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An Eulerian path in a graph G is a path m such that (1) # traverses each edge of G exantly
once in each direction, and (2) = does not traverse any edge once in one direction and then
immediately after in the other direction. A tesscllation T of the plane is Eulerian if its
1-skeleton G admits an Eulerian path. It is shown that the three regular tessellations of the
Euclidean plane are Eulerian. More generally, if T is a tessellation of the plang such that ¢ach
face has at least p sides and each vertex has degree (number of incident edges) at least q. where
1/p + 1/q <3, then, except possibly for the case p=3 and q =6, T is Eulerian. Let T* be the
truncation of T. If every vertex of T has degree 3, then T* is not Eulerian. If every vertex has
degree 4. or degree at least 6, then T is Eulerian.

0. Introduction

Our central result is the following. Let T be the regular tessellation of the
Fuclidean plane by hexagons, and let G be the graph whose vertices are thos: of
the hexagons and whose edges are the sides that separate pairs of hexagons. Then
the graph G possesses an (infinite) Eulerian path r in the following scnse:

(0.1) Whenever 7 enters a vertex v along some side at v, it leaves along a
different side at v.

(0.2) = traverses each side in G exactly once in each direction.

1t should be noted that we follow the usage (sce, e.g., Serre [11, 12]) whereby
each edge of a graph is directed, and possesses a unique oppositely dire:ted
inverse edge. Under this usage, our definition of an Eulerian path is the natural
one, although it differs from that commonly used in the study of graphs with
undirected edges.

This result is extended to all combinatorially regular tessellations T of the
Euclidean or hyperbolic plane. Let p and q be integers grezter than 2. [i is well
known that a regular tessellation of the plane by p-gons, with g meeting at 2ach
vertex, exists if and only if 1/p+ 1/q =<3, in which case it can be taken metrically
regular, that is, with all p-gons regular and congruent under the Euclidean or
hyperbolic metric. For such T, the 1-skeleion G admits ar Eulerian path in the
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sense above. We also extend this result to all but one of the irregular tessellations
subject, for the same pairs p and g, to the weaker condiions that each face have
at least p sides and that at least q faces meet at each vertex. We obtain a few
further results concerning truncated tessellations, and ‘ve conclvd: with a few
unsctiled problems.

The hexagonal graph G described above is cubic, in the sense that exactly three
edges emanate from each vertex. Our interest in cubic Evlerian graphs arose from
their connection with maximal nonparabolic subgroup: of the modular group
[2.3.4.6, 14,15, 16]. It is easy to construct finite cubic Eulerian graphs on any
(nccessarily) even finite number of vertices; the smallesi suchk graph, on two
vertices, is shown in Fig. 1. where an Eulerian path is indicated Dy a roken line.
Ii scems nonetheless very difficult to obtain any useful ¢ 1umeraticn oo catalog of
all finite cubic Eulerian graphs. It is also easy to construct (uncounisbly many)
infinitc cubic Eulerian graphs by piecing together finite graphs. Fowever, the
graphs described below are the only infinite Eulerian rraphs vie know of that
could be said to arise naturally.

Despite the simple nature of the hexagonal graph (5, the Fulerian paths 7
provided by our construction are anything but natura!, in the scnse that our
construction permits infinitely many more or less arbitrary choicer. It seems fairly
clear that an Eulerian path on the graph G cannot ha/e any simple geometric
form. Indeed. 7 must be qualitatively a ‘doubled spiral’ in the ‘ollowing sense:
there is a strictly ascending chain of discs Dy, D, . . ., ir. the plane such that, for
cach n. all edges inside D, are traversed by a segment m,,, of = lying inside
D,.,. The possibility remains that & could be chosen with a simple ‘local’
structure in the following sense: there is a (finite) algorithm (a ‘maze threading
algorithm’—see Rosenstiehl {10]) and a constant B, such that, given any segment
m, of 7. between vertices v, and v,, the algorithm deterriines the next edge after
v, as a function of the part of #, lying within a distanc? B of v,. But even this
seems unlikely.

1. Preliminaries

With minor exceptions, all graphs G considered here will arise from tessella-
tions T of the plane. We accordingly formulate our discussion in terms of
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tessellations. We define a tessellation T of the plane to be a locally finite
2-complex that subdivides the plane. The 0-cells, 1-cells, and 2-cells will be: called
vertices, sides, and faces. The associated graph G is the graph whose geometric
support is the 1-skeleton of T. The vertices of G are those of T. The (directed)
edges of G come in inverse pairs, e and e”', obtained by taking each side of T
with each of its two orientations. Technically, then, G as abstract graph consists of
the set V of vertices, the set E of edges, an involution without fixed element on E
carrying each edge to its inverse, and a function assigning to each edge # its in:tial
vertex £(¢). Note that e runs from e(e) to e(e™"). These graphs G arising from
tessellations are symmetric, in the sense that to each edge e from a vertex p ‘0 a
vertex q, there corresponds a unique inverse edge e™' # e from g to p. All graphs
considered in this paper will be assumed to be symmetric graphs.

A path « can be either open, that is, a finite, simply infinite, or doubly infinitc
sequence of edges, or closed, that is, a cyclically ordered sequence of edues. It is
required in either case that the edge e’ following an edge e begin where e ends. A
path « is reduced if no edge is followed by its inverse. A path a in G is a reduced
doubly Eulerian path if it is a reduced path that traverses each (directed) edge of
G exactly once. In this paper the term Eulerian path will be used always as an
abbreviation for reduced doubly Eulerian path.

