DOMINATION ALTERATION SETS IN GRAPHS ## Douglas BAUER Stevens Institute of Technology, Hoboken, NJ 07030, USA ### Frank HARARY University of Michigan, Ann Arbor, MI 48109, USA #### Juhani NIEMINEN University of Oulu, 90570 Oulu 57, Finland ### Charles L. SUFFEL Stevens Institute of Technology, Hoboken, NJ 07030, USA Received 27 February 1981 Revised 23 April 1981, 5 January 1983 and 14 March 1983 The domination number $\alpha(G)$ of a graph G is the size of a minimum dominating set, i.e., a set of points with the property that every other point is adjacent to a point of the set. In general $\alpha(G)$ can be made to increase or decrease by the removal of points from G. Our main objective is the study of this phenomenon. For example we show that if T is a tree with at least three points then $\alpha(T-v)>\alpha(T)$ if and only if v is in every minimum dominating set of T. Removal of a set of lines from a graph G cannot decrease the domination number. We obtain some upper bounds on the size of a minimum set of lines which when removed from G increases the domination number. ## 1. Introduction We investigate the stability of the domination number of a graph. Let G = (V, E) be the graph and $\mu = \mu(G)$ an arbitrary invariant of G. The μ -stability of G is the minimum number of points whose removal changes μ . Some invariants such as the chromatic number of a graph, $\chi(G)$, have the property that removal of any subset $S \subset V$ does not increase the invariant. For other graph invariants there are subsets S_1 and S_2 of V such that $\mu(G - S_1) > \mu(G)$ and $\mu(G - S_2) < \mu(G)$. One example [1, 3] of such an invariant is the point connectivity $\kappa(G)$. The graph G in Fig. 1 has $\kappa = 2$; however $\kappa(G - u) = 1$ and $\kappa(G - v) = 3$. Fig. 1. D. Bauer et al. Another example is the diameter d(G). For graph H of Fig. 1, d(H)=4, d(H-u)=3, and d(H-v)=5. We call such invariants exceptional. For these invariants we define the μ^+ -stability to be the minimum number of points whose removal increases μ ; to decrease μ we refer to the μ^- -stability. The domination number¹ of a graph G, denoted $\alpha(G)$, is the minimum number of points of a set $S \subset V$ with the property that each point of V - S is adjacent to some point of S. In the graph G of Fig. 2, we see that $\alpha(G) = 2$, $\alpha(G - v) = 1$, and $\alpha(G - u) = 3$. Thus $\alpha^+(G) = \alpha^-(G) = 1$. Note that $\alpha(G) = 0$ if G is the discrete graph, hence $\alpha^-(G) = |V|$ if G has a point of full degree. We now concentrate on $\alpha(G)$ and domination alteration sets, i.e., sets of points that alter $\alpha(G)$. Fig. 2. In Section 2 we show that if T is a tree with at least three points then $\alpha(T-v)>\alpha(T)$ if and only if v is in every minimum dominating set of T. A surprising result, proved at the end of the section, states that $\alpha^+(G)+\alpha^-(G)$ is a constant whenever G is a sufficiently large path or cycle. In Section 3 we consider the 'line stability' of $\alpha(G)$, i.e., changes in α that result from removing lines from G. Terminology and notation not introduced here is given in the book by Harary [2]. # 2. Stability of $\alpha(G)$ The following definitions will be useful. The *neighborhood* of a point v is the set N(v) of all points u which are adjacent to v. The *closed neighborhood* of v is $N[v] = N[v) \cup \{v\}$. For a minimum dominating set A and $v \in A$, let $$A^*(v) = \{u: u \notin A \text{ and } N(u) \cap A = \{v\}\}.$$ In addition let $$\gamma(G) = \min\{|A^*(v)| : v \in A, \text{ a minimum dominating set}\}.$$ We now give a simple but useful bound for α^- . **Proposition 1.** For any graph G $$\alpha^{-}(G) \leq \gamma(G) + 1.