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Abdmd-The paper considers the partition of energy when an incident SH wave ia rcllectcd and refracted 
by a fricitonai contact interface that slips. The effect of applied shear tractions which cause a slow creeping 
motion is included in the analysis. 

INTRODUCTION 

The reflection and refraction of horizontally polarized shear (SH) waves by a frictional contact 
interface that can slip has been studied by the present authors [l-3] and Miller [4-6]. If the 
solids are sheared, the localized slip induced by the waves is more pronounced in one direction 
than in the other, which leads to the interesting phenomenon of the solids creeping with 
respect to each other in spite of the fact that no global slip takes place [l]. The applied shear 
tractions do work on the creeping motion, and it is pertinent to ask whether all of this work is 
dissipated by friction or, conceivably, some of it is transferred to the wave motion so that the 
reflected and refracted waves carry more energy than the incident wave. 

BASIC RELATIONS 

The physical situation is depicted in Fig. 1. Two solids are pressed together and at the same 
time sheared without causing catastrophic slip. The incident SH wave (n = 0) is reflected (n = 1) 
and refracted (n = 2). The solution for the wave motion under localized slip is constructed by 
correcting the fields for the welded interface. The latter corresponds to the displacements[7] 

~g(~) = Re {C&p) exp (iy,)}, n = 0, 1,2 (1) 

y, = k” [x * p(l) - c*t] (2) 

C,, = A,, + iB. 

e f@ e * 1 1 j 1 !’ 1 ‘1’;. 
Fig. 1. Incident (n = 0). reikcted (n = I) and refracted (n = 2) waves. 
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C,, is real and d(“) and p(“’ are unit vectors defining the direction of motion and direction of 
propagation of the incident, reflected and refracted SH waves. The displacements (1) yield the 
interfacial shear tractions 

[us?+ (TI:)],~=~ = [u~~],,,~ = Re {i&exp (iq)} 

where 

dRl= PGko 
2r cos 6, cos 9, 

ycos e,+rcos 92 

r=/J/.L, y=Elc 

(3) 

(4) 

and 

77 = b(x, sin 0, - ct) (5) 

can be viewed as a coordinate moving along the inteface with the velocity c/sin 6,. 
The corrective solution is taken as the additional displacement associated with the reflected 

and refracted waves [ 1] 

u?“) = Re 2 F,.,,(“) exp (imy,)), n=l,2 
m=l 

(6) 

F 
m 

Cn) = D,(n) + i&C”). (7) 

In order to account for the global creeping motion between the two solids, we also add to the 
displacements of the upper and lower solids the terms 1 Ut and - f 13, respectively, where U is 
the velocity of the creeping motion. The requirement that the shear tractions be continuous at 
the interface yields 

For subcritical angles of incidence, or sin O,< c/C which avoids total reflection, the slip 
velocity and shear tractions at the interface are 

p’=_~‘lPs~o 
m m r cos 82’ 

(8) 

m 
V(v) = [ tij*’ - d$‘)]x2=0 = U - $cb ms, m [II,“’ sin mg + Em(‘) cos rn7j] (9) 

S(T) = q- + [a$ + a::’ + T::)],*=. = qm + [& + 7gqx2=o 

m 

= qm - do sin 77 + ga x m [&(I) sin rnq + E,(I) cos rnv] (10) 
m=l 

where ~(2;) are the stresses derived from (61, and 

a = ko cos e,, b=l+YcoS@O 
r cos e2* 

It may be noted that from (9) 

V(q) dv. 

(11) 

(12) 
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The distribution of the shear tractions and the slip velocity are shown in Fii. 2. Due to the 
neriodicitv of the incident harmonic wave it is suf6cient to consider only the representative 
Lterval _’ w < n < TT. In the left slip zone V(q) > 0, and 

S(q) = fP”, a,< 7,</% 

where f denotes the friction coefficient. In the right slip zone V(q) < 0, and 

S(0) = - fP”, a2 < 9 < 82. 

The rest of the representative interval consists of stick zones in which 

V(q) = 0, -qr<q<a, /3,<q<a2 and &<Q<IK 

The boundary conditions (13)-(U) combined with (9) and (10) lead to the result that 

where 

$, m [D,‘” sin mn t E,“’ cos mv] = G(n) 
= 

=$(&sinq-fp”-q”), a2<q</32 

=& -n<q<a,,BI<sCa2andB2<7)<~. 

Consequently 

S(?l)=q”+ c !@-&sinrj, -a<n<ai, /3i<rl<at and Br<n<r 

in the stick zones, and 

V(v)= u hp -C(S&sinntfp”-q”), a,<r)<& 

= U-$(J1osin~-fp”-q~, ar<q<& 

/-\ 
\ 
\ 

‘Pm 
1 

_______ -- 

02 ;A 
p+ w 

(13) 

(14) 

(IS) 

(16) 

(17) 

(18) 

(19) 

Fii. 2. Interface shear ttactim and slip velocity. 
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in the slip zones, where 
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h=+= I- cos 9, cos 02 y cos 0, + r cos 02’ 

Since (16) is a Fourier series, 

D (1) = _ 
m rk 

E (I) = _!_ I 
n 

m 
7rm -n 

G(q) cos mq dn. 

