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ABSTRACT 

Let p:,..., $ be the squares of the population canonical correlation coefficients 
from a normal distribution. This paper is concerned with the estimation of the 
parameters S,, . . , S,, where 8, = $/(l -A), i = 1,. , p, in a decision theoretic 
way. The approach taken is to estimate a parameter matrix A whose eigenvalues are 
S,, . , 8, , given a random matrix F whose eigenvalues have the same distribution as 
ri2/(1 - rz2), i = 1,. . , p, where rr,. , r,, are the sample canonical correlation coeffi- 
cients. 

1. INTRODUCTION 

Problems concerning the estimation of population eigenvalues are of great 
interest in multivariate analysis. This paper is essentially concerned with 
estimating certain functions of canonical correlation coefficients. Suppose that 
the (p + q) X( p + q) positive definite matrix S has the Wishart distribution 
with n degrees of freedom and positive definite parameter covariance matrix 
2, written S - W,+,(n, Z), and partition S and C as 

where S,, and Z,, are p X p, and S, and 2,s are q x q, with p d q. The 
positive square roots pr,...,p, (lap,> ... 2~~20) of p$...,$, the 
eigenvalues of Z;‘Z,,Z&‘Z,,, are the population canonical correlation coeffi- 
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Gents. The squares of the sample canonical correlation coefficients are 
2 

Tl,..., p r2 (1 >rl> .* . > rp > 0), the eigenvalues of S,‘S,2S&‘S21. Discus- 
sions of canonical correlation analysis may be found in, e.g., [l, Chapter 121 
and [3, Chapter 111. These eigenvalues are also important in the problem of 
testing H: Z,, = 0 against K : Z 12 # 0, as they form maximal invariants under 
a natural group of transformations leaving the testing problem invariant. Any 
invariant test statistic is a function of rf,. . . , I-,” and has power function 
depending only on p:, . . . , pi. 

The work that follows represents an attempt to estimate the parameters 
6, = pT/(l - p: ), i = 1,. . . ) p, in a decision theoretic way. Ideally, such an 
approach would specify a loss function in terms of these parameters, and risk 
computations would involve’expectations of this loss taken with respect to the 
joint distribution of rf,. . . , I-:. Such an approach, however, does not seem 
feasible, due primarily to the complexity of the distribution of rf,. . . , rz 13, 
Section 11.3.2.1. Instead, we concentrate on estimating a parameter matrix A 
whose eigenvalues are a,, . . . , S,, given a random matrix F whose eigenvalues 
have the same distribution as the variables yi = r,‘/(l - r;), i = 1,. . . , p. It is 
then natural to hope that the eigenvalues of a “good” estimate A(F) of A will 
be reasonable estimates of a,, . . . ,a,. 

2. ESTIMATES OF A 

The parameters Si = pf/(l - pp), i = 1,. . . , p, are the eigenvalues of the 
parameter matrix 

A=z-‘/22 2-12 -j-1/2 
11.2 12 22 21 11.2 ) (1) 

where Z 11,2 = Z,, - Z,,Z,‘Zs,. We assume for simplicity here that A is 
positive definite. Naive estimates of a,, . . . , 6, are yi = ri2/(1 - ri2), i = 1,. . . , p, 
the eigenvalues of S$sS,,S&lS,, or, equivalently, the eigenvalues of the 
random matrix 

F = B’/2A-‘B’/2 
3 (2) 

where A = 8~l~,(2S,,,2Z~~f~2, B = B,f~2S12S221S21~111~2. Put X = 
Z&1’2S&&1’2; from standard distribution theory (see, e.g., [3, Theorem 
3.2.10 and Section 10.31, it follows that A - W,( n - q, Z,,) and is independent 
of X and B, that X - W,(n, Is), and that, given X, the conditional distribu- 
tion of B is noncentral Wishart W&q, I,, a), where the noncentrality param- 
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eter matrix D is 

(3) 

