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It is known that signed graphs with all cycles negative are those in which each block is a negative
cycle or a single line. We now study the more difficult problem for signed digraphs. In particular
we investigate the structure of those digraphs whose arcs can be signed (positive or negative) so
that every (directed) cycle is negative. Such digraphs are important because they are associated
with qualitatively nonsingular matrices. We identify certain families of such digraphs and
characterize those symmetric digraphs which can be signed so that every cycle is negative.

1. Introduction

We shall have occasion below to make use of graphs, digraphs, signed graphs,
and signed digraphs. Consequently we begin with a very brief review of these con-
cepts which will also serve to standardize our notation.

A graph G =(V,E) consists of a finite nonempty set ¥ of points and a set E of
lines, each a 2-subset of V. A digraph D =(V, X) has in addition to set V a collection
XC VxVofarcs (u,v) where u#v. A signed graph H= (V, E, g) consists of a graph
(V,E) together with a sign function o: E—{l, —1}. Similarly a signed digraph
S=(V, X, o) is adigraph (V, X) whose arcs have been signed positive or negative by
a. Terminology not given here can be found in Harary [3] or Harary, Norman, and
Cartwright [4].

The signed graphs in which every cycle is negative were easily characterized in [2]
where the following result appears.

Theorem A (Harary). A signed graph H has all cycles negative if and only if each
block of H is either a line or a negative cycle.

Our object is to study the class .# of all signed digraphs with all (directed) cycles
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negative. The primary reason why this class is of interest is because of its importance
to the sign solvability problem. It was already implicit in the original paper of
Bassett, Maybee, and Quirk [1] that such signed digraphs belong to qualitatively in-
vertible matrices. Since that time it has become clear from work by Klee and his
associates [5, 8], and the work of Maybee [9] on sign solvable graphs and of Lady
[71, that this class of signed digraphs plays a central role in the analysis of sign
solvable systems. We do not have a characterization of the set .4 similar to that
given by Theorem A and it may be that a characterization will be too complicated
to be useful. But we shall identify three large classes of signed digraphs in /.

Let .# be the set of all digraphs D for which there exists a sign function ¢ such
that gD e .+. Obviously both sets .+ and .# are hereditary, i.c.,

If Tis a subgraph of Se .4, then Te.t.

If Fis a subgraph of De .#, then Fe 4.

We shall be interested primarily in elements of .# and .4+ that are strong.

For a digraph (or a signed digraph), a symmetric cycle C, has n=3 and consists
of a directed cycle of length n and its converse. If D is a digraph we shall denote
by Gy(D) the symmetric part of D, i.e., the largest symmetric subdigraph contained
in D. As the notation implies, we consider Gy(D) to be itself a graph because when-
ever the arc (i, v) belongs to G,(D) so does (v, &). If D is a symmetric digraph, then
we identify Gy(D) with D itself.

2. Upper digraphs

For a graph G (or a digraph D) the adjacency matrix A(G) (or A(D)) is binary
(consists of 0 and 1 entries) and has zeros on its principal diagonal. Also A(G) is
symmetric but 4(D) need not be. In fact, A(D) is symmetric if and only if D is a
symmetric digraph. Similarly for a signed graph H or signed digraph S, A(H) has
entries 0, 1, or —1.

A matrix A =[a;] is called upper Hessenberg [10, p. 218] if a;=0 whenever
i—j>1. For want of a better term we shall call a digraph upper if there is a labelling
of V such that the resulting adjacency matrix A (D) is upper Hessenberg.

We will now characterize strongly connected upper digraphs.

Theorem 1. A digraph D is strong and upper if and only if
(1) it has a hamiltonian path, say (v,v,_ ;- 0201),
(2) for each i#p, there is a path from v; to v,, and
(3) there is no arc (v;,v;) with i—j>1.

Proof. If D satisfies (1), (2), and (3), then clearly D is strong and upper. For the
converse let D be strong and upper. Then (3) follows at once. On the other hand,
there exists a path from v, to v, because D is strong. The truth of (1) follows from
this fact and (3). Finally (2) must hold because D is strong. U
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Theorem 2. If D is strong and upper, then De 4.