All subcomplexes T, of T considered here consist of a finite noncmpty set of
faces of T, together with all the sides and vertices on the boundaries of these
faces. In fact, T, will always be connected, and if it is also simply connected, we
call it a disc in T; in this case its boundary is a simple closed path T,

1.1. Definition. A tessellation T is concentric if it is the vnion of an ascending
chain of discs D,, D,, ..., satisfying the following conditions:
(1.11) D, consists of a single face.
(1.12) For each n=1, A, =D, —D,_, is an annular chain of faces F...., F.,
in cyclic order, where, for cach i:
(1.121) F, and F,,, have a side in common,
(1.122) F, has at least one side on 4D, 4,
(1.123) F; has at least two sides on 0D,

Note that (1.123) is a little stronger than might secm natural; its form is
dictated by the requirement of the arguments that follow. Note also that these
conditions imply that A, is ndsed a combinatorial annulus, that is, its support is
homeomorphic to a metric annulus. Its boundary has two disjoint components,
cacii a simple closed curve: an inner component §,.,=48D,_, and an outer
component §, =D,

1.2. Proposition. The hexagonal tessellation T is concentric.

Proof. This becomes intuitively clear from inspection of Fig. 2. It aiso follows
from Proposition 3.3 below, for which a precise and explicit proot is given. [
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2. The hexagonal tessellation
2.1. Theorem. The hexagonal graph G possesses an Eulerian path.
In view of Proposition 1.2, this theorem follows from -he following one.

2.2. Theorem. If T is a cubic concentric tessellation of the plane, then the as-
sociated graph G admits an Eulerian path.

We begin the proof with the following definition.

2.3. Definition. If T, is a subcomplex of a cubic tessellation T, the:: «r orientation
w of T, is a function assigning to each vertex v of T, a value -1 or ~1. The
Eulerian system £, determined by the orientation w consists of all puths « on Ty,
that satisfy the following rule: if a enters a vertex v along #n «dge e, then,
immediately after, a lcaves v along the edge e’ immediately following e in the
fositive or negative cyclic order about v (provided e’ belongs to 7)), according as
w(v)=+1 or w(v)=-1. (See Fig. 3, where a solid dot indicate, a positively
oriented vertex and a hollow dot a negatively oriented vertex.)

It is immediately clear that if @ is an orientation of T,, then cach edge in the
associated graph G, occurs exactly once in some path a in X

Our goal is to construct inductively a chain of discs Dy, D,, . . .. whose union is
T. and orientations w, of the D, where each w,,, is an e<tension of w,, such that

\

~

wlv)=~{

Fig. 3.
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the Eulerian systems 3, = X, have the followiag properties:

(2.31) 3, contains no closed path.

(2.32) For a even, all paths « in I, are contained as segments in one comnmoin
path m, ., in 3,2

It is clear that under these conditions the union w of the w, is an orientation of
T determining a system I cousisting of a single path =, the union of tke m,, which
is therefore an Eulerian path.

For each disc D,, we define the fringe DY, to consist of all edges witt: exactly one
end in D,, and we write D} = D, U I It is clear that an orientation «w, on D, in
fact determines an Eulerian system on D¥, which we continue to cai %,

We choose the D, as in (1.1); D, is a single face and D, ., is D, together with
all further faces having a side in common with D,. We choose w, by orienting a
single vertex of the face D, positively and all the other vertices negatively. The
resulting Eulerian system 3, is indicated in Fig. 4.

Fig, 4.

For the inductive step we suppose that n is even, n =0, and that w, is given,
with the property that w, contains no closed path. Then each path a in X, beyins
in some side of the fringe D!, and ends in some side of D}. Moreaer, for cach
side s in D', there is a unique path in 3, beginning in s, and a unigue path i X,
ending in s.

Let F be any face of the annulus A, = D, ., — D,. Then 9F is described in the
negative sense by a simple closed path of the form e,ve;' 8 where & is in §,, vy is
in 8,., and ¢, and e, are edges running outward along two distinct and adjacent
sides s, and s, in DY, See Fig. 5.

Fig. 5.
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Let «, be the path in 3, that ends with e, and a, the path that begins with e3".
Suppose now that a, # a,. Let D,, be the result of adding the face F to DY, and
let @/ be the extension of w, obtained by orienting all vertices on y positively.
Then the resulting Eulerian system X, on D, differs from 2, only in that the iwo
paths a, and a, of X, have been united into a single path &, ya; in X, and that a
new path running along vy~ has been added.

We now iterate this construction, adding faces F,, F, ..., in A,., to D¥ and
extending w, in the above manner, until no more such faces can be added without
producing a closed path in the resulting Eulerian systemi. We now let D, denote
the result of this iteration. Now D,, cannot be all of D, ,,; for one thing, if this
were the case, all the paths such as vy in Fig. 5 would be tinited into a single closed
path in 3/, running along §,.;.

Now let F be a face in D,,, but not in D,, and resurz the notation of Fig. S.
Suppose again that a, # a.. Then adding F to D,, would result in ¢niting «, and
a, into a single path a,ya,. which would not be a closed path. The other change
in X! would result from inserting the segment v "', joining two ‘possibly empty)
paths v, and v, in X, running along §,.,. By the maxinality of L ,, the resulting
path must be closed, and this could happen only if a, = a,. a patt running along
all of 8,., except v. In this case, F must be the only face of D, ,, not in D,,
whence s, is the only side in DY, on which any « in X,, erds and s, the only side in
D!, on which any « in ¥, begins. But this implies that <, = a.. contrary to
hypothesis. We have shown that, for all faces F as above, «y - «;.

