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It is known that signed graphs with all cycles negative are those in which each block is a negative 

cycle or a single line. We now study the more difficult problem for signed digraphs. In particular 

we investigate the structure of  those digraphs whose arcs can be signed (positive or negative) so 
that every (directed) cycle is negative. Such digraphs are important  because they are associated 
with qualitatively nonsingular  matrices. We identify certain families of  such digraphs and 
characterize those symmetric digraphs which can be signed so that every cycle is negative. 

1. Introduction 

We shall have occasion below to make use of  graphs, digraphs, signed graphs, 
and signed digraphs. Consequently we begin with a very brief review of  these con- 
cepts which will also serve to standardize our notation. 

A graph G = ( V , E )  consists of  a finite nonempty set V of points and a set E of  
lines, each a 2-subset of  V. A digraph D = ( V, X)  has in addition to set V a collection 
X C  V × V of  arcs (u, v) where u :g v. A signed graph H= (V, E, a) consists of  a graph 
(V,E) together with a sign function cr :E--*{1, -  1}. Similarly a signed digraph 
S = (V, X, ~) is a digraph (V, X)  whose arcs have been signed positive or negative by 
cr. Terminology not given here can be found in Harary  [3] or Harary,  Norman,  and 
Cartwright [4]. 

The signed graphs in which every cycle is negative were easily characterized in [2] 
where the following result appears. 

Theorem A (Harary).  A signed graph H has all cycles negative if  and only i f  each 
block of H is either a line or a negative cycle. 

Our object is to study the class .J4 of  all signed digraphs with all (directed) cycles 
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negative. The pr imary reason why this class is o f  interest is because of  its importance 
to the sign solvability problem. It was already implicit in the original paper of  
Bassett, Maybee, and Quirk [1] that such signed digraphs belong to qualitatively in- 
vertible matrices. Since that time it has become clear f rom work by Klee and his 
associates [5, 8], and the work of Maybee [9] on sign solvable graphs and of Lady 
[7], that this class of  signed digraphs plays a central role in the analysis of  sign 
solvable systems. We do not have a characterization of  the set .~ similar to that 
given by Theorem A and it may be that a characterization will be too complicated 
to be useful. But we shall identify three large classes of  signed digraphs in ~/. 

Let .~/! be the set of  all digraphs D for which there exists a sign function a such 
that aDe./I I. Obviously both sets .J+ and J / a r e  hereditary, i.e., 

I f  T is a subgraph of  S e •, then T e  Jr. 
I f  F is a subgraph of D e  i t ,  then F e  JA 

We shall be interested primarily in elements of  ./f and .~f that are strong. 
For a digraph (or a signed digraph), a symmetric cycle Cn has n___ 3 and consists 

of  a directed cycle of  length n and its converse. I f  D is a digraph we shall denote 
by Go(D) the symmetric part of D, i.e., the largest symmetric subdigraph contained 
in D. As the notation implies, we consider Go(D) to be itself a graph because when- 
ever the arc (u, v) belongs to Go(D) so does (v, u). I f  D is a symmetric digraph, then 

we identify Go(D) with D itself. 

2. Upper digraphs 

For a graph G (or a digraph D) the adjacency matrix A(G) (or A(D)) is binary 
(consists of  0 and 1 entries) and has zeros on its principal diagonal. Also A(G)  is 
symmetric but A(D) need not be. In fact, A(D) is symmetric if and only if D is a 
symmetric digraph. Similarly for a signed graph H or signed digraph S, A (H) has 
entries 0, 1, or - 1. 

A matrix A=[aijl is called upper Hessenberg [10, p. 2181 if aij=O whenever 
i - j >  1. For want of  a better term we shall call a digraph upper if there is a labelling 
of  V such that the resulting adjacency matrix A(D) is upper Hessenberg. 

We will now characterize strongly connected upper digraphs. 

Theorem 1. A digraph D is strong and upper i f  and only if  
(1) it has a hamiltonian path, say (VpVp 1"'0201), 
(2)for each i#:p, there is a path from vi to Vp, and 
(3) there is no arc (v i, vj) with i - j >  1. 

