5 - h 3 
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Fig. 2. Placement of the image sources associated with 
solutions within the infinite fissure 0. Only the original 
source should be placed within 0. 
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Fig. 3. Placement of the image sources associated 
with solutions in the outside domain Ro with y 5 -h, 
where the primary source is placed within the infinite 
fissure R. No image sources should be placed within R. 
of y 5 -h to avoid unreal singularities. 
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and 

4()(x) = (I+ K)Z 2no 9 K ” ln[R, (x, x,)/R, (x, x;)] , h 5 y . 
“z--m (11) 

PROOF. In the simple whole-space of conductivity CT, let us place nth sources of current 
intensity K”Z and -K”Z at (xl, (-l)“ys’+ 2nh) and (xl, (-1)“~; + 2nh), respectively (Fig. 2). 
Then we have (7). 

Let n be nonnegative. Then evidently (n + 1)st sources are the images of (-n)th sources 
with respect to Z’-,, while (-n - 1)st sources are those of nth sources reflected in Zh. 

Let nth sources be of current intensity ~“(l+ K)Z and -~“(l+ K)Z for nonnegative n, and 
let nth sources with negative n be extinguished (Fig. 3). Then we have (10). Obviously nth 
sources related to &(x) of (10) and nth and (-n - 1)st sources associated with 4(x) of (7) 
realize the continuity of the potential as well as that of the normal current density across Zh. 
Hence the boundary conditions (3) and (4) are satisfied on Zh of y = - h. 

In the same manner, we can prove that 4(x) of (7) and &(x) of (11) satisfy (3) and (4) on Z”, 
of y = h. 

3. Infinite fissure problem under the Dirichlet boundary condition 

Consider the perfectly conductive domain n,, with a0 = ~0. Then we have 

&(x)= 0, y S- h and h my. (12) 

Noting (3) our problem is thus to solve the differential equation (1) under the Dirichlet 
boundary condition of the form 

@(x)=0, y=th. (13) 

Evidently the natural boundary condition (5) at infinity should also be satisfied. 

THEOREM 3.1. In the Dirichlet infinite fissure problem, the electrical potential 4(x) can be 
expressed as 

O(x)=& ln[F(x, y, XT, y;, h)G(x, y, x:, y:, h)lW, y, xB, y’s, h)W, y, xi, YT, h)l , 

(14) 
where 

and 
F(x, y, x,, y,, h) = eWxih + emxS”’ - 2e”‘“‘“s”2hcos n(y - yS)/2h, (15) 

G(x, y, x,, y,, h) = emx”’ + elxJh + 2e”‘“‘“s”2hcos n(y + yS)/2h . (16) 

PROOF. Let us introduce the conformal mapping of the form 

n(x+iy)=2hIn(X+iY), (17) 
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where i designates the imaginary unit. Then the infinite fissure 0 of Fig. 1 with -h 5 y 5 h can 
conformally be transformed into the half-space of Fig. 4 with X 2 0 [9]. 

Let X: = (Xz, Yz) and X; = (Xi, Y;) denote the transformed source points related to xs 
and x;, respectively (Xz > 0 and XL > 0). The potential at X = (X, Y) associated with that at 
x can then be given as 

4(X) = & {ln(]]X - X$]lX - Xi]]) + K ln(ll* - 

for X LO. Here x denotes the image point of X 
i.e., _$ = (-X, Y), and K is given by (9). In this case, K = 

The conformal mapping of (17) can be solved as 

X,((lll~ - XII)) 3 (18) 

reflected in the plane of X = 0, 
- 1 since u. = 00. 

X = emxlh cos nyl2h and Y = erxihsin nyJ2h, -hsysh. (19) 

Substituting (19) with respect to X, Xg and X; into (18) we have (14). 

REMARK 3.2. Corresponding to (1) the Poisson’s equation in (X, Y) can be written as 

aV”4(X) + 18(X - xg) - 16(X - X,) = 0, x 2 0. (20) 

Here V* is related to X Notice that the Jacobian never appears in the transformed governing 
equation. 

Y R 

Fig. 4. Transformed space (X, Y) after the conformal mapping of (17). The half-space with positive X corresponds to 
the infinite fissure R in (x, y). The image of X = (X, Y) reflected in the plane of X = 0 is denoted by 2 = (-X, Y). 
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THEOREM 3.3. The potential of (14) can alternately be expressed as 

(21) 

Here R, is given by (8). 