Let Fy.oooo. F, be all faces of D, ., not in D/, taken in cyclic order around A, .,
in the positive sense. From the argument just given we know *hu: for each F
there is a path «, in 3 beginning on the right side of F; (separaoting 2 from F,_))
and ending on the left side of F; (separating F; from F., ). Since ¢ .¢h path a in X,
is contained in some «;, our goal is to unite all of the piths ¢; into a single path
... in X, ... We require also that X, ., contain no closed paih, but, for the
moment, we relax this condition and seek to construct an orientation w* of D,
such that all the o; are united into a single closed path 1-* in the resulting system
3* and that 3* contain no other closed path. For this purpow: v¢ propose to link
ay, ..., a, consecutively in cyclic order.

From condition (1.123) in the definition of a concentric tessellation we know
that cach F; has a vertex v; on §,,, that is joined by a side f 10 a vertex w;, on
8,.,. For cach face F;, we choose such v, &, and w, We now extend the
orientation w,, of D, to an orientation w* of D, ., as follows:

(2.41} We orient the v, negatively, and all other new vertices on &, ., positively.

(2.42) We orient the w; negatively, while every other vertex u on §,,, is
oriented (i) positively if there is a side ai u runnirg inward to §,, but (i)
negatively if there is a side at u running outward to 6, ..

We first verify that all of the o; are joined in a single path 7* in 3*. For this it
sutfices 10 show that cach a; is joined immediately to «;,,. Reference to Figure 6
and to conditions (2.41) and (Z.-42) shows that, after leaving «;, the path #* in 3*
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Fig. 6.

containing «; runs along the part of the boundary of F, lying on §,,, uniil it
comes to . Here it turn outward along ¢ to the vertex w;, on §,.,. where, by
virtue of (2.42), it turns left again and runs along §,., until it encounters w,, .
Here it turns inward along {;., to u;.;, and then runs along the boundary of F;,,
until it meets a;.,,, after which it follows «;,,.

We must show also that £* contains no closed »ath other than #*. The
discussion above shows that every edge in D% is contained in 7*. Thus every path
a in 3* other than 7* must be contained in A, . Further, every edge in §,.,.
taken in the negative sense, already lies in 7*. Thus, if « were a closed path in ¥
other than 7*, then « would have to contain a segment of §,,,, traversed in the
positive sense, and a segment o of &,,, in the negative sense. In pariicular, o
would have to run in the negative sense along the part T of the boundary of some
face F that lies on 8, .,. By (1.123), 7 contains a vertex w at which there is a side ¢
running outward to §,.;. By (2.42), w is negatively oriented. But thiz would
compel «, or arriving at w, to turn left and hence to terminatc on ¢, in ihe fringe
D', of D,.,. This contradicts the assumption that a is a closed path. Fig. 7
shows typical paths « in 3*, other than 7*.

Fig. 7.

We have now constructed w*, 3* and =* with the desired propertics. We next
obtain 3,,, from 3* by changing the orientation of w* at a single vertex. Let F
be any face in A, lying to the left of a side t,. Let s be the side of F following
t,, hence running left along 8, ., from w, to & vertex w. By (1.123), there must be
a side t at w running outward toward §,.;. By (2.42), w* orients w negatively.
We obtain ,,, from w* by changing the orientation at this single point w to
positive. This has the effect of replacing the path =™ in * by a path ., in 3,
that begins and ends on the sides t. The only other effect is to replace the other
two paths @ and 8 of X* that pass through w, which are distinct, by a single path
v in %,,,. This change is indicated in Fig. 8.
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Fig. 8.

Since X,..,, with its path m, ., now satisfies condition (2.32), the inductive step
is complete, and Theorem 2.2 is proved. []

3. Hyperhexagonal tessellations

We assume now that T is a cubic tessellation in which each face F has d(F)=6
sides. We shall show that T is concentric. wheace T has an Eulerian path.

3.1. Definition. If T, is a finite disc in T, then a from e of 8T, is a connected
component of some nonempty intersection aF N3T,, wtere F is n face of T,,. We
write |e| for the number of sides in ¢, and we define o(Ty) =Y (;e{—2), summed
over all fronts e in 07T,

3.2. Lemma. If T, contains more than a single face, then o(T,) =6.

Proof. Since T is cubic, cach front contains at least one side, th u is, le]= 1. We
argue by induction on the number n =2 of faces in T,,. If n =2, then the disc T,
consists of two faces F; and F, with a single side s in common, and there are
exactly two fronts, e, =3F,-s and e, =adF,=s. Since d{F;) d(F,)=6, we have
le,). leal =5, whence o =a(T,) =2(5-2)=6.

Let n=3. Now T, contains some face F, such that aF,MN 3Ty is a single front e,,.
Let T, be obtained from T, by removing the face F,. Then F, meets T, along an
ar¢ a =9dF,~- e, By the induction hypothesis, o' =a(T) =6, and it suffices to
show that o =0o'.

Let the arc «, from v, to v,, consist of k =1 consecutive sides s, . .., s,. Since
cach of v, and v, lies on two sides of 4T, and a side of F,,. and has degree 3, each
must be interior to some front of 3T,,. Suppose first that k = 1. Then s, is interior
to a front e = e’s,e” of aT,, where |¢], |e"|= 1. In passing from aT to 3T, the
front e is replaced by three fronts €', ", and e,. Thus a term

lel =2 = le'l+ e+ 1 =2 = [e| +]e") - 1
in o’ is replaced in o by a sum of three terms,
(e'l=2)+(le"| =2+ (legl = 2 = |e’| +|e"| + {(d(F) - )~ 6=]e'| +]e"| - 1.
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Suppose now that k =2. Then fronts e; = e;5,, Sa, . . ., Sk-1, €x = &€& on 37T, are
replaced in 3T, by froms e,, ¢, and e,. Thus the sum

(le +1-2)+(k~-2)(1 -2 +(le.| +1-2)=le)| + e | -k
in ¢’ is replaced in & by
(led—2) + (le} = 2) + (leo] — 2) = |e;| + |ex |
+(d(Fy)—=k)-6=|e)|+|le|—k. O

3.3. Proposition. T is concentric.

Proof. Choose for D, any single face, and suppose, by induction on n, that D,
has been chosen in accordance with (1.12). Define A, ., to consist of all faces not
in D, that have a side on 8, =aD,, and set D,,,, = D, U A,.,. We must show that
A, satisfies (1.12), with n+ 1 in place of n. Now (1.122) holds by virtue of the
definition of A, ,,.