Proof .  I f  D satisfies (1), (2), and (3), then clearly D is strong and upper. For the 
converse let D be strong and upper. Then (3) follows at once. On the other hand, 
there exists a path f rom vp to Vl because D is strong. The truth of  (1) follows f rom 
this fact and (3). Finally (2) must hold because D is strong. [] 
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Theorem 2. I f  D is strong and upper, then D ~ ,~q. 
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Proof .  We have to produce  a funct ion a such that  aDe.J+. By condi t ion (1) each 

o f  the arcs (oi, vi_l) belongs to D, 2<_i<_p. Set a(oi, O i _ l ) = -  1. It remains to 
define a on any arc o f  the form (oi, oj), j>_i+ 1 which we do by setting a(oi, v j )=  
( _  1)j i+ 1 if the arc belongs to D. Now suppose Z is a cycle in the resulting signed 

digraph S. Then Z must  have the fo rm (oiojoj l""vi+loi) for  s o m e j _ > i +  1. Hence 

Z consists o f  the arcs (o i, vj)(oj, oj_ 1)...(oi+ l, oi) and 

¢rZ = cr(vi, oj)~7(oj, oj_ l ) '"cr(oi+ 1, vi) = ( - 1) j -  i+ l( _ 1)... ( - 1) 

where there are j - i  arcs o f  sign ( -  1). Thus a Z = ( -  l ) J - i + l (  - 1 )  j - i =  - -  1 so Z is 

a negative cycle and a D e , J f ,  []  

We remark that  to test D to see if D is upper is an NP-comple te  problem. 
It is o f  interest to observe that  every arc o f  the form (vi, vj), j>_i+ 1, i<p,  can 

belong to D if D is upper and a D  will belong to ,,,t. A digraph D is maximal upper if 

D is upper  and for  each arc x in the complement /3 ,  D + x  is no longer in .#, i.e., 
if O 1 = D + x, then there is no ¢7 such that ¢rD1 • ~/I'i 

Theorem 3. I f  f o r  a strong upper digraph D, its upper Hessenberg adjacency matrix 
satisfies aij= 1 for  i ~ j  and i - j <  1, then D is maximal upper. 

P r o o f .  Suppose D is a strong upper  digraph and suppose the points are labeled so 

that  A (D) is upper  Hessenberg.  Then if D 1 results f rom D by adjoining an arc, the 

arc must  have the form (oioj) where i - j >  1. Suppose a exists such that  aD 1 ~ ,J~. 
Then the cycles Z 1 =(ojo i lvioj) and Z2=(vjvioi_l . . .oj+loj)  are both  negative, so 

that  (aZ1)(aZ2)-O.  But then 

( a Z l ) ( l y Z 2 )  = ~ ( o j o i ) l T ( o i o j ) l T ( o  i_ l Oi)¢7(oioi _ l ) (T (o jo i_  lOi_ 2 . . .  oj+ l o j ) .  

The first two pairs in this product  correspond to 2-cycles and are bo th  negative and 

the last term represents the sign o f  a cycle and must  also be negative. The sign o f  
the product  must  be negative, a contradict ion.  It follows tha[cr  does not exist such 
that  ¢yD~ ~, []  

Note  that  if D is a maximal  upper  digraph, then Go(D) is a path o f  length p -  1. 
Note  also that,  if D is not maximal,  then it may  be possible to adjoin  an arc to 

D in such a way that  D + x e  ,# but  D + x  is not  upper  given in Fig. 1. Here we use 

solid lines for positive arcs, dashed lines for negative arcs. 
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D D + x :  

(a) (b) 

Fig. 1. A non-maximal upper digraph D in (a) and its signed augmentation (b), in t .  

3. A generalization of unipathic digraphs 

W e  may  arr ive at  ano the r  subclass o f  J / i n  the fo l lowing way.  The  class o f  uni-  

pa th ic  d ig raphs  was ident i f ied  in [4, p. 218]. A d ig raph  D is unipathic if  whenever  

v is reachab le  f rom u, there is exact ly  one pa th  f rom u to  v. We star t  with the fo l low- 

ing basic  result .  

Theorem 4. I f  D & unipathic and x & an arc o f  D, then x belongs to at most  one 

cycle. 

Proof. Let x be the arc (u, v) and  suppose  x •  Z1 and  x •  Z 2. Then  we can wri te  

ZI =(u,v)pl(v-- 'u)  and  Z2=(u , v )p2 (v~u)  where  p l ( v ~ u )  and  p 2 ( v ~ u )  are pa ths  

f rom v to u. Since Z 1 and  Z 2 are  dis t inct ,  Pl  and  P2 are  not  the same pa th ,  con t ra -  

dic t ing the  fact that  D is un ipa th ic .  [ ]  

W e  can use the result  of  T h e o r e m  4 to f ind an interest ing genera l i za t ion  o f  the  

class o f  un ipa th ic  d ig raphs .  Denote  by  U the la t ter  class and  def ine  the class O as 

fo l lows.  The  d ig raph  D • O if  every cycle Z o f  D conta ins  at least  one arc x which 

is no t  in any o the r  cycle o f  D.  

