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The domination number a(G) of a graph G is the size of a minimum dominating set, i.e., a 
set of points with the property that every other point is adjacent to a point of the set. In general 
a(G) can be made to increase or decrease by the removal of points from G. Our main objective 
is the study of this phenomenon. For example we show that if T is a tree with at least three 
points then a(T - u) > a(T) if and only if u is in every minimum dominating set of 7’. Removal 
of a set of lines from a graph G cannot decrease the domination number. We obtain some 
upper bounds on the size of a minimum set of lines which when removed from G increases the 
domination number. 

1. Introduction 

We investigate the stability of the domination number of a graph. Let G = 
(V, E) be the graph and p = p(G) an arbitrary invariant of G. The p-stability of 
G is the minimum number of points whose removal changes I_L. Some invariants 
such as the chromatic number of a graph, x(G), have the property that removal of 
any subset S c V does not increase the invariant. For other graph invariants there 
are subsets S1 and S2 of V such that h(G-SI) > p(G) and p(G-SZ)< p(G). 
One example [l, 31 of such an invariant is the point connectivity K(G). The graph 
G in Fig. 1 has K = 2; however K(G-u)=l and K(G--ZJ)=~. 

G: WV 
U 

V 

H: /\ 
U 

Fig. 1. 
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Another example is the diameter d(G). For graph H of Fig. 1, d(H) =4, 
d(H- U) = 3, and d(H-v) = 5. We call such invariants exceptiowl. For these 
invariants we define the F+‘-stability to be the minimum number of points whose 
removal increases (-L; to decrease Al. we refer to the ~--stability. 

The domination number’ of a graph G, denoted a(G), is the minimum number 
of points of a set S c V with the property that each point of V-S is adjacent to 
some point of S. In the graph G of Fig. 2, we see that a(G) = 2, a( G - u) = 1, and 
a(G-u)=3. Thus a’+(G) =a-(G) = 1. Note that a(G) =0 if G is the discrete 
graph, hence a-(G) = IV1 if G has a point of full degree. We now concentrate 
on a(G) and domination alteration sets, i.e., sets of points that alter a(G). 

Fig. 2. 

In Section 2 we show that if 7’ is a tree with at least three points then 
a(T-u)>a(T’) if and only if 21 is in every minimum dominating set of T. A 
surprising result, proved at the end of the section, states that a+(G) + a-(G) is a 
constant whenever G is a sufficiently large path or cycle. In Section 3 we consider 
the ‘line stability’ of a(G), i.e., changes in a that result from removing lines from 
G. 

Terminology and notation not introduced here is given in the book by Harary 
c23- 

2. StabiIity of a(G) 

The following definitions will be useful. The neighborhood of a point 2, is the set 
N(u) of all points u which are adjacent to u. The closed neighborhood of 
u is wu] = NV) U(u). For a minimum dominating set A and u E A, let 

A*(u)={u: u$A and N(u)nA =(u}}. 

In addition let 

y(G) = min{lA*(u)J: u E A, a minimum dominating set). 

We now give a simple but useful bound for a-. 

Prop&ion 1. For uny graph G 

a-(G)sy(G)+l. 
To see that equality does not hold in general consider the graph G of Fig. 3. 

’ Even though this was denoted by am(G) in [2], we write a(G) for brevity. 
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Fig. 3. 

In this case a(G) = 2 and y(G) = m ~3, however ar(G-{rg v}) = 1. 

(Ibmlhy 1.1. For any graph G, a-(G) = 1 if and only if r(G) = 0. 

Proof. If r(G) = 0, then a-(G) s 1 by Proposition 1. But a-(G) must be at least 
one; hence a-(G) = 1. Now suppose (Y (G - V) < (Y(G) for some point v E G and 
let B be a minimum dominating set for G - v. Clearly A = B U(v) is a minimum 
dominating set for G with A*(v) = 8, consequently r(G) = 0. Cl 

If we form a graph H by removing a+(G) points from G, a!(H) - a(G) can be 
made arbitrarily large, as is easily seen by observing the star K1,,. This is not the 
case if we remove (Y- points. By noting that for any graph G, a(G - v) 2 cu (G) - 1, 
we obtain the following result. 

pNDpo&h 2 L&t Ul, . . . ) u,, be a minimal point set of G whose removal decreases 
(II(G). Then cu(G-ul-u2-. a.-k)=a!(G)-1 und a(G-U)=cr(G) for any 
subset U of {u,, . . . , 4) with cardinal@ n - 1. 