Suppose that (1.121) fails. Then either (i) some F, in A, ,, has aF, N4, ot
connected, or (ii) some pair of faces F; and F; in A, ., which are not successive in
the sense that 3F; M8, and 3F; N g, are disjoint, nonetheless have a point (not on
8,) in common. We treat first the slightly harder case (ii). Then, as shown in Fig.
9a, there are arcs o;, a;, and « of 3F, dF;, and §, that form a curvilinear triangle
enclosing a disc 7,. We write v;, v;, v for the vertices of this triangle opposite
these three arcs. If T, consisted of a single face F, then, by virtue of (1.123) for
faces in A, the face I could have at most two sides on a. But these, together with
the two sides «; and «;, would give d(F) =4, contrary to hypothesis. Thus T, has
more than one facz and (3.2) applies. A front e of a'{|, that is contained in a; o1 «;
must have |e| = 1, while, by (1.123) again, a front contained in « must have |¢|<2.
Thus the only positive contribution to o = o(T,) must come from fronts contain-
ing one or more of the vertices v, v;, v. Since each vertex contributes at most 1,
this implies that o <3, contrary to (3.2).

The case (i), shown in Fig. 9b, differs only in that T,, is now bounded by an arc
a; of oF; together with a segment a of 8,. The same rcasoning in this case gives
o <2, again contrary to (3.2).

It remains to prove (1.123), that each F in A, ., has at least two sides on 6, , ;.
By the induction hypothesis, each face of A, has at least two sides on §,, which
implies that between two successive sides running inward from §,, therc must be
at least one side running outward. But this implies that between two successive
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sides running outward from §,, there cannot be more than one side running
inward. This last implies that a face F of A,,; can have it most two sides on §,.
These, together with the two outward running sides of F. iiccount for at most four
sides of F, whence. since d(F)=6, F must have at least two more sides on

8,1 O

3.4. Proposition. If T is a cubic tessellation in which each face has at least six
sides, then T admits an Eulerian path.

Proof. This follows directly from (3.3) and (2.2). O

According to our definition, each vertex v of a tessellation T has degree
d(v)=3. Our next step will be to replace the condition that ¢ be cubic, that is, that
all d(v) =3, by the weaker. and tacit, condition that all d(v)=3.

3.5. Definition. Let T, and T, be tessellations of the plane, and let @ te a family
of disjoint finite trees in the 1-skeleton of T,. Let ¢ be a continuoiis map from
the plane onto itself, carrying T, to T,. which is injective on the complement of
the trees A in @, and which maps each 8 in © to a single vertex v, of T, wheie
distinct 8 in @ have distinct images ».. Then @ is a retracion and T, is a retract of
T,. We also say that T, is obtained from T, by separat.on of vertices.

For the applications, it is more natural to start with T, and construc: 7 ,. About
cach vertex v of T, we choose a closed disc B, meeting only the d = d(v) sidzs at
v. with 4B, meeting these sides at points p,,....p, Wx obtain T, tv replecing
cach B, by a closed disc B, containing a finite tree 6, with n ends, at the poinfs
Pre- e p.. Sce Fig. 10.

Fig. 10,

3.6. Proposition. If T, is obiained from T = T, by separation of vertices and T,
admiis an Eulerian path, then T admits an Eulerian paith.

Proof. Let o be an Eulerian path on T, and ¢ a retraction from T, to T. Then
mé clearly defines a path 7' on T. We show that @' is an Eulerian path on T. Let
E be the set of all edges of T, not contained in any @ in €. Then ¢ is bijective
from E, to the set E of all edges of T. Thus each edge o7 T occurs exactly once in
', It remains to show that =’ is reduced. Let ed and ¢'d be successive edges ir.
7. lf ¢ and e’ are successive edges in T, then e'# ¢!, whence e'¢# (ed) .
Otherwise e and e’ occur in 7 separated by an arc « all ¢ f whose edges lic in trees
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¢ in 6. Since the trees 6 in & are disjoint, all the edges in « lie in a single tree 8
in . Since a is a nontrivial reduced path in the tree @, its initial vertex v and its
terminal vertex v’ must be different. Since ¢ ends at v and ¢’”! ends at v, we
again have e’ # e, whence e'dp# (ep)™'. O

3.7. Theorem. Let T be a tessellation of the plane in which each face has at least
six sides. Then T admits an Eulerian path.

Proof. In the notation above, let v be a vertex of T of degree d(v)=d = 3%, with
the d sides at v meeting the boundary of B, at points py, ..., p; It is trivial to
replace B, by B, containing a cubic tree 8, with d ends at the points p,, ..., p,.
Thus we obtain T as a retract of a cubic graph T,. But it is also immediately clear
that ¢ is injective on the faces of T, with d(F¢) <d(F). Since d(Fd)=06 for each
face F¢ of T, it follows that d(F)=6 for each face F of T,. By (3.4), T, has an
Eulerian path #. By (3.6), T alsc has auti Eulerian path.