Theorem 5. I f  D C 0, then D e ,/(. 

Proof. F o r  each cycle Z o f  D choose  an arc x be longing  to no o ther  cycle o f  D.  Set 

a x =  - 1. F o r  each remain ing  arc  y we set a y =  1, and  so a D e J .  [] 

It fo l lows,  o f  course ,  f rom T h e o r e m  5 that  every unipa th ic  d ig raph  belongs  to ./A 

The  class O conta ins  m a n y  e lements  which are  not  un ipa th ic .  In Fig.  2 we show 

two qui te  d i f fe ren t  examples .  No te  tha t  in these examples ,  there  is an arc be longing  

to  bo th  cycles. I f  this c o m m o n  arc  is given a negat ive  sign and all  o ther  arcs are  given 

a posi t ive  sign, then aD e , #  in each case. 
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Fig. 2. Simple examples of non-unipathic digraphs in the class U. 
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4. Symmetry 

W e  star t  with a result  o f  f undamen ta l  impor t a nc e  to  the s tudy  o f  the proper t ies  

o f  s igned d igraphs  in ,~. 

Theorem 6. Let S c ~ and suppose that C n , n >_ 3, is a symmetric cycle o f  S. Then 

n is even. 

P r o o f .  We  m a y  assume tha t  Cn is c o m p o s e d  o f  the two d i rec ted  cycles Z 1 = 

(oi v2"" on Ol) and  Z2 = (ol on on_ 1"'" 0201) which is the converse  Z~ o f  Z1. Since S ~ , #  

we have aZl = - 1 and aZ2 = - 1. Moreove r ,  we have a (o lv201)=  - 1, a(020302)= 

- 1 . . . . .  a(VlOnOl)= - 1. It fol lows that  

( - -  1) n = O'(O 102Vl)a(O2V 302)'' '0"(0 l0 n Vl) = (o 'Z 1)(O'Z2) = 1. 

Thus  n must  be even. [ ]  

The  fol lowing coro l l a ry  o f  T h e o r e m  6 is also very useful.  

C o r o l l a r y  6a. Let S 6 ,#  and suppose a symmetric  cycle C2. belongs to S. Let u, u 
be two distinct points o f  C2n whose distance along the cycle is even. Then, in the 

signed digraph obtained f r o m  S by removing all arcs o f  C2n and all points o f  C2n 
except u and o, the points u and o are not unilaterally connected. 

Proof. Assume ,  for  con t rad ic t ion ,  there  is a pa th  f rom u to  t) which is d i s jo in t  f r om 

C2. except  for  the points  u and o. Deno te  this pa th  by  Po(u-*o). N o w  in C2n there  

are  two pa ths  f rom 0 to u, say P1 (v-*u) and  P2(v-*u) ,  and  they  mus t  have oppos i t e  

signs because  d(u,o) along C2. is even. But then  PI(O-*U)Po(U-*O)=ZI, and 

P2(o-*u)Po(u-*o ) = Z  2 are  bo th  cycles o f  S and  bo th  mus t  be negat ive.  But this is 

imposs ib le  so Po(u~o)  canno t  exist in S. A s imilar  a rgumen t  shows tha t  no pa th  

ou ts ide  o f  C2. can exist f r om o to u. [~ 
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We illustrate in Fig. 3 two signed digraphs S with a symmetric 4-cycle. In Fig. 3a 
no matter  how the signs of  the arcs (25) and (54) are chosen there is always a positive 
cycle while 3b shows that adjacent points can be joined by paths exterior to C4. We 
call such paths exterior paths and refer to the condition of  the corollary as the ex- 
terior path condition. 

Let D be a symmetric digraph and set G(D)- Go(D). What properties must G(D) 
have in order to insure that D E.~/? We know from Theorem 6 that every cycle of  
G(D) must have even length, thus G must be bipartite. But this condition is not suf- 
ficient by virtue of  Corollary 6a. A counterexample is shown in Fig. 4a. Because 
of  the line [14], the cycle [1 2 5 6 1] has the property that its two points 1 and 5 are 
an even distance apart  and are joined by an exterior path. Nevertheless the graph 
is bipartite. 

.,~_ . ,_  ," 

I I 

l '  . . . .  i 

5 

2 

, I 
I 
I 

~ -  ~ ~'- ~ 3 5 

Fig. 3. Exterior paths. 