We note that if U is a minimal set of points whose removal decreases ar(G) and 
if U’ is a proper subset of U, it is possible for ar (G - U’) to exceed a(G). A 
simple example is given by the star K1,,, where n a 2. It is also possible for a 
minimal set of points whose removal increases (Y to properly contain a subset of 
points whose removal decreases CY. The graph G shown in Fig. 4 is dominated by 
{v,, v2, ul, ua. Removing v1 and v2 from G increases (Y to five, however at(G- 
VI)=&+V,)=% 

Fig. 4. 

Next we state a result which characterizes points whose removal increases CL 

Ropoe&k 3. 7’he rem-1 of a point v from G increases ar if and only if 
(1) v is not isolated and is in every minimum dominating set for G, and 
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(2) there is no dominating set for G - N[v] having a points which also dominates 
N(v). 

The graphs G and H in Fig. 5 show that neither of the above conditions is 
sufficient. Clearly v is in every minimum dominating set for G, yet a( G - v) = 
a(G) = 2. It is also easy to see that there is no two point dominating set for 
H- N[v] which dominates N(v); however a&l-v) = a(H) = 2. 

G: ??---/$v H: .--@ 
Fig. 5. 

For trees we may dispense with the second condition. Before proving this result 
we note that if a point v is in every minimum dominating set of a tree T, then v is 
not an endpoint of T. 

Fropo&ion 4. For any tree T with at least three points a( T- v) > a(T) if and only 
if v is in every minimum dominating set for T. 

Proof. By Proposition 3 the necessity of v being in every minimum dominating 
set for 7’ is immediate. Suppose v is in every minimum dominating set of T. Note 
that a(T - v) a a(T), for otherwise a minimum dominating set of T- v could be 
extended to a dominating set of T which avoids v and has cardinality at most 
a(T); Let N(v) ={vl, v2,. . . , v,} and Ti be the component of T- v containing Via 

If a( T- v) = a(T), then for each i, vi is in no minimum dominating set of Tip for 
otherwise such a dominating set could be extended to a dominating set of T which 
avoids v and has cardinality at most a(T). Thus, for each i, a (T- Uj+i q) = 
a (Ti) + 1, and SO for any dominating set D of T, ID fl V( Ti)la a (Ti). It follows 
that a(T)~~~x=l a(T)+1 = a(T) + 1, a contradiction. Cl 

With a slight modification of the above proof we can strengthen the result in 
one direction. 

Propsition 5. If a cutpoint v of G is in every minimum dominating set for G, then 
a(G-v)>a(G). 

We now extend Proposition 4 by describing the structure of those trees T for 
which a+(T) = 2. 

Froposition 6. Let T be a tree. Then a+(T) = 2 if and only if there are points v and 
u such that 
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(1) every minimum dominating set contains either v or 1.4, 
(2) v is in every minimum dominating set for T- u and u is in every minimum 

dominating set for T-v, and 
(3) no point is in every minimum dominating set for T. 

Proof. The necessity of the conditions is clear. Furthermore sufficiency is easily 
established if we can prove that cu(T- v) = (Y(T), for then condition (2) will serve 
as the hypothesis for Proposition 4 applied to T - v,. The fact that ar(T - v) d a!(T) 
follows from condition (3) and Proposition 4. Suppose a( T - v) < a(T), and let S 
be a minimum dominating set for T which contains v but not u. Let vl, . . . , v,,, be 
the points adjacent to v. Then S = {v) U tJzl Si where Si is a minimum collection 
of points from Ti which dominates Ti - vi. Note that if there are two or more 
values of i for which a(T,) = lSil+ 1 then a’(T) = 1, which contradicts condition 
(3). Suppose there exists one value of i such that a(T) = ISi I+ 1. Then 

a(T-v)= 2 a(T)=l+ 2 ISil=a(T), 
i=l i=l 

a contradiction. If at(Ti) = ISil f or all i, then lJzl Si is a minimum dominating set 
for T - v which does not contain u, and we are done. 0 

For graphs in general, ar, CY+ and cy- can be made as large as we wish. In 
particular, the graph G constructed by joining a point v to one point in each of m 
distinct copies of K, has a(G) = a+(G) = a-(G) = m. However graphs with large 
at and (Y- are constrained to have a large minimum degree, 6. 