4. Regular tessellations

A regular 1essellation T of the plane, of type (p, q). is on¢ in which, for certai-
integers p, q =3, each face F has exactly d'F) = p sides and in which there arc the
same number d(v) =q of sides at each vertex v. It is well known that such a
tessellation T exists if and only if 1/p+1/g=<%, and that T can be realized by a
metrically regular tessellation of the Euclidean plane if 1/p+1/q=3}. and by a
metrically regular tessellation of the hyperbolic plane if 1/p+ 1/g<3.

We shall show that all of these regular tessellations, as well as various rclated
irregular tessellations, admit Eulerian paths. This follows from (3.7) for regular
tessellations of types (p, q) wherever p=¢€. These include the hexagonal type
(6, 3), and we next give a direct trcatment of the two remaining Euclidean types
(3,6) and (4, 4).

4.1. Theorem. In the Euclidean plane, the regular tessellation (3, 6) by equilateral
triangles, and the regular tessellation (4, 4) by squares, both admit Eulerian paths.

Proof. In both cases we atc able to separate vertices to obtain a cubic tessellation
T in a manner that is translationally uniform. that is, such that ¢ commutes with
the translation group of T. This is shown in Figs. 11a, b and 12a,b. It remains to

VANV

Fig. 11.
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oS

Fig. 12.

verify by inspection that, in both cases, each face of T has exactly six sides. The
conclusion now follows as before from (3.4) and (3.6). O

We note that it is possible to construct an Eulerian path on the tessellation
(4.4) directly, in a similar manner, but simpler than that used above for cubic
concentric tessellations, in particular, for the tessellation (6, 3).

We say that & tessellation T of the plane is of type (p*, q*) if each fuce F has
degree d(F)=p and each vertex v has degree d(v)i=q. In this terminclogy,
Theorem 3.7 says that every tessellation of type (6*,2*) has an Eulzrian path.
Now the three types (6%, 3%), (4%, 4%), (3%, 6*). corresponding to the three regular
types of Euclidean tessellations (6, 3). (4,4), (3.6), pley a central role in small
cancellation theory (see [S]). This theory grew out of Dehn’s solution of the word
nroblem for orientable surface groups. which can be ccnstrued as resting on the
fact that the corresponding tessellations of the hype-bolic plane ars of type
(H*, 3*). Indeed, Lemma 3.2, leading to the procis of Theorems 3.3 and 3.4, is
essentially a version of the case (6% 3*) of the Curvature Formula of small
cancellation theory. One can therefore reasonably expect analogous resul's for the
cases (4%, 4% and (3%, 6*); note that this would yield a1l the remaining t-pes of
regular hvperbolic tessellations, (4, q) for =5 and (3, q) for g=7. However,
instead of trying to obtain these cases by arguments parallel to those u .ed for the
case (6%, 3%), we seek to derive them from the results already obtaine: . Lu fact, we
«hall obtain the case (4%, 4%), but we fall short of (3*, 6%, obtaining only {3*, 7*).

We begin with the case (4%, 4*). The uniform treatment used for the type (4, 4)
is no longer available, and, to establish the ideas, we begin with a different
treatment of the case (4.4) that we are able to extend to the case (4%, 4%). As
before, we take D, to be a single face and, by induction on n, given D, we define
D,.,=D,UA,.,. where A, consists of all faces not in D, but witi a side on
the boundary 8, of D,. It is clear in the case (4, 4), and will follow in the course of
our argument in the general case (4%, 4%), that each D,, is a disc. The complexes
A, ., are not strictly annuli, but rather each is a cyclic chain of faces, each face
having cither a single vertex or a single side in common with its two neighbors,
and otherwise disjoint. In particular, 8, and 8, ., may Fave a point v in common,
which will then lic on faces of A, and A, .., as well as of A, and possibly other
A,.

Let (v,... ., v,) be the vertices on 8, in cyclic order; and let «, =(k,, ..., k,),
where k; is the number of outward sides at v, that is, the number of sides at v,
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that are not contained in D,. For the tessellation {4, 4), since all d(v) =4 and each
v; has two sides on §,, it follows that k; has one of the values 0, 1, 2. Now, given
K, it is routine to calculate «,,,. We represent a segment of 8, by a horizoutal
line segment with the vertices v; labeled by the numbers k.. We then draw in the
faces of A, ., with sides on this segment; the remaining sides of these faces, on
the upper boundary of A, ., form a segment of k,.,, and we label the vertices v
on this segment with the corresponding k; in «, ,,.

2 2 2 2 2 2
VoYY
2 2 2

Fig. 13.

Evidently k,=1(2,2,2,2)=(2)*. Fig. 13 shows the construction described
above, beginning with a segment of k, and ending with a segment of «,. From this
we read off that x,=(2,2.0)%. A segment {2,2,0,2] of k, gives rise to a
segment [2,2,0,2,0,2] of k,.,. We conclude inductively that x, =(2, (2. 0)")";
this can also be verified directly from inspection of the D,, which arc roughly
diamond shaped configurations of squares (see Fig. 14).

O |

Fig. 14. D, for (4,4).