The probability density function (pdf) of F may be shown to be 

rp(N (detF):(4-P-1) 

rp(h)rp(i(n-9)) &t(Z + F):” 
det(Z+A)-“‘2 

(4) 

where A is given by (I), 

and 2F1 is a hypergeometric function of matrix argument, having an infinite 
series expansion in terms of zonal polynomials (see [2] or [3, Chapter 71). It is 
worth emphasizing that although the random matrix F is not observable if Z 
is unknown, its eigenvalues are equivalent, in distribution, to yr, . . . , yp, where 
yi = ri2/(1 - ri2), and these are observable. An approach to estimating 
s i”“’ S,, and the one suggested here, is to estimate A by an orthogonally 
invariant estimate, i.e., an estimate of the form 

ii(F) = H+(Y)H’ 

where H is a p x p orthogonal matrix such that F = HYH’, with Y = 
diag(y,,..., Y,>, =d $0’) = cbd@,(Y), . . . , (p,(Y)). The variables &(Y ), i = 
1 ,..., p, may then be regarded as estimates of a,, . . . ,a,. The only orthogo- 
nally invariant estimates considered in this paper are ones of the form 
aF + PZ, so that the corresponding estimates of a,, . . . , S, are CW,‘/( 1 - ri2) + p, 
i=l ,.**>p. 

It has been suggested by an anonymous referee that, rather than using F, 
it would be better to choose an observable matrix whose eigenvalues are the 
same as those of F. Such a matrix can be chosen in several ways; however, the 
distribution theory and associated problems of finding expectations are greatly 
simplified by the choice of F. 

Our starting point, then, is an observation on a random p x p positive 
definite matrix F having pdf (4), and we consider the problem of estimating 
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A by h(F) using the loss functions 

L,(A, A) = tr(A-‘A) - lndet(A-‘A) - p (5) 

and 

L,(A,A)=tr(A-A)2. (6) 

The corresponding risk functions, involving expectations of L, and L, with 
respect to the distribution of F, will be subscripted similarly. 

The pdf (4) of F is not particularly convenient for finding expectations of 
functions of F. It is easier to use the representation F = B ‘j2A ~ ‘B ‘I2 and the 
known distributional results for A and B. The expectation of F is, using 
standard arguments and known results about expectations of Wishart, inverse 
Wishart, and noncentral Wishart matrices, 

E(F)= E(B”2A-1B1’2) 

= E(E(B”2A-1B1’21 B)) 

= E(B”2E(A-1)B1’2) 

1 
= 

n-9-p-l E(B) 

1 
= 

n-9-p-l 
E( ql, + Z,f,/2~12~221’2XL1221’2221~llf2/2) 

1 
= 

n-9-p-l (91, + nA) (n-q-p-l>O). (7) 

It follows that an unbiased estimate of A is the orthogonally invariant 
estimate 

Av= 
n-9-p-l 

F-!Z 
n p’ (8) n 

Using the loss function cr given by (5), Au is the best estimate in the class of 
estimates of the form aA,, as the following result shows. 
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THEOREM 1. Using the loss function L,, the best (smallest risk) estimate 
of A having the form aA, is the unbiased estimate A,,. 

Proof. The risk of the estimate LYA” is 

R,(&,, A)=E[atr(APrAr,-lndet(~A-lAL,)-p] 

= arp - plna- E[lndet( APi&,,)] - p. 

The proof is completed by noting that this is minimized for all A when (Y = 1. 
n 

Using the loss function L,, however, 6, is dominated by oh,, for some 
choices of CL In order to show this, we need the expectation of tr( F ‘). This is 
given in the following lemma. 

LEMMA 2. Zfn-q-p-3>0, then 

E[tr(F2)] =Pn[Pl(trA)2+P2tr(A2)+P,trA+P4], (9) 

where 

1 

‘O= (n-q-p)(n-q-p-l)(n-q-p-3)’ 

PI = n(2n - q - p - l), 

p2 = n(n2 - nq - np - q - p + 1). 

P3=2n[(n-q-p)(p+q+l)+(p-l)(q-1)1, 

P, = pq&/2n. (10) 

Proof. The proof is rather long and algebraicahy messy, and we will 
merely sketch it. Using the standard vet notation and direct products, we can 
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write 

E[tr(F2)] =E[vec(A~‘)‘(R@R)vec(A-‘)] 

= E[tr(R@R)vec(A-‘)vec(Ap’)‘] 

= trE(R@R)E[vec(Apl)vec(Apl)‘] 

=trE(B@B)(&(Ip~+K)+~,vec(Zp)vec(Z,,)’], 

where & is given in (lo), 

Ps= 
1+2(n-q-p-l)& 

(n-q-p-1)2 ’ 

and K denotes the p2 X p2 matrix 

K= i (Hjj@H;j), 
r,j=l 

with Hjj being the p x p matrix with i-j element equal to 1 and all other 
elements zero. It then follows easily that 

