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Abstract-A numerical solution for the free convection flow past a vertical semi-infinite flat plate embedded in a 
highly saturated porous medium by allowing the plate to have a non-uniform temperature or a non-uniform heat 
flux distributions has been developed. Both local heat transfer rate and excess surface temperature as a 
function of the distance along the plate are tabulated for a few cases of prescribed wall temperature and heat 
flux distributions. Such tabulations serve as a reference against which other approximate solutions can be 
compared in the future. 

I. INTRODUCTION 

THERE IS, at present, a good deal of information about laminar free convection boundary layers 
over isothermal surfaces for which the flow is similar. Approximate similarity transformations, 
approximate series and integral procedures and numerical finite-difference methods have all 
been employed in obtaining solutions of the laminar, steady state, free convection heat transfer 
from bodies with relatively simple geometry, e.g. flat plate, circular cylinder and sphere. 
However, problems of non-isothermal surfaces have received relatively little attention. 

The problem of prediction of heat transfer is of importance in a number of geophysical and 
engineering applications, notably in studies of free convection flow from a heated vertical 
surface embedded in a saturated porous medium. The practice shows that porous media are 
very widely used for enclosing a heated body to keep its temperature; for they are considered 
to be useful in diminishing the natural convection which will otherwise occur intensely around 
the heated body. To make the heat insulation of the body more effective, it may be necessary to 
study the residual flow through porous medium induced by buoyancy and to estimate its effect 
on the heat transfer. 

In a recent paper, Cheng and Minkowycz[l] have obtained similarity solutions for the free 
convection flow in a porous medium adjacent to a vertical plate with wall temperature being a 
power function of distance from the leading edge. A good description of the underlying physical 
assumptions as well as many interesting practical applications of this problem are also sketched 
in a series of papers by Cheng[2] and Merkin[3,4], and it is therefore unnecessary to repeat the 
details here. 

Our present objective is to predict the steady natural convection heat transfer from an 
impermeable vertical surface embedded in a saturated porous medium subject to a prescribed 
non-uniform wall temperature or to a prescribed non-uniform wall heat flux. We show that the 
governing equations possess a similarity solution only for a limited class of wall temperature 
distribution or heat flux rate distribution with a resulting ordinary differential equations. The 
procedure, as we apply it here, is close to that used by Na[5,6] who has developed a consistent 
theory based on a very efficient two-point finite-difference method, and the readers are referred 
to[5,61 for detailed analysis. Thus, the numerical solution of the boundary layer equations, 
which starts at 5 = 0 (5 measures distance along the wall) and proceeds along the plate up to 
5 =42.15 to the required accuracy are obtained. The results are presented for both wall 
temperature distribution and wall heat flux distribution. We report the principal results in the 
form of tables of the heat transfer rates and of the excess surface temperature as a function of 
the parameter 5. However, other quantities of interest that emerge from our calculations are the 
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velocity and temperature fields but we do not present them here for the sake of brevity. Such 
solutions are not available in the existing literature and therefore they may serve as a reference 
against which other approximate solutions or emperimental data can be compared in the future. 
On the other hand, the present analysis reveals that this method can be applied to a wide range 
of non-similar problems in boundary-layer theory and other related areas. 

2. BASIC EQUATIONS 

We consider the natural convection about a heated semi-infinite vertical impermeable flat 
plate in an unbounded region of saturated porous medium with constant permeability K. We 
assume that the how through the porous medium is governed by Darcy’s law. It is also assumed 
that the Rayleigh number is large and that the Boussinesq approximation is applicable to the 
present problem. That is to say, variable fluid properties are negligible except in the buoyancy 
term which is directly responsible for the fluid motion. Then, the fundamental equations may be 
taken to be 

a? a$aT a$ aT 
a--T=----- ay ay ax ax ay 

(1) 

where t+Q is the stream function defined in the usual way, x and y are coordinates measuring 
distance along and normal to the plate respectively, (Y the equivalent thermal diffusivity. pm the 
density of the ambient fluid and p the viscosity of convective fluid. 

Equations (1) and (2) have to be solved subject to the boundary conditions 

y =o: g = 0, T = TJX) (34 

y = co: $=o, T=T,; 

y =o: !gzo, !pp 

y = CD, $=O, T=T, 

where T,(x) designates temperature of the plate (variable), T, the temperature of the ambient 
fluid (constant), q,Jx) the local heat transfer rate (variable) and k thermal conductivity of the 
saturated porous medium. 

In developing the method of solution, we shall refer to the above situations (3) and (4), 
respectively; but here we will restrict our attention to a rather specific form of TJx) and SW(x). 