Proposiin 7. For all graphs G, min(ar+(G), a-(G)} c 6(G) + 1. 

It is interesting to note that although (Y+ and a- can be simultaneously large 
this is not the case for graphs with at least one endpoint. 

Propositb~ 8. If G is a graph with a point of degree one, then a+(G) 3 2 implies 
a-(G) < 2. In particular this is true for trees. 

Proof. Let v be a point of T which is adjacent to an endpoint u of T. If 
o(T-v)<o(T) we are done. If not, since we know cu(T-v)sa(T), it follows 
that CY(T-v)=(Y(T). However T-v={u}UT’, where T’ is a subtree of T, and 
hence cr(T-v)=l+a(T’). But then a(T-u-v)=cu(T’)<cw(T-v)=a(T) and 
so a-(T)<2. ??

The examples given in Fig. 6 demonstrate that the only restriction on CX+ and 
cy - for trees is given in the above proposition. 

We now show that one can select and remove a point from a tree without 
changing the domination number. 
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Q 
T 

u+(T) = 1 

a-(T)=m,l 

ti+(T)=mL2 

s-(T)= 2 

d+(T)=mL3 

T 

gl+ (T) = 2 

&- (T) = 1 

Fig. 6. 

PropHong. ForeverytreeTthereexistsapointvETsuchthata(T-v)=a(T). 

Proof. We first note that if there is a point v E T which is adjacent to two (or 
more) endpoints u1 and u2 of T then v is in every minimum dominating set for T 
and a(T- UJ = a(T). If not, then T contains a point w of degree two which is 
adjacent to an endpoint u. 

Let T’=T-w-u. Now for any graph G, if degv=l, then a(G-v)~ar(G). 
Hence cx(T’)~a(T- u)~a(T). However clearly a(T’)aa(T)- 1. Now if a(T’) = 
a(T)- 1, then a(T) = a(T- w). Otherwise a(T’) = a(T) = a(T- u). ??

We conclude this section by proving that for sufficiently large n, cy+ + CX- is a 
constant for paths P, and cycles C,,. First note that cr(PJ = a(G) = [&xl if n ~3. 

Proposition 10. For n 2 7, a+(&) + a-(&> = 4. 
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Proof. Let path P, = q, a2, . . . , v,,. We show that a’(P,,) + a-(P,,) = 4 by proving 
this separately for n = 0, 1, and 2 (mod 3). 

Case 1: n = 0 (mod 3). Clearly v2 is in every minimum dominating set, hence 
by Proposition 4 a’(P’) = 1. To see that a-(P,) = 3 first note that a(P,,__J = 
a(P,,)- 1; hence a-(P,)<3. Since CX(P,-~) = Q(P,,-~) = a@‘,) the only way to 
lower the domination number of P, by removing either one or two points is to 
disconnect P,. Suppose we create two components, A and B, containing a and b 
points respectively, by removing either one or two points from P,,. Let k = in. 
Then 

a(A)+a(B)= [$zl+ [$bl +a+$bsk-$ 

and so a (A) + a(B) 2 k. The last possibility, namely removing two points from P,, 
and creating three components, is immediate and we omit the details. 

Case 2: n=l (mod3). Now a(P,,_l)= a(P,)- 1 and hence a-(P,) = 1. If we 
remove {v2, v4, vd from P,., we obtain three isolated points and P,,+ Since 
a(P,,_,) = a(P,,) - 2 we conclude that a+(P,,) s 3. Now note that no point of P, is 
in every minimum dominating set of P,,. In fact the only pairs of points satisfying 
condition (1) of Proposition 6 are {q, VJ and {v,,_~, v,,}. However in either case 
condition (2) is not satisfied. Hence by Propositions 4 and 6, a+(P,) = 3. 

Case 3: n = 2 (mod 3). Here v2 and v~-~ satisfy the hypothesis of Proposition 6 
and thus a+(P,) = 2. Now by Proposition 8 a-(P,) s2. To see that a-(P,) # 1 we 
appeal to an argument similar to that used in Case 1. Cl 

Propdthll. For n 28, a+(C,.,)+a-(c)=6. 