(20) 

(21) 

(22) 

The intervals occupied by the slip zones are determined on basis of the inequalities 

V(n)>& Q,I < 77 < PI 

< 0, a2 < 17 < P2. (23) 

The slip zones are centered on 7 = ? 42, so that 

a,=-(7r+/3,), p2=7r--02 cw 

and in the general case of two slip zones 

sin/%=--i (fp---9=-!$!), - 7r/2< p, < 1~12 

sina2=-$ fpm+qOD+C ( 
WJ 

> 
) O<a2< 42. 

0 

(25) 

(26) 

Moreover, (16) yields 

!!a__ c (a2 A) = &(cos A - cos a2) - fp”(p, + a2) + 9-( 7r + p, - a2). (27) 

The system (25)-(27) must be solved for /3,, a2 and U by iteration. The right slip zone 
disappears when the last three equations predict sin a2 to be larger than 1. In such case (27) 
must be modified by setting a2 = 7r/2. 

ENERGY PARTITION AND DISSIPATION 

The power or rate of work per unit area is the inner product of tractions and the particle 
velocity [7]. Consider a thin slice of material containing the interface. Using (5) it follows that 
the power averaged either over a wave length or a period of the incident wave is 

on the bottom surface and 

on the top surface of the slice. The power dissipated by friction at the interface is 

(2% 

(30) 



Clearly we must have 

Energy relations for SH waves 583 

P_+P+=P* (31) 

which can be used as a check on the calculations. 
Substituting the stresses and velocities derived from (1) and (6) into (28), it is seen that what 

might be called cross terms do not contribute to the integral, and 

Similarly from (29) 

(32) 

(33) 

The various terms in (32) and (33) admit a direct interpretation. The power inpUr of the applied 
shear tractions is 

P4 = q”U (34 

whereas the input of the incident wave is 

The power extracted from the slice by the reflected wave is 

and that of the refracted wave 

(35) 

(37) 

In terms of these symbols, (31) becomes 

(38) 

It may be noted that PI, P2 and Pd are taken as positive for negative work done on the material 
contained in the slice. 

The remaining task is to carry out the intemations using (16) and (17). The calculations are 
tedious, but straightforward, and it suflices to simply give the results. Thus, also taking 
advantage of (28), 

(39) 

P A= 8q” 
PO dobh- B,) 

cos/3,-cosa~- 

!I= b-2 ’ (3 2(cOS /3, - cos a# 

PO b 

+W-1) 
?rb2 l 

n-a2+&t$(sin2a2-sin2&)+ 
a2-BI I 

8 
- Ha2 - B,) 

=,a, cos /.?I -B, cos ad-~ (cos /3, - cos “3) 
4, 
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4 = 40 - 1) 
PO 7rb2 I a2-/3,-f(sin2a2-sin2~,)-2(CoS~~~~a2)2] 

8(6-l) 1 & * 

+ b2(a2 - 82) 
[;fdO) [a(a,-81)+4d2P,l-~(a2+B,)+(~)*(II--2+B,)} (42) 

pd _ 8ff 
m 

% - r&Ma2 - BJ 
%a2 C0S PI - PI COS ad - 5 [a(a2 - j?,) + 4a2Pl] + 

0 
%ta2+Bb]. 

(43) 

In case there is only one slip zone, (40)-(43) must be modified by setting a2 = 77/2. 
The expressions obtained which give the energy partition between the reflected and 

refracted waves and the rate of energy dissipation are too complicated for reaching general 
conclusions, and the effect of the applied tractions resulting in the creeping motion must be 
studied on basis of specific examples. 

EXAMPLES 

It is seen from (25) to (27) and (40) to (43) that the power ratios depend on fpm/ggo, q”/& and 
b which is given by (11). Thus the material constants and the angle of incidence enter the 
results only through the single parameter b. 

It is convenient to plot the power ratios versus fp”/& for selected values of qm/Sgo and b. 
Only the range qm < fp”’ < qm + d,, is covered in the diagrams, since fpm < qm corresponds to 
catastrophic slip, and qm+ do < ff’ to no slip at all with the interface acting as if it were 
welded. The values selected for plotting are q-/do = 0,O. 1,0.4 and 0.8 with b = 1, 2 and 4. The 
value of b = 1 corresponds to the lower solid being in contact with a rigid upper solid (r = m). 
There is no refracted wave for this case. The value of b = 2 corresponds to identical materials, 
whereas b = 4 can be achieved when the upper solid has a much lower shear modulus than the 
lower solid. The diagrams for the power ratios are shown in Figs. 3-6 (the curves in the figures 
are labeled with the subscripts of the power ratios, e.g. d denotes the curves of PAP,). 

P/P, 

1.0 m 

2 

05 v 
Fig. 3. Power ratios for q’/& = 0 
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Fii. 4. Power ratios for qm/dO = 0.1. 

Pf P, 
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P/P, 

Fig. 5. Power ratios for 435& = 0.4. 
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Fig. 6. Power ratios for q-/s& = 0.8. 



586 E. L. CHEZ et al. 

It is seen from the diagrams that the dissipated power peaks at intermediate values of fp”/$, 
when q”/4 is small, but that the dissipation peak shifts to the smallest possible value of fpp/d, 
when q”/& is increased. A notable feature of the results is that in ail cases Pd > Pq which 
means the reflected and refracted waves never carry more energy than the incident wave, 
meaning that none of the work done by the applied tractions is transferred to the waves. 
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