We next consider the case (4, 47), where each face F has d(F) =4 sides and
each vertex v has degree d(v)=4. In describing the x, we use the symbol k
ambiguously to indicate any integer k=2. Thus we write «o=(k, k, k, k) to
indicate that k, has the form x, = (ky, ko, k3, k,) with all k; = 2. In passing from «,
10 k,.,;, we note that each k in k, is decreased by 2; thus a segment of the form
[k,...,k] in «, goes into a segment of the form [k—2,...,k-2] in ...
Specifically, Fig. 15a shows that [k, k] goes to [k —2, k. k, k —2.] Likewise, Figs.
15b and 15c show that [k, 0, k] goes to [k —2, k, k —2] and that [k, 1, k] goes to
[k~2,k k—1,k, k—2). We see inductively that no «, contains two consecutive
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15b 5¢
Fig. 15.

terms both less than 2, whence all faces F in A,,, enter in one of the
configurations shown in Figs. 15a, b, c. From this it follo:ws by induction that each
D,., is a disc.

We now construct T, by separation of vertices. A vertex v will be separated
only if it has at most one outward edge or at most one inward edge. The cas> of a
vertex v of degree d(v) =4, with one outward edge and one inwaid edge is
treated as in the case of the tessellation (4, 4); this is shown in Fig. 16a. The case
of a vertex v of degree d(v) =5 with at most one inward edge is treated as shown
in Fig. 18b. The case of d(v)=S5 with at most one outward edgc is treated
symmetrically, as shown in Fig. 16c.

S

NG N\

Fig. 16.

Inspection shows that, if F is as in Fig. 16a, then ia passing from T to T, F
gains at least one new side at each of its outer vertices. For F as in Fig. 16b, F
gains at least one side at its outer vertex and another at its middle inner vertex.
For two faces F and F' as in Fig. 16c, F gains a side at the inner vertex on the
side joining them, and F’ ai the outer vertex on this sicie, while each gains at least
one more side at its remaining outer vertex. We see :hus that on passing to T;,
cach face is replaced by a face with degree at least 6. Since T, is of type (6%, 3), it
follows as before that T, has an Eulerian path, whence T has an Eulerian path.
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For the general case (4%, 4*), the argument remains essentially unchanged. The
only effect on the «, of having faces with d(F) =35 is that an entry X is replaced by
a sequence of terms k. The faces in Figs. 162, b, ¢ are altered only in that there
may be additional vertices, and the separation, as before, ensures that each face is
replaced by one in T tliat has at least 6 sides.

We next examine the case (3, 7*), where each face is a triangle, d(F) = 3, and
each vertex has degree d(v)=7. We now use the symbol k to denote ambiguously
any integer k =5. Here xo=(k, k, k). For h =2, a segment [k, h, k] of k, goes to a
segment [k—2, k, h—2, k, k—2] of «,.,, while a segment [k, 1, k] goes to [k -
2,k—3,k~-2] and [k,0, k] goes to [k~2, k—2]. Since [k, 0,k] can arise only
from [k, 3, k], which goes to [k —2, k, 1, k, k —2], and [k, 1, k] can arise only from
[k, 2, k], which goes to [k ~2, k, 0, k, k —2], no «,, can contain a part [a, b, ¢] with
more than one of a, b, ¢ less than 2.

From this it follows that every face in A, ., arises in one of the configurations
shown in Figs. 17a, b, ¢, as one of the faces F, F', or F”, and that no face occurs as
part of two such configurations. It follows that all the D, are discs.

e AR
F F F|F’ F
170 PRY el

170

Fig. 17. Note that at each top vertex v we have indicated only 7 of the d(v) =7 sides.

We call a vertex v of a face F in A, a top vertex of F if v is not in 8,. Every
face has a top vertex except a face with two sides on 8,. (Also, no face has more
than one top vertex, but we make no use of this observation, which will no longer
remain valid when we pass to the case (3* 7*).) Further, no vertex is the top
vertex of more than one face except as shown in Fig. 17b, where F and F’ have a
common top vertex.

We now pass to a tessellation T, by separating all top vertices. This separation
is indicated in Figs. 17a’, b, ¢/, where only the separated parts are shown. (Here
the rule given for case 17c is to be applied only to vertices that do not fall under
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cases 17a or 17b.) Note that in Fig. 17a’ the vertex at the bottom of F’ will be the
top vertex of one or two faces in D,, but that the indicated separation, giving F’
an additional side at this vertex, is in accordance with tte rules we have given for
separating vertices in the three cases.

It is immediate by inspection that every face of T, has at least six sides, whence
it follows as before that T, and so also T has an Eulerizan path. If we now pass to
the case (3*, 7*), admitting faces with more than three sides, the only change is
that now faces may have additional top vertices, and the same rules for separating
vertices again lead to T, of type (6%, 3*), whence again T has an Eulerian path.

4.2. Theorem. Every tessellation of the plane of type (4*,4™) or (3*.7%) has an
Eulerian path.

4.3. Theorem. Euvery regular tessellation of the plane has an Eulerian path.

Proof. By Theorem 4.1, the regular tessellatior: (3, 6) has an Eulerian path. By
Theorem 3.7, every tessellation of type (6%, 3*) has an Eulerian path. Since every
regular tessellation =xcept (3.6) is of one of the trpes (6% 3%). ¢4* 4%), or
(3*,7%), it has un Eulerian path. O

4.4. Remark. It seems virtually certain that every tessellation of type (3*. 6*) has
an Eulerian path, but we have not succeeded in adapting the :n:her ad hoc
method of separation of vertices to this case.

5. Truncated tessellations

If T is any tesscllation of the plane, we define the truncationr T* of T as
follows. We draw circles ¢, about the vertices v of T. small enough so that the
circles ¢, are disjoint and that ¢, meets no sides except those at v. At a vertex v,
of degree d =d(v), let vy, ..., v, be the points at which the sides 5., ...s4 at v,
in cyclic order, meet ¢,. We take these vertices vy, .. , v, as the vortices of T*.
The sides of T* are of two sorts. First, we take as sides of T* all the arcs of the
circles ¢, between consecutive vertices v; and v, ;. Second, if s it 1 side of T,
between vertices v and v’ of T. we take as a side of T'* the segment of s between
the points v, and vj where s meets the circles ¢, and ¢, See Fig. 18.