Proof. We have to produce a function ¢ such that ¢D € .#. By condition (1) each
of the arcs (v;,v;,_;) belongs to D, 2<i<p. Set o(v;,v;_;)= —1. It remains to
define o on any arc of the form (v;,v;), j=i+1 which we do by setting a(v;,v;) =
(— 1) "*1if the arc belongs to D. Now suppose Z is a cycle in the resulting signed
digraph S. Then Z must have the form (v;v;0;_,--v;, ;) for some j=i+ 1. Hence
Z consists of the arcs (v;, v;)(v;,v;_ 1)+ (v; 11, v;) and

6Z=0(v;, )0V}, 0;_ )0V 1, 0) =(— 1) T (= 1) (= 1)

where there are j—i arcs of sign (—1). Thus 6Z=(-1)/""*/(=1)"'=-1s0 Z is
a negative cycle and oDe.v. [

We remark that to test D to see if D is upper is an NP-complete problem.

It is of interest to observe that every arc of the form (v,v;), j=i+1, i<p, can
belong to D if D is upper and oD will belong to .4. A digraph D is maximal upper if
D is upper and for each arc x in the complement D, D+ x is no longer in .4, i.e.,
if D;=D+ x, then there is no ¢ such that gD, e ..

Theorem 3. If for a strong upper digraph D, its upper Hessenberg adjacency matrix
satisfies a;=1 for i#j and i—j=<1, then D is maximal upper.

Proof. Suppose D is a strong upper digraph and suppose the points are labeled so
that A(D) is upper Hessenberg. Then if D, results from D by adjoining an arc, the
arc must have the form (v;v;) where i—;j> 1. Suppose g exists such that gD, € 1.
Then the cycles Z; = (v;v;_,v;0;) and Z,=(v;v;v,_1---v;; ;) are both negative, so
that (6Z,)(¢Z;)-0. But then

(6Z)N0Z,)=0(v;v)a(V;v))a(V;_1V;)G(V;V;_ )T (V;V;_1V;_2°"*Vj, 1V)).

The first two pairs in this product correspond to 2-cycles and are both negative and
the last term represents the sign of a cycle and must also be negative. The sign of
the product must be negative, a contradiction. It follows thaf o does not exist such
that gD, e.v. O “

Note that if D is a maximal upper digraph, then G,(D) is a path of length p—1.

Note also that, if D is not maximal, then it may be possible to adjoin an arc to
D in such a way that D+ xe.# but D+ Xx is not upper given in Fig. 1. Here we use
solid lines for positive arcs, dashed lines for negative arcs.
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Fig. 1. A non-maximal upper digraph D in (a) and its signed augmentation (b), in .+.

3. A generalization of unipathic digraphs

We may arrive at another subclass of .# in the following way. The class of uni-
pathic digraphs was identified in [4, p. 218]. A digraph D is unipathic if whenever
v is reachable from u, there is exactly one path from u to v. We start with the follow-
ing basic result.

Theorem 4. If D is unipathic and x is an arc of D, then x belongs to at most one
cycle.

Proof. Let x be the arc (v, v) and suppose xe Z, and xe Z,. Then we can write
Z,=(u,v)p;(v—u) and Z,=(u,v)p,(v—>u) where p;(v—u) and p,(v—u) are paths
from v to u. Since Z, and Z, are distinct, p, and p, are not the same path, contra-
dicting the fact that D is unipathic. O

We can use the result of Theorem 4 to find an interesting generalization of the
class of unipathic digraphs. Denote by U the latter class and define the class U as
follows. The digraph D e U if every cycle Z of D contains at least one arc x which
is not in any other cycle of D.

Theorem 5. I[f DC U, then De 4.

Proof. For each cycle Z of D choose an arc x belonging to no other cycle of D. Set
ox= —1. For each remaining arc y we set oy=1, and so gDe .. [

It follows, of course, from Theorem 5 that every unipathic digraph belongs to .#.

The class U contains many elements which are not unipathic. In Fig. 2 we show
two quite different examples. Note that in these examples, there is an arc belonging
to both cycles. If this common arc is given a negative sign and all other arcs are given
a positive sign, then gD € .4 in each case.
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Fig. 2. Simple examples of non-unipathic digraphs in the class U.

4. Symmetry

We start with a result of fundamental importance to the study of the properties
of signed digraphs in 4.