$$ To see that equality does not hold in general consider the graph G of Fig. 3. ¹ Even though this was denoted by $\alpha_{00}(G)$ in [2], we write $\alpha(G)$ for brevity. Fig. 3. In this case $\alpha(G) = 2$ and $\gamma(G) = m \ge 3$, however $\alpha(G - \{u, v\}) = 1$. **Corollary 1.1.** For any graph G, $\alpha^{-}(G) = 1$ if and only if $\gamma(G) = 0$. **Proof.** If $\gamma(G) = 0$, then $\alpha^{-}(G) \le 1$ by Proposition 1. But $\alpha^{-}(G)$ must be at least one; hence $\alpha^{-}(G) = 1$. Now suppose $\alpha(G - v) < \alpha(G)$ for some point $v \in G$ and let B be a minimum dominating set for G - v. Clearly $A = B \cup \{v\}$ is a minimum dominating set for G with $A^*(v) = \emptyset$, consequently $\gamma(G) = 0$. \square If we form a graph H by removing $\alpha^+(G)$ points from G, $\alpha(H) - \alpha(G)$ can be made arbitrarily large, as is easily seen by observing the star $K_{1,n}$. This is not the case if we remove α^- points. By noting that for any graph G, $\alpha(G-v) \ge \alpha(G)-1$, we obtain the following result. **Proposition 2.** Let u_1, \ldots, u_n be a minimal point set of G whose removal decreases $\alpha(G)$. Then $\alpha(G-u_1-u_2-\cdots-u_n)=\alpha(G)-1$ and $\alpha(G-U)=\alpha(G)$ for any subset U of $\{u_1, \ldots, u_n\}$ with cardinality n-1. We note that if U is a minimal set of points whose removal decreases $\alpha(G)$ and if U' is a proper subset of U, it is possible for $\alpha(G-U')$ to exceed $\alpha(G)$. A simple example is given by the star $K_{1,n}$, where $n \ge 2$. It is also possible for a minimal set of points whose removal increases α to properly contain a subset of points whose removal decreases α . The graph G shown in Fig. 4 is dominated by $\{v_1, v_2, u_1, u_2\}$. Removing v_1 and v_2 from G increases α to five, however $\alpha(G-v_1) = \alpha(G-v_2) = 3$. Next we state a result which characterizes points whose removal increases α . **Proposition 3.** The removal of a point v from G increases α if and only if (1) v is not isolated and is in every minimum dominating set for G, and (2) there is no dominating set for G - N[v] having α points which also dominates N(v). The graphs G and H in Fig. 5 show that neither of the above conditions is sufficient. Clearly v is in every minimum dominating set for G, yet $\alpha(G-v) = \alpha(G) = 2$. It is also easy to see that there is no two point dominating set for H - N[v] which dominates N(v); however $\alpha(H - v) = \alpha(H) = 2$. Fig. 5. For trees we may dispense with the second condition. Before proving this result we note that if a point v is in every minimum dominating set of a tree T, then v is not an endpoint of T. **Proposition 4.** For any tree T with at least three points $\alpha(T-v) > \alpha(T)$ if and only if v is in every minimum dominating set for T. **Proof.** By Proposition 3 the necessity of v being in every minimum dominating set for T is immediate. Suppose v is in every minimum dominating set of T. Note that $\alpha(T-v) \ge \alpha(T)$, for otherwise a minimum dominating set of T-v could be extended to a dominating set of T which avoids v and has cardinality at most $\alpha(T)$. Let $N(v) = \{v_1, v_2, \ldots, v_m\}$ and T_i be the component of T-v containing v_i . If $\alpha(T-v) = \alpha(T)$, then for each i, v_i is in no minimum dominating set of T_i , for otherwise such a dominating set could be extended to a dominating set of T which avoids v and has cardinality at most $\alpha(T)$. Thus, for each i, $\alpha(T-\bigcup_{j\neq i} T_j) = \alpha(T_i)+1$, and so for any dominating set D of T, $|D\cap V(T_i)| \ge \alpha(T_i)$. It follows that $\alpha(T) \ge \sum_{i=1}^n \alpha(T_i)+1 = \alpha(T)+1$, a contradiction. \square With a slight modification of the above proof we can strengthen the result in one direction. **Proposition 5.