Fig.
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The truncation T* of every tessellation is cubic; thus truncations provide a
natural source of cubic tessellations. The faces of T* are of two sorts. First, for
every vertex v, of degree d(v), the circle c, is the boundary of a face F, of T* of
degree d(F,) = d(v). Second, every face F of T is replaced in T* by a truncated
face F* of degree d(F*)=2d(F), as shown in Fig. 18.

S.1. Theorem. If T is any tessellatior of the plane in which there are at least six
sides at each vertex, then the trun:ation T* of T admits an Eulerian path.

Proof. First, T* is cubic. Next, if F is any face of T, then d(F)=3, whence the
face F* of T* has degree d(F*)=6. Again, if v is any vertex of T, then the face
F, of T* has degree d(F,) = d(v)=6. Thus T* is of type (6*, 3) and the conclusion
follows by Theorem 3.7. OO

The next theorem contrasts with (5.1).

5.2. Theorem. Let T be an infinite cubic tessellation. Then the truncation T* of T
admits no Eulerian path.

Proof. Let 3 be an Eulerian system on T* determined by an orientation w. We
shall show that 3 must contain more than a single path. If v is any vertex of T,
then the corresponding face F, of T* is a triangle with vertices v,, v, U3 Let sy,
s, 83 be the sides of T* at v,, v,, v; other than those of aF, =c,. If each time a
path « in 3 enters F, along one of the sides s; it next leaves along a side s,
different from s;, say along s;,, (subscripts modulo 3), then all of v,, v,, vy must
be oriented in the same way. But this implies that 3 contains also a closed path o
running around c,.

Fig. 19.

We may now suppose that, on each F,, one¢ of the vertices v; is oriented
differently from the other two, say v, is oriented differently from v, and v;. This
implies that some path in 3 enters F, along s, and, after running around c,, leaves
again along s,. Whatever path enters along s, leaves along s;, and whatever path
enters along s, leaves along s,. We say that the first path ‘turns around’ at F,,
while the other two ‘run parallel’ (but oppositely) through F,. See Fig. !49b.
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Now the two branches of a path « in X that turns around at some F, must
either run parallel forever, or join by turning around at some other F,. If they
join at some F,, then « is finite and hence not the only path in 3. If they run
parallel forever, then o must be distinct from the path «’ in ¥ turning around at
F... for v’ any vertex of T different from v. O3

We digress to state another result that is proved by a very similar line of
reasoning.

5.3. Theorem. Let! G be any graph, finite or infinite, thot contains a subgraph G,
isomorphic to that shown in Fig. 20, where it is understood that the two sides labeled
s, and s. are the only sides joining G, to the rest of G. Then G admits no Eulerian
path.

Fig. 20.

Proof. As before, if an Eulerian system 3 on G does not contain a closed path
running around cne of the circles ¢, in G, then some path turns » und at each
of the four circles in G,,. Since at most two of these pairs of branches of raths can
escape from G, running parallel out of G, along s, and s,, two of theu:, must be
united to form a closed path in X, contained entirely within G,. 'J

Remark. It is obvious that. in the statemeat of the theorem, the sul graph G, can
be replaced by various more complicated subgraphs.

Our next theorem contrasts in turn with (5.2).

5.4. Theorem. Let T be any quartic tessellation, that is, having four sides at each
vertex. Then the truncation T* of T admits an Eulerian path.

Proof. We begin by showing that T* is the union of an ascending chain D,,
D,. ..., of discs such that D, has a single face and that each A,,,=D,.,- D, is
an annular chain of faces that are alternately of the types F, and F*. We begin by
choosing D, to consist of any single F-face F,, that is, a face of type F*. Then the
faces, other than F,, having a side in common with F, form an annulus A, of the
required kind, and we define D, =DyUA,. For the inductive construction,
suppos¢ D, given, n= 1, and define A,,, to consist of al' faces not in D, but
having a side on the boundary of D,. Since (i) onc v-face, that is, face of type F,,
cannot meet another, (ii) a v-face in A, can meet orly one further F-face in
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A,
~—
Fig. 21.

addition to the three it meets in D,, and (iii) the faces abutting on any F-face
must be alternately F-faces and v-faces, we conclude that A, ., is made up
alternatelv of F-faces and v-faces. See Fig. 21.

To define an Eulerian path 7 on T it suffices, as before, to choose a suitable
function @ assigning an orientation to each vertex of T*. Now each vertex lies on
exactly one v-face, and each A, n=1, contains some v-faces. We choose one
v-face in each A, as special and orient its vertices as shown in i‘ig. 22a; the
remaining nonspecial v-faces in A, have their vertices oriented as in Fig. 22b.

L 1T 11

22¢a 22b

Fig. 22.