Theorem 6. Let Se 4 and suppose that C,,, n=3, is a symmetric cycle of S. Then
n is even.

Proof. We may assume that C, is composed of the two directed cycles Z, =
(vyvy+--0,v)) and Z, = (vyv, v, _ -+ by0;) which is the converse Z| of Z,. Since Se .4
we have 6Z, = — 1 and 6Z,= — 1. Moreover, we have a(v10,0;) = — 1, g(V030;) =
—1,...,a(v;v,v,)= - 1. 1t follows that

(= D" =0,0,0)0(0030;) - (V1v,0)) = (6Z,)(0Z;) = 1.

Thus » must be even. [
The following corollary of Theorem 6 is also very useful.

Corollary 6a. Let Se.4 and suppose a symmetric cycle C,, belongs to S. Let u,v
be two distinct points of C,, whose distance along the cycle is even. Then, in the
signed digraph obtained from S by removing all arcs of C,, and all points of C,,,
except u and v, the points u and v are not unilaterally connected.

Proof. Assume, for contradiction, there is a path from u to v which is disjoint from
C,, except for the points # and v. Denote this path by Py(#—v). Now in C,, there
are two paths from v to u, say P;(v—u) and P,(v—u), and they must have opposite
signs because d(u,v) along C,, is even. But then P, (v—w)Py(u—v)=2Z,, and
Py(v=u)Py(u—v)=Z, are both cycles of S and both must be negative. But this is
impossible so Py(u—v) cannot exist in S. A similar argument shows that no path
outside of C,, can exist from v to u. [
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We illustrate in Fig. 3 two signed digraphs S with a symmetric 4-cycle. In Fig. 3a
no matter how the signs of the arcs (25) and (54) are chosen there is always a positive
cycle while 3b shows that adjacent points can be joined by paths exterior to C,. We
call such paths exterior paths and refer to the condition of the corollary as the ex-
terior path condition.

Let D be a symmetric digraph and set G(D)= Gy (D). What properties must G(D)
have in order to insure that De.#? We know from Theorem 6 that every cycle of
G (D) must have even length, thus G must be bipartite. But this condition is not suf-
ficient by virtue of Corollary 6a. A counterexample is shown in Fig. 4a. Because
of the line [14], the cycle [1 2 5 6 1] has the property that its two points 1 and 5 are

an even distance apart and are joined by an exterior path. Nevertheless the graph
is bipartite.

2 1

- = = —

o=
1
|
}
t
|
|

—— — e —n . e —

5

Fig. 3. Exterior paths.

We note that in the example of Fig. 4a the cycles [1456 1] and [1256 1] have
two adjacent common lines, namely [16} and [56]. On the other hand, in Fig. 4b
we have three cycles [123456], [1256], [2345]. Each pair of cycles intersect in
a path of odd length and it is easy to verify that De .#4.

G(D, ): G(D,):
2 3 1 2‘ 3
6 5 4 6 5 4

Fig. 4. Both G(D) are bipartite, but (a) Dy ¢ .4, (b) D,e. 4.
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5. Symmetric digraphs

We wish to characterize the symmetric digraphs in .#. To this end we require the
following results.

Lemma 7. Let D be a symmetric digraph in 4. If two cycles C, and C, of G(D)
intersect in a path of length r, then r must be odd..

Proof. The result follows from Corollary 6a. If r were even, then we would have
an exterior path joining points an even distance apart in a cycle. [

Now we come to our main result. We are greatly indebted to a referee for suggest-
ing the elegant proof we will give below for Theorem 8. It is based upon a very nice
result of T. Zaslavsky [11] and replaces a much longer and more intricate proof
originally presented by the authors.

Let G be a graph and let # be a set of cycles of G. Zaslavsky calls # theta additive
if, whenever C; and C, are cycles for which C,+ C, (where C,+ C, is the set of
lines in C,, C,, or in both cycles.) He has proved in [11] the following key result.

Theorem B (Zaslavsky). Given any set # of cycles in G, there exists a signed graph
on G whose set of positive cycles is # if and only if # is theta additive.

Theorem 8. Let D be a symmetric digraph. Then D € .« if and only if G(D) is bi-
partite and does not contain any exterior path joining two points an even distance
apart in any cycle of G.