** If a cutpoint v of G is in every minimum dominating set for G, then $\alpha(G-v) > \alpha(G)$. We now extend Proposition 4 by describing the structure of those trees T for which $\alpha^+(T) = 2$. **Proposition 6.** Let T be a tree. Then $\alpha^+(T) = 2$ if and only if there are points v and u such that - (1) every minimum dominating set contains either v or u, - (2) v is in every minimum dominating set for T-u and u is in every minimum dominating set for T-v, and - (3) no point is in every minimum dominating set for T. **Proof.** The necessity of the conditions is clear. Furthermore sufficiency is easily established if we can prove that $\alpha(T-v) = \alpha(T)$, for then condition (2) will serve as the hypothesis for Proposition 4 applied to T-v. The fact that $\alpha(T-v) \leq \alpha(T)$ follows from condition (3) and Proposition 4. Suppose $\alpha(T-v) < \alpha(T)$, and let S be a minimum dominating set for T which contains v but not u. Let v_1, \ldots, v_m be the points adjacent to v. Then $S = \{v\} \cup \bigcup_{i=1}^m S_i$ where S_i is a minimum collection of points from T_i which dominates $T_i - v_i$. Note that if there are two or more values of i for which $\alpha(T_i) = |S_i| + 1$ then $\alpha^+(T) = 1$, which contradicts condition (3). Suppose there exists one value of i such that $\alpha(T_i) = |S_i| + 1$. Then $$\alpha(T-v) = \sum_{i=1}^{m} \alpha(T_i) = 1 + \sum_{i=1}^{m} |S_i| = \alpha(T),$$ a contradiction. If $\alpha(T_i) = |S_i|$ for all i, then $\bigcup_{i=1}^m S_i$ is a minimum dominating set for T - v which does not contain u, and we are done. \square For graphs in general, α , α^+ and α^- can be made as large as we wish. In particular, the graph G constructed by joining a point v to one point in each of m distinct copies of K_m has $\alpha(G) = \alpha^+(G) = \alpha^-(G) = m$. However graphs with large α^+ and α^- are constrained to have a large minimum degree, δ . **Proposition 7.** For all graphs G, $\min\{\alpha^+(G), \alpha^-(G)\} \leq \delta(G) + 1$. It is interesting to note that although α^+ and α^- can be simultaneously large this is not the case for graphs with at least one endpoint. **Proposition 8.** If G is a graph with a point of degree one, then $\alpha^+(G) \ge 2$ implies $\alpha^-(G) \le 2$. In particular this is true for trees. **Proof.** Let v be a point of T which is adjacent to an endpoint u of T. If $\alpha(T-v) < \alpha(T)$ we are done. If not, since we know $\alpha(T-v) \le \alpha(T)$, it follows that $\alpha(T-v) = \alpha(T)$. However $T-v = \{u\} \cup T'$, where T' is a subtree of T, and hence $\alpha(T-v) = 1 + \alpha(T')$. But then $\alpha(T-u-v) = \alpha(T') < \alpha(T-v) = \alpha(T)$ and so $\alpha^-(T) \le 2$. \square The examples given in Fig. 6 demonstrate that the only restriction on α^+ and α^- for trees is given in the above proposition. We now show that one can select and remove a point from a tree without changing the domination number. D. Bauer et al. **Proposition 9.** For every tree T there exists a point $v \in T$ such that $\alpha(T-v) = \alpha(T)$. **Proof.** We first note that if there is a point $v \in T$ which is adjacent to two (or more) endpoints u_1 and u_2 of T then v is in every minimum dominating set for T and $\alpha(T-u_1)=\alpha(T)$. If not, then T contains a point w of degree two which is adjacent to an endpoint u. Let T' = T - w - u. Now for any graph G, if deg v = 1, then $\alpha(G - v) \le \alpha(G)$. Hence $\alpha(T') \le \alpha(T - u) \le \alpha(T)$. However clearly $\alpha(T') \ge \alpha(T) - 1$. Now if $\alpha(T') = \alpha(T) - 1$, then $\alpha(T) = \alpha(T - w)$. Otherwise $\alpha(T') = \alpha(T) = \alpha(T - u)$. We conclude this section by proving that for sufficiently large n, $\alpha^+ + \alpha^-$ is a constant for paths P_n and cycles C_n . First note that $\alpha(P_n) = \alpha(C_n) = \lceil \frac{1}{3}n \rceil$ if $n \ge 3$. **Proposition 10.