We note that in the example of  Fig. 4a the cycles [1 4 5 6 1] and [1 2 5 6 11 have 
two adjacent common lines, namely [16] and [56]. On the other hand, in Fig. 4b 
we have three cycles [1 2 3 4 5 6], [1 2 5 6], [2 3 4 5]. Each pair of  cycles intersect in 
a path of  odd length and it is easy to verify that D c J(.  

G(D1):  G(D2): 
1 2 3 1 2 3 

v w 

(a) (b) 

Fig. 4, Both G(D) are bipartite, but (a) D i e , d ,  (b) D2E,[/. 
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5. Symmetric digraphs 

We wish to characterize the symmetric digraphs in J/. To this end we require the 
following results. 

Lemma 7. Let D be a symmetric digraph in ,~. I f  two cycles Cl and C2 o f  G(D) 
intersect in a path o f  length r, then r must be odd.. 

Proof. The result follows from Corollary 6a. If r were even, then we would have 
an exterior path joining points an even distance apart in a cycle. [] 

Now we come to our main result. We are greatly indebted to a referee for suggest- 
ing the elegant proof we will give below for Theorem 8. It is based upon a very nice 

result of  T. Zaslavsky [11] and replaces a much longer and more intl:icate proof  
originally presented by the authors. 

Let G be a graph and let ,~ be a set of  cycles of G. Zaslavsky calls ~ theta additive 
if, whenever Cl and C2 are cycles for which Cl + C2 (where C l + C2 is the set of 
lines in CI, C 2, or in both cycles.) He has proved in [11] the following key result. 

Theorem B (Zaslavsky). Given any set :~ of  cycles in G, there exists a signed graph 
on G whose set o f  positive cycles is ~ i f  and only i f  5~ is theta additive. 

Theorem 8. Let D be a symmetric digraph. Then D ~ ~# if  and only i f  G(D) is bi- 
partite and does not contain any exterior path joining two points an even distance 
apart in any cycle o f  G. 

Proof. Assume first that D ~./ /  is symmetric. Since D c.~4', signs can be assigned 

to the arcs of  D so that the resulting signed digraph S e J .  But then Theorem 6 im- 
plies that all cycles of  D have even length so G(D) is bipartite. Also Corollary 6a 
applies so that G(D) does not contain any exterior path joining two points an even 
distance apart in any cycle of G. Thus the only if portion of the theorem is true. 
To prove the if portion, let D be bipartite and satisfy the exterior path condition 
and define ,~ to be the set of  even cycles of  G(D) of length 2p for some odd number 
p >  1. Since no two cycles of  G can intersect in a path of even length, ~ is theta ad- 

ditive. Therefore there exists a sign function al on G whose set of  positive cycles 

is ~.  Now suppose that V(G) =A UB is a bipartition of  G(D). We then define a sign 
function cr 2 on D as follows. Let each arc (u, u) with u ~ A and o ~ B have the same 
sign as the corresponding line of G(D), and each arc (u, o) with u e B and o c A the 
opposite sign. Now suppose z is any cycle in D, and C is the corresponding cycle 
in G(D). If  z has length l, then 

O'2(Z ) = ( -- 1)J/za I (C). 

But for l=2p where p is even, al(C) = - 1 and ( -  1 ) / / 2 =  1 by Theorem B. Similar- 
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ly, again by Theorem B, if l = 2 p  where p is odd,  t r l (C)=  1 and ( - 1 ) / / 2 =  - I .  It 
follows that  tr2(z ) = - 1  for  any z ~ D .  Thus D e,~(, as was to be shown. []  

A B A B 

r ..... "I---T--- i 
g A l a  

I 

! 
IA 
! 
! 

A B 

1 B 

Fig. 5. A graph satisfying the conditions of Theorem 8 with a sign function t71 and a bipartition of its 
points. 

We can illustrate the if por t ion o f  the above p r o o f  using the example shown in 
Fig. 5. The graph has the negative edges shown by the dot ted lines and its points 

have been labeled A or  B to illustrate a bipart i t ion o f  the points.  Note that  the sign 
funct ion t71 has the required properties.  

The underlying symmetr ic  digraph for  the graph o f  Fig. 5 is shown in Fig. 6. The 
sign funct ion a2 induced on D by (71 is illustrated using dotted lines for  negative 
arcs. Note  that  D ~ , / / .  

A B A B A B 

I ~ I It ,f ,I ,f 
p, TI it  i l  
~+ - A I +  - ~ I ;  - A - ,:, 

w ! 

I I 

, I  i? 