4. Infinite fissure problem under the Neumann boundary condition 

In the general fissure problem, let the conductivity a0 of the universal domain a,, be zero. 
Then on the walls r’h and &, the potential 4(x) should satisfy the typical Neumann boundary 

condition of the form 

a+(x)/dy = 0, y = *h. (22) 

Evidently the natural boundary condition (5) at infinity should further be satisfied with the 
Poisson’s equation (1). 

Notice that the potential &,(x) has no physical meaning in this case. 

THEOREM 4.1 In the Neumann infinite fissure problem, the electrical potential 4(x) can be 
expressed as 

4(x) = &NW, Y, XT, YB, h)G(x, y, xi, ~1, h)lF(x, Y, xb, Y:, h)G(x, y, xd, ~1, h)] . 

(23) 

Here F and G are given by (15) and (16), respectively. 

PROOF. The conformal mapping of (17) is valid also in this case, and hence the potential 
4(X) at X after transformation is given by (18) but with K = 1. 

THEOREM 4.2. The potential of (23) can be rewritten in an infinite series form as 

4(x) = & 2 WG(x, xi)lR,(x, x3] . 
“=-cc 

(24) 

Here R, is given by (8). 

REMARK 4.3. Although the potential &(x) has no physical meaning, the solutions 4(x) of 
(7) in the genera1 infinite fissure problem produce those of the Neumann problem after 
substitution of K = 1. This feature is of significance in the boundary element approach. 

REMARK 4.4. The conformal mapping of (17) is inadequate if - 1 < K -C 1 (K # 0). 
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5. Rectangle problem under the Dirichlet boundary condition 

We now consider a rectangular domain portrayed in Fig. 5 with uniform and isotropic 
conductivity 0 embedded into otherwise perfectly conductive whole-space. A dc point source 
of current intensity I is placed at x, within 0. Obviously the potential 4(.x) is to be zero on rX 
of y = h, T; of y = -h, ri of x = g and r, of x = -g such that 

4(x) = 0, x=kg or y=&h. (25) 

The governing equation is written as 

~v2~(x)+Is(x-xx,)=o, XER. (26) 

THEOREM 5.1. In the Dirichlet rectangle problem, the electrical potential can be written as 

G)=& 2 (-l)“ln[G(x, Y, C, ys, h)lF(x, Y, x2’, Y,, h)l , 
m=-cc 

(27) 

where 

X y = (- l)“x, + 2mg. (28) 

Here the infinite summation is taken with respect to the integer m, and F and G are given by (15) 
and (16), respectively. 

PROOF. We apply the image procedure with K = - 1 in Theorem 2.1 with respect to ri and 
&. Then our problem can be solved as the Dirichlet infinite fissure problem with a series of 
sources of current intensity (-1)“I placed at (XT, yS). 

r- g 
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I Y 
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s L x 

R 
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X= 9 

Fig. 5. Rectangular domain R with uniform and isotropic conductivity u. A dc point source of current intensity I is 
placed at xS within 0. The walls are expressed as x = *g and y = +h. 
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THEOREM 5.2. The potential of (27) can be rewritten as 

where 

4(x)=$ 2 2 (-l)“‘“ln[(x - xY)‘+ (y - y:)*] ) 
m=-cz n=-Cc 

y’: = (- 1)“~s + 2nh . 

(29) 

(30) 

PROOF. In the simple whole-space of conductivity a, we place the image source of intensity 
(-l)m+“l at (XT, yz). Th e image procedure in two directions (fig. 6) thus yields (29). 

THEOREM 5.3. Let J,(x) and J,(x) denote the current densities at x in the x- and y-directions, 
respectively. Then in the Dirichlet rectangle problem, we have 

Jx(x) = :I 2 (-1)“Fx(x, Y, G’, Y,, W- G(x> Y, .C, Y,> WI, (31) 

and 

J,(x) = tr 2 (-l)“V,(x, Y, XT, ys h) - Gy(x, Y, x’l’, ys, 0. (32) 
In=--9 

y= ih 

y=h 

y=-3h 

y=-‘,h 

y=-Jh 

X=-Q x=-g X=lJ x = 5g 
x=_ 3g x= 3g 

Fig. 6. Placement of the image sources in two directions associated with the rectangle 0 of Fig. 5. The outside domain 

120 should be perfectly conductive or isolated. 