** For $n \ge 7$, $\alpha^+(P_n) + \alpha^-(P_n) = 4$. **Proof.** Let path $P_n = v_1, v_2, \ldots, v_n$. We show that $\alpha^+(P_n) + \alpha^-(P_n) = 4$ by proving this separately for $n \equiv 0, 1$, and 2 (mod 3). Case 1: $n \equiv 0 \pmod{3}$. Clearly v_2 is in every minimum dominating set, hence by Proposition 4 $\alpha^+(P_n) = 1$. To see that $\alpha^-(P_n) = 3$ first note that $\alpha(P_{n-3}) = \alpha(P_n) - 1$; hence $\alpha^-(P_n) \leq 3$. Since $\alpha(P_{n-1}) = \alpha(P_{n-2}) = \alpha(P_n)$ the only way to lower the domination number of P_n by removing either one or two points is to disconnect P_n . Suppose we create two components, A and B, containing a and b points respectively, by removing either one or two points from P_n . Let $k = \frac{1}{3}n$. Then $$\alpha(A) + \alpha(B) = \left[\frac{1}{3}a\right] + \left[\frac{1}{3}b\right] \ge \frac{1}{3}a + \frac{1}{3}b \ge k - \frac{2}{3}$$ and so $\alpha(A) + \alpha(B) \ge k$. The last possibility, namely removing two points from P_n and creating three components, is immediate and we omit the details. Case 2: $n \equiv 1 \pmod{3}$. Now $\alpha(P_{n-1}) = \alpha(P_n) - 1$ and hence $\alpha^-(P_n) = 1$. If we remove $\{v_2, v_4, v_6\}$ from P_n we obtain three isolated points and P_{n-6} . Since $\alpha(P_{n-6}) = \alpha(P_n) - 2$ we conclude that $\alpha^+(P_n) \leq 3$. Now note that no point of P_n is in every minimum dominating set of P_n . In fact the only pairs of points satisfying condition (1) of Proposition 6 are $\{v_1, v_2\}$ and $\{v_{n-1}, v_n\}$. However in either case condition (2) is not satisfied. Hence by Propositions 4 and 6, $\alpha^+(P_n) = 3$. Case 3: $n \equiv 2 \pmod{3}$. Here v_2 and v_{n-1} satisfy the hypothesis of Proposition 6 and thus $\alpha^+(P_n) = 2$. Now by Proposition 8 $\alpha^-(P_n) \leq 2$. To see that $\alpha^-(P_n) \neq 1$ we appeal to an argument similar to that used in Case 1. \square **Proposition 11.** For $n \ge 8$, $\alpha^+(C_n) + \alpha^-(C_n) = 6$. **Proof.** It suffices to show that for $n \equiv 0, 1$, and 2 (mod 3), we have respectively $\alpha^+(C_n) = \alpha^-(C_n) = 3$, $\alpha^+(C_n) = 5$ and $\alpha^-(C_n) = 1$, and $\alpha^+(C_n) = 4$, $\alpha^-(C_n) = 2$. We indicate how to prove that $\alpha^+(C_n) = 5$ when $n \equiv 1 \pmod{3}$. The remaining cases follow easily from the proof of Proposition 10. Suppose $n \equiv 1 \pmod 3$ and let $k = \lceil \frac{1}{3}n \rceil$. If we denote C_n by $v_0 \ v_1 \cdots v_n = v_0$, then removal of the set of points $\{v_0, v_2, v_4, v_6, v_8\}$ leaves four isolated points and P_{n-9} . However $\alpha(P_{n-9}) = \alpha(P_n) - 3 = \alpha(C_n) - 3$ and thus $\alpha^+(C_n) \le 5$. If we remove only a single point from C_n , we obtain P_{n-1} and since $\alpha(P_{n-1}) = k-1$, we know $\alpha^+(C_n) \ge 2$. It remains to show that removal of fewer than four points from P_{n-1} will not cause the domination number to exceed k. Suppose three points are removed from P_{n-1} leaving four components A_i , $1 \le i \le 4$, containing a_i points respectively, and that $\sum_{i=1}^4 \alpha(A_i) \ge k+1$. Since $a_i \ge 3\alpha(A_i) - 2$ we have $$\sum_{i=1}^{4} a_i \ge \left[3 \sum_{i=1}^{4} \alpha(A_i) \right] - 8 \ge 3(k+1) - 8 = 3k - 5.