3. VARIABLE WALL TEMPERATURE T,(x) 

The eqns (l)-(3) are firstly recast into non-dimensional form by introducing the variables 

cb= 
T - T, 

T,(P) - T,’ 
S (?) = T,(T) - T= 

w T,-T, ’ 
(5b) 
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The equations now read 

with boundary conditions 

ji=(): - $0, e=1 

g=cc: - J$=o, e=o. 

The further transformations which carry the inherent advantages are 

f(5, 7) = i pS,(p’ !a, 17) = 8. 

The resulting equations are as follows 

f”= g’ 

with the boundary conditions 

rl = 0: f(5,0> = 0, s&O> = 1 

77 = co: f’(5, tQ) = 0, d5, ml = 0. 

Here the primes indicate differentiation with respect to 71 and P(t) is defined as 

Integration of (10) subject to the boundary conditions (12b) results in 

f’ = g. 

In view of (14) eqn (11) takes the final form 

f”‘+ E$kl~_p(5)(f’)‘= 5(f’!$-f”Lf) 

with the boundary conditions 

r) = 0: f&O) = 0, f’(c$O) = 1 

n =co: f ‘(574 = 0. 
ES Vol !I. No. C--F 

(6) 

(7) 

@a) 

@b) 

(9b) 

(10) 

(11) 

WW 

U2b) 

(13) 

(14) 

(15) 

(W 

(16b) 
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It becomes immediately evident, as is seen above, that in porous medium the velocity field 
which vanishes at infinity has been obtained under the same temperature distribution described 
by the eqn (14). The fluid is difficult to flow through the porous medium owing to the drag 
exerted by the medium and its rising motion due to buoyancy may be important to know for 
any geophysical problem. 

The primary physical quantity of interest is the local Nusselt number 
Nu, = hx/k. With the aid of relations (5) and (9). and the use of Fourier’s law qw = - k(aT/ay),+ 
the local Nusselt number can then be shown to be given by 

Nux _ a’f 
iiiy- Q v=o’ ( 1 (17) 

Hence, a complete solution of the problem involves solving eqn (15) with the respective 
boundary conditions (16). As it was mentioned in Section 1, we use a very efficient two-point 
finite-difference method to solve this equation. The solution procedure that we adopt for the 
eqns (15) and (16) can be found in detail in Refs. [5,61. For this reason, only a brief description of 
the numerical scheme is presented in Appendix. 

Having derived appropriate equations, we proceed further with the analysis as follows. 

Case 1 
The first example is the special case in which P(t) is constant, say A. Consequently 

&SE) = Ad” and hence TJx) = T, + Ax* (18) 

where A, and A are constants. The problem becomes similar and the r.h.s. of (15) becomes zero 
since for this case f is independent of 5; eqn (15) reduces to that of Cheng and Minkowycz[l] 

h+l f”’ + - * ff” - hCf’)2 = 0 

with the boundary conditions 

f(O) = 0, f’(0) = 1, f’(m) = 0. (20) 

Case 2 
Another specific form at our disposal of S,(X) is 

S,(X) = 1+ 3” 

whereupon (13) reduces to 

5 d S&9 n5” pe)=s,(E)~- 1+5”’ 

(21) 

(22) 

A summary of the numerical results for the heat transfer rate when n = 1 and 2 are given in 
Table 1. 

Case 3 
If the wall temperature varies exponentially with the distance along the wall then in terms of 

the variables defined in (5) , one has 

from which 

S&Z) = e”’ (23) 

d Km - &j 5 
‘(*) = S,(5) d[ ’ 

(24) 
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Table I. Tabulation of Nu,/Ra? for various 5's in Case 2 

s n-1 n-2 

0.00 0.4430 0.4438 
0.11 0.5035 0.4551 
0.29 0.5750 0.5164 
0.56 0.6535 0.6734 
0.99 0.7315 0.9139 
1.66 0.8018 1.1292 

2.71 0.8597 1.2540 
4.35 0.9039 1.3101 

6.91 0.9357 1.3330 
10.90 0.9577 1.3422 
17.15 0.9724 1.3460 
26.91 0.9821 14475 
42.15 0.9885 1.3481 

Table 2. Tabulation of Nu,/Ra t” for various 5’s in Case 3 

1 .s n=o.1 n=0.5 n=l 

0.00 0.4438 0.4438 0.4438 
0.11 0.4504 0.4766 0.5086 

0.29 0.4607 0.5262 0.6039 
0.56 0.4766 0.6002 0.7400 
0.99 0.5011 0.7080 0.9279 
1.66 0.5384 0.8604 1.X772 
2.71 0.5946 1.0683 1.4959 
4.35 0.6780 1.3410 1.8936 
6.91 0.7984 1.6874 2.3864 
10.90 0.9670 2.1201 2.9984 
17.15 1.1944 2.6589 3.7603 
26.91 1.4900 3.3306 4.7102 
42.15 1.8642 4.1688 5.8955 

Numerical data for n = 0.1, 0.5 and 1 are shown in Table 2. 