Here F,, F,, G, and G, are given by 

F,(x, y, xs ys h) = {ewx/h _ @x+ rsV2h 
~0s nTT(y - yXWlhF(x-, y, xs, ys, h) , 

FJx, y, x,, ys, h)={e rTT(X+X”‘2hsin ~(y - y$2h}lhF(x, y, x,. y,, h) , 
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Gx(x, y, x,, y,, h) = {emx’h + e ~(x+xs)‘2h~~~ m(y + y,/2h}/hG(x, y, x,, ys, h) , 
and 

G,(x, y+ x,, y,, h) = { - e rTT(XfXs)‘2hsin ~(y + y,)/2h}/hG(x, y, x,, ys, h) . (33) 

PROOF. The electric field is defined as -V~(X), where V is the Hamiltonian. Let E,(x) and 
E,(x) denote the electric field components at x in the x- and y-directions, respectively. Then 

we have 

E,(x) = - &$(x)/ax 

The Ohm’s law further gives 

JX(x) = aE,(x) and 

and E,(x) = - &$(x)lay . (34) 

J,(x) = uE,(x) . (35) 

Thus differentiation of (27) gives (31) and (32). Notice that TF, represents a(ln F)/ax. 

6. Rectangle problem under the Neumann boundary condition 

Consider next the rectangle 0 of Fig. 5 but embedded into otherwise isolated whole-space. 
Then on the walls, we have 

and 
ac#J(x)lax=o, x=&g, 

a+(x)lay = 0, y = + h . 

(36) 

(37) 

Equations (36) and (37) state that no electric power diverges through the walls, and con- 
sequently a dc point source doesnot produce the steady state. We thus solve not (26) but (1) 
under the Neumann boundary conditions (36) and (37). 

We define $, p, K, and KY by 

cl/(x, x,) = $ ,tn[F(x, Y, XT, Y,, h)G(x, y, G’, y,, h)] , (38) 
In=-cc 

Pk 4 = ,.,z, $_ ldb - x3’+ (y - Y:)~] . (39) 

and 
K@,xs)= 2 {F,(x,y,x~,y,,h)+G,(x,y,x~,y,,h)}, 

ITI=-cc 

K, (x, G) = 2 {Fy (x, Y 2 XT, Y,, h) + Gy(x, Y, G’, ys, h)) . In=--?) 

(40) 

(41) 
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THEOREM 6.1. In the Neumann rectangle problem, the electrical potential can be expressed as 

(42) 

Here C, denotes an appropriate constant, and +!J is given by (38). 

PROOF. The image procedure in Theorem 5.1 is performed with K = 1. Then our problem 
can be solved as the Neumann infinite fissure problem with a series of sources of intensity I 
placed at (XT, yS). However, the natural boundary condition (5) at infinity is meaningless in the 
original Neumann rectangle problem, and consequently an appropriate constant cl is needed. 

THEOREM 6.2. The potential of (42) can alternately be written as 

4(x)=- 4:0 @( x, xi) - P(x, xd)) + G . (43) 

Here C, denotes an appropriate constant, and p is given by (39). 

THEOREM 6.3. In the Neumann rectangle problem, the current densities can be written as 

Here K, and KY are given by (40) and (41) respectively. 

PROOF. Differentiation of (42) gives immediately (44) and (45). Evidently the constant C, 
disappears. 

REMARK 6.4. The solutions of (42) to (45) in the Neumann rectangle problem allows point 
sources on the walls. In the Dirichlet rectangle problem, on the other hand, sources should not 
be placed on the boundaries. 

REMARK 6.5 The image procedure in two directions of Fig. 6 is valid only in the case of 
K = +1 (or trivially K = 0). 

REMARK 6.6. The image procedure is applicable also to the three-dimensional problems, 
but not the conformal mapping. 

7. Examples 

We can now examine currently used numerical techniques such as the finite element and 
boundary element methods. Examples we present are associated with a rectangle of g = 4 and 
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r- 
9 

x=-4 

y=2 

R 

cl= 1/4n 

Y 

L x 

+1 

J 

53 y=-2 

r+ g 

x=4 

Fig. 7. Geometry of the targe examples with g = 4 and h = 2. The steady-state current of unit intensity is driven 
into the rectangle 0 of conductivity c = 1/4rr at (2, 1) and removed from (2, - 1). 

h = 2 with conductivity (T = 1/41-r (Fig. 7). The steady-state current of unit intensity is driven into 
0 at (2, 1) and removed from (2, -1). In the Neumann rectangle problem, for simplicity, we 
put C, = 0 in (42). 

We compute the potential and current densities by approximating the infinite series of ET, 
by the finite one of x!,,,. Here N is increased until the sufficient convergence is attained. In 

Tables 1 and 2, the potential and current densities at (0, 1) due to the finite approximations are 
listed against N in the Dirichlet and Neumann rectangle problems, respectively. All values 
converge quite rapidly. 