$$ However, $$\sum_{i=1}^{4} a_i = 3(k-1)-3 = 3k-6,$$ D. Bauer et al. a contradiction. Analogous arguments will show that if less than four components are formed as a result of removing fewer than four points from P_{n-1} the domination number will never exceed k. \square In the next section we begin a discussion of α -line-stability, i.e., we examine the effect of removing lines from a graph G on the domination number of G. # 3. Line stability of $\alpha(G)$ For any graph invariant μ we define the μ -line-stability of a graph to be the minimum number of lines whose removal changes μ . The minimum number of lines which when removed from G increases μ is denoted by $\mu^{+\prime}(G)$; $\mu^{-\prime}(G)$ is the minimum number of lines the removal of which decreases μ . We now present some elementary results concerning the α -line-stability of a graph. First note that when lines are removed from G, $\alpha(G)$ can only increase. The following proposition, stated without proof, establishes a relation between $\alpha^{+\prime}(G)$ and the maximum degree Δ of G. **Proposition 12.** If there is at least one point $v \in G$ such that $\alpha(G-v) \ge \alpha(G)$, then $\alpha^{+\prime}(G) \le \Delta$. To see that the hypothesis is required note that $\Delta(C_{3n+1}) = 2$ and $\alpha^{+\prime}(C_{3n+1}) = 3$. We now show that for trees the bound can be sharpened. **Proposition 13.** If T is a tree with at least two points, then $\alpha^{+\prime}(T) \leq 2$. **Proof.** If T contains a point v which is adjacent to at least two endpoints u_1 and u_2 then v is in every minimum dominating set for T. However both u_1 and either v or another endpoint adjacent to v will be in every dominating set for T' = T - e, where $e = \{u_1, v\}$. Hence $\alpha^{+\prime}(T) = 1$. If no point of T is adjacent to two or more endpoints then T must have an endpoint u which is adjacent to a point w of degree two. Now remove a line from T such that the line $\{u, w\}$ forms a component in the resulting forest F. If $\alpha(F) > \alpha(T)$, we are done. If not, removing $\{u, w\}$ from F yields $\alpha(F - \{u, w\}) > \alpha(T)$ and we are done. \square The following result, analogous to that of Proposition 12, concerns another bound on $\alpha^{+\prime}$ for graphs. Define the degree of an edge $\{u, v\}$ of G, $d_e(\{u, v\})$, to be deg u + deg v and set $$\delta'(G) = \min\{d_e(\{u, v\}) \mid \{u, v\} \text{ is a line of } G\}.$$ We may now state the following inequality. **Proposition 14.** For any graph G, $\alpha^{+\prime}(G) \leq \delta' - 1$. Finally, we note that Sumner [4] has worked on a closely related problem. A graph G is k-domination critical if $\alpha(G) = k$ and $\alpha(G)$ decreases whenever any line from \overline{G} is added to G. Sumner characterized 2-domination critical graphs and investigated k-critical graphs for $k \ge 3$. As an interesting dual concept we define the connected graph G to be $\alpha^{+\prime}$ -critical if for each edge e of G, $\alpha(G-e) > \alpha(G)$. These graphs can be characterized as follows. **Proposition 15.** A graph G is $\alpha^{+\prime}$ -critical if and only if it is the union of stars $K_{1,n}$. **Proof.** The sufficiency is clear. Suppose D is a minimum dominating set for G. First note that every point of degree at least two must be in D. However no two vertices in D can be adjacent. Hence G is a union of stars. \square #### References - [1] J. Akiyama, F. Boesch, H. Era, F. Harary, and R. Tindell, The cohesiveness of a point of a graph, Networks 11 (1981) 65-68. - [2] F. Harary, Graph Theory (Addision-Wesley, Reading MA, 1969). - [3] F. Harary and J.A. Kabell, Monotone sequences of graphical invariants, Networks 10 (1980) 273-275. - [4] D.P. Sumner, Domination critical graphs, Notices Amer. Math. Soc. 28 (1981) 38.