Proof. Assume first that D e.# is symmetric. Since D€ .#, signs can be assigned
to the arcs of D so that the resulting signed digraph S € .#. But then Theorem 6 im-
plies that all cycles of D have even length so G(D) is bipartite. Also Corollary 6a
applies so that G(D) does not contain any exterior path joining two points an even
distance apart in any cycle of G. Thus the only if portion of the theorem is true.
To prove the if portion, let D be bipartite and satisfy the exterior path condition
and define # to be the set of even cycles of G(D) of length 2p for some odd number
p>1. Since no two cycles of G can intersect in a path of even length, Z is theta ad-
ditive. Therefore there exists a sign function ; on G whose set of positive cycles
is #Z. Now suppose that V{G)=A4U B is a bipartition of G(D). We then define a sign
function g, on D as follows. Let each arc (&, v) with u€ 4 and v € B have the same
sign as the corresponding line of G(D), and each arc (&, v) with ue B and ve A4 the
opposite sign. Now suppose z is any cycle in D, and C is the corresponding cycle
in G(D). If z has length /, then

02(2) = (- 1)"a,(O).
But for /=2p where p is even, ¢,(C)= —1 and (— 1)”?>=1 by Theorem B. Similar-
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ly, again by Theorem B, if /=2p where p is odd, ¢,(C)=1 and (- 1)"*=-1. It
follows that @,(z)= —1 for any ze D. Thus De .#, as was to be shown. [

A B A B A B
—————— r—-—-——-r——- v d
B A B A B

Be s

Fig. 5. A graph satisfying the conditions of Theorem 8 with a sign function ¢, and a bipartition of its
points.

We can illustrate the if portion of the above proof using the example shown in
Fig. 5. The graph has the negative edges shown by the dotted lines and its points
have been labeled A4 or B to illustrate a bipartition of the points. Note that the sign
function &, has the required properties.

The underlying symmetric digraph for the graph of Fig. 5 is shown in Fig. 6. The
sign function g, induced on D by a, is illustrated using dotted lines for negative
arcs. Note that De 4.

A B A B A 8
- - » —-—— .- - >
- ¢ — — — - -+ —-.—QQ——.—D
4 :s : :l
: Y 1 s
> — —cy
A B
B

Fig. 6. The signed digraph Se .4 arising from the sign function g, on D induced by ¢; on G(D) shown
in Fig. 5.
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6. Unsolved problems

As we mentioned above, we have not presented a characterization of signed di-
graphs with all negative cycles. However complex such a characterization may be,
we feel that it could prove very useful in view of the importance of sign solvable
systems in a variety of fields. The classes we have introduced in Sections 2, 3, and
5 do provide us with a large stock of elements in .#.

We pointed out in Section 2 that if D is a maximal upper digraph, then Gy(D)
is a path. Turning this around, we observe that each maximal upper digraph may
be regarded as the result of turning a path G into a digraph and adjoining as many
arcs as possible. Now a path is a particular instance of a tree. Thus an unsolved pro-
blem arising from Section 2 is the following. If the graph G is a tree which is not
a path, can be construct a maximal digraph D from G in some manner similar to
that used in constructing a maximal upper digraph from a path? If such a construc-
tion cannot be made for all trees, then what is the subset of trees for which it can
be done? We know this subset is not empty. In fact, we have recently been able to
construct maximal digraphs from all trees which are caterpillars by a method similar
to that used here.

In Section 3 we have introduced an interesting generalization of the class of uni-
pathic digraphs, namely the class of digraphs D such that every cycle of D contains
at least one arc not in any other cycle of D. Suppose we call such digraphs free
cyclic. Since each free cyclic digraph belongs to .#, it would be of considerable in-
terest to characterize the digraphs in this class.

A general unsolved problem can be formulated in terms of the graph Gy(D) for
De .#. Suppose D e .#, then what can be said about Gy(D)? Conversely, would it
be useful to attempt to classify the elements D € .4 in terms of their symmetric part
Go(D)? 1t is clear from the results of Sections 4 and 5 that Gy(D) cannot be an ar-
bitrary graph since it must be bipartite and satisfy the exterior path condition. When
will Gy(D) be connected? When will it be a spanning subgraph?
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