At nodes regularly placed on a grid without vacancy, computed results are listed in Tables 3 
and 4. 

Table 1 
Numerical solutions at (0, 1) under the finite ap- 
proximations in the Dirichlet rectangle problem. The 
infinite series of xz, is approximated by the finite one of 
Phi 

N c#1(0, l)( x lo-‘) J,(O, l)( X 1O-8) Jy(O, 1) 

0 1729635 - 2164740 0 
1 1726401 - 2160712 0 
2 1726401 - 2160712 0 
3 1726041 - 2160712 0 
4 1726401 - 2160712 0 
5 1726401 - 2160712 0 

Table 2 
Solutions at (0, 1) under the finite approximations in 
the Neumann rectangle problem 

N c#J(O, l)( x lo-‘) J,(O, l)( x lo-‘) J,(O, l)( x lo-‘) 

0 8438165 - 5431716 - 4981712 
1 8813035 - 5646611 - 5215981 
2 8813735 - 5646210 - 5216419 
3 8813736 - 5646210 - 5216419 
4 8813736 - 5646210 - 5216419 
5 8813736 - 5646210 - 5216419 
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REMARK 7.1. In our examples, the following relations hold: 

and 

4(X? Y) = - 4(X> -Y> 3 (46) 

J,(x, yj = - Jx(x, -Y), JYC? Y> = JYCG -Y), (47) 

C#qx,0)=J*(x,0)=0. (48) 

Notice that the potential 4 and current density J, take strictly zero along the line of y = 0. 

8. Boundary element applications 

Let 4*(x, x) be the fundamental solution governed by 

aV”c$*(i, x) + A(x) - x) = 0 . (49) 

Here 9’ is related to x = (~2, p), and A(x) is the positioning constant [S]. In the case of 
rectangular domain of Fig. 7, A(x) takes t if x is placed at the vertex. For x on the smooth edge 
and within 0, A(x) takes $ and 1, respectively. 

Noting (1) and (49) let us adopt the weighted residual of the form 

o = I R +*(i, x)[ad*+($) + 16(i - xb) - IS(i - x,)]df2 

- 
J 
R ~(i)[&*~*(f, x) + A(x)6(i - x)]d.n 

Here the differentiations and integrations are taken with respect to the field coordinates 2. 
then we have 

where 6 is the outward normal at 2 on r from 0, 9 is the Hamiltonian related to x and &(x) 

denotes the primary potential deformed by 

64x) = I{4*(xd, x) - 4*(x;, x)} . (52) 

In the Neumann rectangle problem, (51) can be written as 

(53) 

Here P designates the part of r where fi - v4*(i6, x) f 0, and C denotes an appropriate 

constant. In the case of the whole-space scalar fundamental solution of the form 
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(54) 

P is identical to T, i.e., P is composed of r: and rg. Here R. is given by (8). If we adopt 

another fundamental solution of the form 

4*(x, x) = - & ln[R&Z, X)/RI@, x)1 , (55) 

then we have 

and hence f is composed of r,t and r,. 
In the boundary integral approach, the Fredholm integral equation (53) of the second kind 

is first to be solved on x on r. We divide T of Fig. 7 into 24 boundary elements of unit length, 

and on each boundary element the piecewise linear trial function is assumed for the potential. 

0 

-0.2 

-0.4 

0 BEM solution 

x 

1 1 t I 1 

-4 -2 0 2 4 

Fig. 8. Boundary-element solutions for the current density JY together with the analytical profile along the line of 
y = 0. In the boundary element method, the whole-space scalar fundamental solution is used with analytical 
integrations for the Neumann problem of Fig. 7. 
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An attempt is then made to satisfy (53) at the nodes of boundary-elements. Once the surface 
potential is approximately determined over each boundary element, the potential at the field 
point x (not on r) can be computed also by using (53). 

We practice analytical integrations in computing (53). Figs. 8 and 9 show the computed 
current densities along the line of y = 0 and x = 0, respectively. Solutions on boundaries Th 
and r,+ are depicted in Figs. 10 and 11 respectively. We further plot the numerical potential 
along x = 0 in Fig. 12. All results are in good agreement with exact ones. 

0.1 

0.0. 

0 

-0.0: 

-O.l( 
Y 

c I 1 

-2 -1 0 1 2 

Fig. 9. Current densities J, and JY along the line of x = 0 in the Neumann rectangle problem. The boundary- 
element solutions are due to analytical integrations. 
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Jx 
0.2 

-0.1 

-0.2 

x 

Fig. 10. Boundary-element solutions due to analytical integrations on the boundary rh in the Neumann rectangle 
problem. 
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-3 
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-0.1 

-0.2 

-2 -1 0 1 2 

Fig. 11. Boundary-element solutions on r+, due to analytical integrations in the Neumann rectangle problem. 