A B 

Fig. 6. The signed digraph S • .Jl arising from the sign function e2 on D induced by et on G(D) shown 
in Fig. 5. 
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6. Unsolved problems 

As we men t ioned  above ,  we have not  presented  a cha rac te r i za t ion  o f  s igned di- 

g raphs  with all negat ive  cycles. However  complex  such a cha rac te r i za t ion  m a y  be, 

we feel that  it cou ld  prove  very useful  in view of  the i m p o r t a n c e  o f  sign solvable  

systems in a var ie ty  o f  fields.  The  classes we have in t roduced  in Sections 2, 3, and  

5 do  p rov ide  us with a large s tock o f  e lements  in ,J42 

We po in ted  out  in Sect ion 2 tha t  if  D is a max ima l  upper  d ig raph ,  then Go(D) 
is a pa th .  Turn ing  this a round ,  we observe  that  each max imal  upper  d ig raph  m a y  

be rega rded  as the result  o f  tu rn ing  a pa th  G into a d ig raph  and ad jo in ing  as many  

arcs as possible .  Now a pa th  is a pa r t i cu la r  instance o f  a tree. Thus an  unso lved  pro-  

b lem aris ing f rom Sect ion 2 is the fo l lowing.  I f  the g raph  G is a tree which is not  

a pa th ,  can be cons t ruc t  a max ima l  d ig raph  D f rom G in some manne r  s imilar  to 

tha t  used in cons t ruc t ing  a max ima l  upper  d ig raph  f rom a pa th?  I f  such a cons t ruc-  

t ion  canno t  be made  for  all trees,  then what  is the subset  o f  trees for  which it can 

be done?  We know this subset  is not  empty .  In fact ,  we have recent ly  been able to  

cons t ruc t  max ima l  d igraphs  f rom all trees which are  ca terpi l la rs  by  a m e t h o d  s imilar  

to  tha t  used here.  

In  Sect ion 3 we have in t roduced  an interes t ing genera l i za t ion  o f  the class o f  uni-  

pa th ic  d ig raphs ,  namely  the class o f  d ig raphs  D such tha t  every cycle o f  D conta ins  

at  least  one arc not  in any other  cycle o f  D.  Suppose  we call such d igraphs  free 
cyclic. Since each free cyclic d ig raph  belongs to  J l ,  it would  be o f  cons iderab le  in- 

terest  to charac te r ize  the d ig raphs  in this class. 

A general  unso lved  p rob l em can be f o r m u l a t e d  in terms o f  the  graph  Go(D) for  

D ~ . # .  Suppose  D e J~, then  what  can be said abou t  G0(D)? Converse ly ,  would  it 

be useful  to a t t empt  to classify the e lements  D ~ .~//in terms o f  their  symmetr ic  par t  

G0(D)? It is clear  f rom the results o f  Sect ions 4 and 5 tha t  Go(D) canno t  be an ar- 

b i t r a ry  g raph  since it must  be b ipar t i t e  and  sat isfy the exter ior  pa th  cond i t ion .  W h e n  

will Go(D) be connec ted?  W h e n  will it be a spann ing  subgraph?  

References 

[1] L. Bassett, J. Maybee, and J. Quirk. Qualitative economics and the scope of the correspondence 
principle, Econometrica 26 (1968) 544-563. 

[2] F. Harary, On the measurement of structural balance, Behavioral Science 4 (1959) 316-323. 
[3] F. Harary, Graph Theory (Addison-Wesley, Reading, MA, 1969). 
[4] F. Harary, R. Norman, and D. Cartwright. Structural Models: An Introduction to the Theory of 

Directed Graphs (Wiley, New York, 1965). 
[5] D. K6nig. Theorie der endlichen und unendlichen Graphen (Leipzig, 1936; reprinted Chelsea, New 

York, 1950). 
[6] V. Klee, R. Ladner, and R. Manber, Signsolvability revisited, Linear Algebra Appl. 50 (1984). 
[7] G. Lady, The structure of qualitatively determinate relationships. Econometrica 51 (1983) 197-218. 
[8] R. Manber, Graph-theoretical approach to qualitative solvability of linear systems, Linear Algebra 

Appl. 48 (1982) 457-470. 



164 F, Harary et al. 

[9] J. Maybee, Sign solvable graphs, Discrete Appl. Math. 2 (1980) 57-63. 
[10] J.H. Wilkinson, The Algebraic Eigenvalue Problem (Oxford Univ. Press, Oxford, 1965). 
[11] T. Zaslavsky, Characterization of signed graphs, J. Graph Theory 5 (1981) 401-406. 