4,VARIABLE HEAT FLUX RATE q,(x) 

We now define the following dimensionless variables 

When (25) is introduced into (I), (2) and (4) it leads to 

aq _ ae 
3-z 

with the boundary conditions 

(2W 

(26) 

(27) 

y=o: - $=o, $z_* CW 
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(28b) 

By introducing an appropriate transformations 

we obtain instead of (26) and (27) the equation 

f”‘+{;+y}f”-{f+Q([)}(f’)’ =[(f’$-I”$) 

(29) 

(30) 

with the boundary conditions 

r) = 0: f(& 0) = 0, f”([, 0) = - 1 (3la) 

Here we have denoted 

q = %I: f’(5.~) = 0. (3lb) 

5 de (5) Q(5)=---- 
e,(t) d 5 . (32) 

In terms of the transformed variables (25) and (29), we can define a non-dimensional excess 
surface temperature T, by 

TX = et& 0) = ($) _,,. 
n- 

(33) 

4.1 Similar flow 
(i) If q,,, = constant, then Q(t) = 0 and (30) is reduced to an ordinary differential equation, 

namely 

f”’ + ; $,, - ; (j’)’ = 0 (34) 

with the boundary conditions 

f(0) = 0, f”(0) = - 1, f’(m) = 0. (35) 

Thus, the solution is similar. It should be mentioned that eqns (34) and (35) become identical 
with those of Merkin[4] (eqns (20) and (21) in his paper) by a proper choice of f and 7. 

Refering to definition of e,(x) from (25b). it follows 

and (32) could be written as 

(ii) When SW(l) is proportional to em, i.e. 

4X.(5) = C,C” 

(36) 

(37) 

(38) 
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(37) yields 

Q(E) = 5 m (39) 

where C, and m are constants. The problem is again similar and equation (30) reduces to 

f”’ + (; + y) $” - (; + + m) (f’)? = 0 (40) 

subject to the same boundary conditions (35). 
It may be noted that these are only the cases where similar solutions are possible. 
Some numerical values of I’, for different m’s are presented in Table 3. We remark here 

that our result for the case of constant heat flux (m = 0) is in very good agreement with that 
from Ref. [41 if one multiplies the latter by the factor 2. 

4.2. Non-similar flow 
To generate the solution of (30) subject to (31) in the general case we use the same method 

as in the specified T,(x) case (see Appendix). But, now the first approximation (V = 1) of (AH) 
for all examples are different of course and are given by 

Case 4 
Consider next that q,,.(a) has the specific form 

q++.(X) = 1 + X”. 

We then see from (36) that 

O,(Z) = C( 1 + X”)*‘j 

Table 3. Tabulation of T, for various m’s 

Table 4. Tabulation of T,, for various 5’s in Case 4 

S_ n=l n=2 

0.00 1.2955 1.2955 
0.11 1.2676 1.2910 

0.29 1.2334 1.2664 

0.56 1.1946 1.2017 

0.99 1.1547 1.0958 

1.66 1.1172 0.9911 
2.71 1.0850 0.9235 

4.35 1.0595 0.8898 

6.91 1.0405 0.8751 
10.90 1.0270 0.8691 

17.15 1.0177 0.8666 

26.91 1.0115 0.8656 
42.15 1.0074 0.8652 

(42) 

(43) 
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Table 5. Tabulation of T, for various 5’s in Case Z 

,3 w0.5 n=l 

0.00 1.2955 1.2955 

0.11 1.2804 1.2656 

0.29 1.2575 1.2219 

0.56 1.2276 1.1605 

0.99 1.1747 1.0777 

1.66 1.1070 0.9752 

2.71 1.0189 0.8599 

4.55 0.9156 0.7442 

6.91 0.8005 0.6595 

10.90 0.6915 0.5492 

17.15 0.5950 0.4722 

26.91 0.5120 0.4064 

42.15 0.4409 0.5499 

and consequently, using (37) we have 

5 de,(t) _ 2 n5” Q(,c)=----- 
fM5) d5 31-t&5”’ (44 

Values of TX for n = 1 and 2 are given in Table 4. 

Case 5 
Finally, we assume that heat flux rate from the wall 

qW(Z) = eni. 

Hence 

varies exponentially with x, i.e. 

(45) 

e,(a) = C e”‘“” so that (I(.$> = $5. (46) 

As in the previous examples, Table 5 is included where the solution of the problem for 
n = 0.5 and 1 are tabulated. 