Proof. It suffices to show that for n LO, 1, and 2 (mod 3), we have respectively 
a+(c) = a-(G) = 3, a+(c) = 5 and a-(C,,) = 1, and a+(G) = 4, a-(c) = 2. We 
indicate how to prove that a+(c) = 5 when n = 1 (mod 3). The remaining cases 
follow easily from the proof of Proposition 10. 

Suppose n = 1 (mod 3) and let k = [jnl . If we denote G by v. v1 - - - u,, = vo, 

then removal of the set of points (v,, v2, v4, 2)6, v8} leaves four isolated points and 
P,,_+ However a(P,+) = a(P,,) - 3 = a(C,,) - 3 and thus a+(c) s 5. If we remove 
only a single point from C,, we obtain P,,_l and since a(P,,_,) = k - 1, we know 
a+(C,,) a 2. It remains to show that removal of fewer than four points from P,_l 
will not cause the domination number to exceed k. Suppose three points are 
removed from P,,_l leaving four components Ai, 1 G i s4, containing 4 points 
respectively, and that Cf=1 a(Ai) 2 k + 1. Since a, 2 3a(Ai) - 2 we have 

$I1 42[3 i a(A)]- 823(k+l)-8=3k-5. 
i=l 

However, 

i q=3(k-1)-3=3/c-6, 
i=l 
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a contradiction. Analogous arguments will show that if less than four components 
are formed as a result of removing fewer than four points from P,_l the 
domination number will never exceed k. El 

In the next section we begin a discussion of ar-line-stability, 
effect of removing lines from a graph G on the domination 

i.e., we examine the 
number of G. 

3. Line stab- of a(G) 

For any graph invariant p we define the p-line-stabdity of a graph to be the 
minimum number of lines whose removal changes p. The minimum number of 
lines which when removed from G increases p is denoted by g+‘(G) ; p-‘(G) is 
the minimum number of lines the removal of which decreases CL. 

We now present some elementary results concerning the a-line-stability of a 
graph. First note that when lines are removed from G, at(G) can only increase. 

The following proposition, stated without proof, establishes a relation between 
(Y+‘(G) and the maximum degree A of G. 

Propmition 42. If there is at least one point II E G such that ar(G - u) 2 cx (G), then 
cz+‘(G)<A. 

To see that the hypothesis is required note that A (C3,,+J = 2 and 
cy+’ (C3,,+J = 3. We now show that for trees the bound can be sharpened. 

Proposition 13. If T is a tree with at least two points, then a+‘(T) G 2. 

Proof. If T contains a point v which is adjacent to at least two endpoints u1 and 
u2 then v is in every minimum dominating set for T. However both u1 and either 
v or another endpoint adjacent to v will be in every dominating set for T’ = T- e, 
where e = {u,, v}. Hence a+‘(T) = 1. 

If no point of T is adjacent to two or more endpoints then T must have an 
endpoint u which is adjacent to a point w of degree two. Now remove a line from 
T such that the line {u, w} forms a component in the resulting forest F. If 
cr(F) >a(T), we are done. If not, removing (u, w} from F yields CY(F---(u, w})> 
Q(T) and we are done. Cl 

The following result, analogous to that of Proposition 12, concerns another 
bound on (Y+’ for graphs. Define the degree of an edge {u, v} of G, d,({u, v}), to be 
deg u +deg v and set 

6’(G) = min{d, ({u, v}) 1 {u, v} is a line of G}. 

We may now state the following inequality. 
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Fropo&b 14. For any graph G, a”(G) s 6’ - 1. 

161 

Finally, we note that Sumner [4) has worked on a closely related problem. A 
graph G is k-domination critical if a(G) = k and a(G) decreases whenever any 
line from G is added to G. Sumner characterized 2-domination critical graphs and 
investigated k-critical graphs for k 2 3. As an interesting dual concept we define 
the connected graph G to be a+’ -critical if for each edge e of G, a (G - e) > a(G). 
These graphs can be characterized as follows. 

PropoMon 15. A graph G is a+’ -critical if and only if it is the union of stars K1,,. 

Proof. The sufficiency is clear. Suppose D is a minimum dominating set for G. First 
note that every point of degree at least two must be in D. However no two 
vertices in D can be adjacent. Hence G is a union of stars. 0 
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