This defines an Eulerian system X on T*, and it remains to show that 3 contains
only a single path s, which must chen be an Eulerian path. Fig. 23 shows that if
any nonspecial v-face is deleted, in the sense shown in the figure, to yield a new
tessellation T', and if X’ is the system on T’ defined by the resctiction w’ of the
oricntation w to vertices of T, then 5’ has the same number of paths as 3. We
now dsfine T” by successively deleting in this way all nonspecial v-faces. {Wx note

- ~

R S rYT

-—

Fig. 23.

that T” is not strictly speaking a tessellation in our previous sense, since a pair of
faces may abut along (wo disjoint sides; but this does not affect our argument.)
The resulting ‘tessellation’ T” i8 shown in Fig. 24, together with the resulting
system 3", which can be seen to consist of only a single path =", It follows that 2
contains only a single path , which is therefore an Eulerian path on T*. O

5.5. Remark. Wr leave unseitled the question: If T is a quintic tesseltation. does
T* admit an Eulerian path?
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6. Problems

6.1. Problem. We have shown that every tessellation T of one of the types
(6*. 3%). (4*, 4%), (3*. 7%), or (3. 6) has an Eulerian pat}i. Does every tessellation T
of type (3*. 6*) have an Eulerian path? In particular. if T is of type (3, 6*), with
all faces triangular, and with 6 sides at some vertices ind more than 6 at others,
does T have an Eulerian path? We belicve the answer is yes.

6.2. Problem. We have shown that if T is an infinite cubic graph. that is, with all
vertices v of degree d{(v) = 3, then its truncation T* has no Eule i.n path, while if
T is a quartic tessellation of the plane, with all d(v) =1, then T has an Eulerian
path, and that if T is a planar tesscllation with all d(v)=6, then T™* has an
Eulerian path. Does the truncation T* of every tess:llation T of type (3*,4%)
have an Eulerian path? In particular, if T is a quintic tessellation. dces T™* have
an Eulerian path? We belicve the answer is yes.

6.3. Problem. Let T be given as an abstract 2-complex. Then the conditions that
T be locally finite and that T be a tessellation of some 2-manifold (without
boundary) may reasonably be described as ‘local’. whilz the condition that T be a
tessellation of the plane is global. The conditions that T be of one of the types
(p. q) or (p*, ¢*) may again be regarded as local, imposing a limitation on the stars
of single faces and of single vertices. The condition that T does not contain any of
the ‘bad” subcomplexes illustrated by the subcomplex Gy in Theorem (5.3) is
again local. Does there exist any set of local conditions, excluding certain types of
finite subcomplexes, which is necessary and sufficient fcr a planar tessellation T to
have an Eulerian path? This scems unlikely. Do there exist reasonably simple
conditions, weaker that the conditions (p*, ¢*), which imply the existence of an
Eulerian path? This question is suggested by the work of Perraud {7, 8, 9] in small



Infinite Eulerian tessellations 131

cancellation theory, who has shown that a certain natural condition on subcomp-
lexes consisting of the star of a face together with all its abutting faces, although
not implying the usuat conditions (p*, q*) of small cancellation theory, nonethe-
less implies the validity of Dehn’s algorithm for the solution of the word problem.

6.4. Problem. What can be said about tessellations T of manifolds M other thasn
the plane? Saul Stahl (personal communication; see [13]) has indicated how the
existence of an Eulerian path on a finite graph G can be used to exhibit G as the
1-skeleton of a decomposition T of a closed surface M. Let the Eulerian path =
be represented by ihe closed path e, - - - e,. Let A bt an n-gon with sides labeled
ey, ..., &, in cyclic order, and let M be the surface obtained by identifying paiss
of sides with labels ¢; and ¢; = ¢; ', in the usual manner. Then G is the image of
44, and is the 1-skeleton of a decomposition T of M in which there is only a
single face, the image of 4. If G has v verti s and s rides (undirected edges,
whence n=2s), then M hzs Euler characteris ¢ x=1-s+v and genus g~
H(s—v+1). This is clea-ly the largest possiblc zenus for a surfacc M with a
decomposition T whcse 1-skeleton is isomorphic to G.

If G is a finite cukic g-aph, with Eulerian path, then n = 3v, whence 4g=v+2,
or v =2(2g — 1). For example, if G is the cubic graph with v = 2 vertices, shown in
Fig. 25a, then the construction above yields G as the 1-skeleton of a decomposi-
tion of the torus. Since it is clear that G is a planar graph, it can also be obtained
as the 1-skeleton of a decomposition of the sphere. Again, if G is now the
nonplanar Kuratowski ‘utilities’ graph shown in Fig. 25b, then G has an Eulerian
path. Since G has v =6 vertices, G can be obtained as the 1-skeleton of a
decomposition T of the orientable surface M of genus 2. It is easy to see that G
can be obtained also from a decomposition of the torus, but not, of course, from
one of the sphere.

250 25b
Fig. 25.

Next let a graph G with Eulerian path be embedded in the plane, as the
1-skeleton of a finite or infinite, locally finite, connected and simply connected
2-complex K contained in the plane, M. Suppose that the complemcat of K in the
plane M had two or more componenis. Then an arc y joining two of these
components, and avoiding the vertices of G, could be chosen to meet o.:ly finitely
many sides of G. Since the Eulerian path = on G must now cross y an even
number of times, one of the two parts into which vy divides G must be finite. This
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is a contradiction. One concludes that G cannot be ithe 1-skeleton of a decompos-
ition T of the closed strip 0=<1Im z <1, although the case of a decomposition of a
closed half plane, Imz =0, is not ruled out. What is the situation for other
manifolds with boundary?

6.5. Preblem. With minor exceptions, our results here all concern graphs given
as 1-skeletons of tessellations of the plane. Are there any purely 1-dimensional
graph theoretic conditions for an abstract graph G to have an Euleran path?

6.6. Problem. We have considered Eulerian paths on the 1-skeletons of tessella-
tions of the plane. Are thers similar results for tessellations of higher dimensional
Euclidean space? Does tlv: 1-skeleton G of the regular ressellation T of Eucli-
dean 3-space by cubes admit an Eulerian path? (Added in proof. We have
answered the last question affirmatively, and the analog for n>3.)
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