5. CONCLUSION 

Some natural convection problems for a semi-infinite vertical flat plate embedded in a highly 
saturated porous medium were solved by a very efficient and convenient numerical method. 
Since there apparently no results in the existing literature with which to compare our own 
findings we have summarized the numerical data in Tables for both the heat transfer rate and 
excess surface temperature. This is essentially accurate new information against to test the 
approximate methods. 

c 
& 
h 
k 

K 
L 

m,n 

Ra. R4d; 

Ra, 
T 
TS 
x 

NOMENCLATURE 

constant = (a~L/g,k’Rp,KI”’ 
acceleration due to gravity 
local heat transfer coefficient = q,./(T,. - TX) 
thermal conductivity of the saturated porous medium 
permeability of the porous medium 
length of the plate 
constants 
local heat transfer rate 
modified Rayleigh numbers, Ra = g,pp,(T, - T=)KL/ulr and Ra* = g&zqH(x)KL’layk 
modified local Rayleigh number = gepp,(T,. - T,)Kx/uy 
temperature 
excess surface temperature (non-dimensional) = (R.pp-Kq,(~)L’/apk}“~(T” - TJ{qN,(5IL/k15”’ 
vertical coordinate 
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horizontal coordinate 
echivalent thermal diffusivity 
coefficient of thermal expansion 
viscosity of convective fluid 
density of convective fluid 
stream function 

Subscripts 
r reference 
w wall condition 
cc ambient condition 
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APPENDIX 

One of the basic ideas of the two-point finite-difference method is to replace the governing eqn (15) by a first-order 
system 

j’= u (Al) 

u’= v (A2) 

(A3) 

with the boundary conditions 

n=o: j&0)=0, u&O)=1 7)=“: r&m)=O. 

To discretize the equations we set up a rectangular net with the net points characterized by 

to=0 &=.&,+kn (n=1,2 ,..., N) 
n0=0, q,=qi-,thi (j=l,2 ,..., J), q~=+ I 

where hi and k, are step sizes. 

(A4) 

(AS) 

Let us consider eqn (A3) first and replace the derivatives with respect to 5 by the finite-difference. After some algebra 
one then obtains 

where 

I” _ cr,{(u”)? _ rnjn _ r”-‘j” + j”~‘r”} = R”-’ 

L = 1.h.s. of 

an = &-,/z/k, 

(‘46) 

(A3) 

Replacing L’s by their complete form, and dropping the superscript “no, eqns (A&03) become 

f’=u 

u’=v 

where 

,t+y fv -p(~)U2-a~(u2-fV--Un~‘f+f”-‘U)=R”-’ 

(A7) 

(.W 

(A9) 

If we now replace n -derivatives by the finite-difference it follows that 

h, 
jj-ji~,-~(ujtuj_,)=o 

2 
(AlO) 
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u,-u,_,-~(“i+“,-I)=o (All) 

uj_6i~l+~hdi~l,~Uj-,,l - P(5)hi(u,~,,2)1--,,h,{(u,~,,~)’ - tjj_,izf,_,,2- ~~~~,~2+f;~,‘,l~i_,,~}= s;:,\~ 

with the boundary conditions 

u,=o, f,=l. t&1=0 

where 

(Al2) 

(A13) 

Further we put 

fl”‘” = fi”‘i_ afj”_ etc. 

but, for convenience, we drop two superscripts. SO, let US replace (A14) by 

fj = fi"' t Sfj, etc. 

and introduce (AIS) and (AM), (All) and (A12); we get 

6u, - suj-, -$ + I%-I) = (a& 

(b,)& t (b&Sf, t (b&St+, + (b&6ui f (b&&r + (bh)igt+ = (a& 

with the boundary conditions 

In the above equations we have denoted 

Sf, = 0, SUI = 0. au, = 0. 

h, 
(a,)j=fj-,-fjt~(U,tUj~,) 

2 

h 
(a& = u,-I - u; i’(Uj t II,-,) 

2 

(At4) 

(Al5) 

(‘416) 

(A17) 

(Al8) 

(A19) 

For the first approximation (V = 1) of (Al5) we use 

f”’ = r - r? f <, u!‘) = I- z7 + g , 3 ’ 
uy = 2(7 - 1) I 

(A20) 

in which r = q/q,,,. Then, eqns (Al6)-(A18), subject to (A19) are solved by the method of factorization (seet61, Chap. 6, 
pp. 126-132) to get gfi. 6ur and gu, for all j’s The next approximation can be obtained as 

fi” = !I” t Sfj, etc. (A21) 

and this will be continued until the solution converges with desired accuracy. 