Boundary-element solutions due to 2-point Gauss quadrature are shown in Fig. 13 along the 
line of x = 0. Numerical results are strongly influenced by the accuracy of integrations. Within 
the vicinity of the boundary surface, a nose-dive is further taken into half of the numerical 
potential value on the surface. This is because the numerical quadrature cannot treat a term 
which yields theoretically the appropriate singularity constant. In the case of analytical 
integrations, on the other hand, such a term can automatically be considered, and numerical 
solutions are everywhere adequate, see Fig. 12. 

Suppose that another fundamental solution is adopted in (53) so that its normal derivative 
takes zero on some part r - K Then the numerical potential can be smooth near the part even 
by approximate integrations. Evidently analytical integrations are not always possible, and the 
use of more complicated fundamental solution should thus be investigated in the boundary- 
element approach. We emphasize that all analytical solutions presented in this paper can be 
applied to the boundary integral techniques as typical fundamental solutions. For a Neumann 
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1 

0 

-1 

Y Y 

I I I 1 I 1 1 I 1 I 

-2 -1 0 1 2 -2 -1 0 1 2 

Fig. 12. Boundary-element solutions for the potential Fig. 13. Boundary-element solutions for the potential 
along the line of x = 0 due to the analytical integrations along the line of x = 0 due to Gauss numerical quadra- 
in the Neumann rectangle problem. tures in the Neumann rectangle problem. 

problem within the domain fl of Fig. 14, we show I’ associated with typical fundamental 
solutions in Table 5. 

REMARK 8.1. On the smooth boundary, the tangential current density can be computed by 
using the differentiated form of (53). Here the singularity constant of i should be considered. No 
other components are obtained because of singularities which cannot be avoided in this form. In 
order to compute those values, we must introduce more complicated fundamental solutions. 

REMARK 8.2. In the Dirichlet problem, (53) on r is written as 

(57) 
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Fig. 14. Geometry of the typical Neumann problem. 

Table 5 
Typical fundamental solutions with f to be taken into considerations in 

the integral equation (53) for the Neumann problem of Fig. 14 

P 

J 
l t 

x 
8 

- & in[F(J, j;, X, Y, h)G(K 1, ~3 Y, h)l r,. r,, r: 

- -& In[F(B, j;, X, Y, h)G(% 9, ~3 Yt h) rx, r,, r, 

. ~(n, g, zg - x, y, h)G(f, Y, 7% - x. Y, h)I 

- +-& $6 x) rx, r, 

Such a Fredholm integral equatian of the fn-st kind with respect to ti - 94, in general, results in 
somewhat unstable numerical solutions. Hence, the other type of the boundary integral 
techniques should be established in the Dirichlet problems, see [lo]. 

9. Finite-element solutions 

We then solve the Neumann rectangle problem by the finite element method. The rectangle 
of Fig. 7 is divided into 32 square elements of size 1 X 1, and computed values are plotted in Fig. 
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Fig. 15. Finite-element solutions along the line of y = 0 in the Neumann rectangle problem. 
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0 FE!4 solution 
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Fig. 16. Finite-element solutions along the line of x = 0 in the Dirichlet rectangle problem. 

15 along the line of x = 0. Here the piecewise bilinear trial function is assumed over each finite 
element. 

In the same way, the dirichlet rectangle problem is also solved and the finite-element 
solutions are depicted in Fig. 16. In the same figure, we show the improved results due to 128 
squares of size 5 X i. 

Finite-element solutions are thus somewhat less accurate in comparison to boundary- 
element solutions. We may have to investigate the self-adaptive convergence further in finite 
element applications. 
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10. Concluding remarks 

We have developed analytical solutions of electrical potential in the rectangular domain as 
well as in the infinite fissure, which are applicable to the boundary integral techniques as 
fundamental solutions. Alternative expressions may be obtained, for example by using Fourier 
series. We emphasize, however, that our solutions converge quite rapidly which is of great 
importance in boundary-element applications. Examples are then presented to examine the 
finite-element and boundary-element solutions. Here the simple domain is preferable since no 
extra approximation techniques such as curvilinear mapping or infinite-domain interpolations 
are needed. 

Our solutions may also play an important role in developing analytical solutions for linear 
elastic materials as well as for incompressible viscous flows within the simple rectangular 
domain. 
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