E[tr(F2)] =,&E[(trB)‘] +&E[tr(B’)], (11) 

where & = &( n - q - p - 1). Next, conditioning on X, we have 

E[ (trZ3)21X] =E[ vec(l,)‘vec(B)vec(B)‘vec(l,)lX] 

= vec(l,)‘E[ vec(B)vec(B)‘IX] vec(Z,) 

=vec(Z,)‘((Z,~+K)[qZ,2+(Z,@O)+(~@I,)] 

+ [qvec(Z,)+vec(Ll)][qvec(Z,)+vec(~)]’)vec(Z,). 

=2vec(Z,)‘[qZ,~+(Z,@Q)+(QC3Z,)]vec(Z,) 

+(pq+trQ)’ 

=2pq+4trM+(pq+trQ)‘, (12) 
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where D is given by (3). A similar argument shows that 

E[ tr(B2)IX] =E[trvec(R)vec(B)‘] 

=pq(p+q+1)+2(p+q+l)trC?+tr(G?2). (13) 

Now taking expectations with respect to the W,(n, Z4) distribution for X, we 
obtain, using similar calculations, 

E(trL?) = ntrA, (14) 

E[(trG)“] = 2ntr(A”)+ n2(trA)‘, (15) 

and 

E[tr(G’)] = n(trA)2+ n(n +l)tr(A2). 

Hence we have 

(16) 

E[tr(F2)] =&E[E[ (trB)2/X]] +&E{ E[ tr(B2)IX]}, 

and using (12)-( 16) gives the required result. n 

Using the loss function L,, the risk of the unbiased estimate ACr is, using 
(7) and (q), 

n-q-p-l 

n 
F+,-A 

=a(trA)“+btr(A2)+ctrA+d, 

where 

(2~q-p-l)(n-q-p-1) 

u= n(n-g-p)(n-q-p-3) ’ 

b= @n-9-P-1)+9-P+l) 

n(n-q-p)(n-q-p-3) ’ 

2(n - P - Ol(P + l)(fi - 9 - P> - (P - 01 c= 
n(n-q-p)(n-q-p-3) ’ 

(17) 

(18) 

(19) 

(20) 
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and 

d = pqc/2n, (21) 

and we are assuming henceforth that n - 4 - p - 3 > 0. The unbiased esti- 
mate A r, is dominated by estimates of the form a Al,. The risk of a A,, is 

R,(ah,,, A)= E[tr(c&- A)“] 

=cx2R2(AL,,A)+(l- ,)“tr(A’). (22) 

The following theorem gives conditions under which A(, is dominated by 
L-x& 

THEOREM 3. The estimate aa, dominates A,,, provided that 

(23) 

where b is given by (19). (Note that for large n, (1 - b)/(b + 1) = (n - 2)/ 
(n +2>.) 

Proof. II From (17) and (22) the difference between the risks of 8,: and 
cyAI, is 

G(A) = R,(A,, A) - R,&;, A) 

=a(l-c~‘)(trA)~+(l-a)[a(b+l)+b-1]tr(A2) 

+ c(l- c?)trA + d(l- a”). 

In G(A) the constant term and the coefficients of tr A and (trA)2 are positive; 
the proof is completed by noting that the coefficient of tr(A’) is positive 
provided (Y > (1 - b)/(b + 1). n 

A referee suggested the following rather more illuminating proof, which 
shows that (23) is a sufficient condition, independent of A, for G(A) > 0 to 
hold. Considered as a concave quadratic form in (Y, G(A) has two real roots, 
namely 1 and 

se(A)= - 
a(trA)2+(b-l)tr(A2)+ctrA+d 

a(trA)2+(b+l)tr(A2)+ctrA+d’ 
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where - 1 < aO( A) < 1 with (1 + ao)/2 > 0. Hence if max(O, QA)) < a < 1 
then G(A) > 0. To obtain a lower limit, which is independent of A, on a for 
G(A) > 0 to hold, we seek x independent of A such that aO(A) < x < 1. To 
this end, consider 

Q(A)= [r-ctO(A)][a(trA)z+(b+l)tr(Az)+ctrA+d]. 

After some minor manipulation Q(A) can be written as 

Q(A)=&AS+h’6+c,, (24) 

where 6’ = (a,,. . ., S,), with S,,. . ., S,, the eigenvalues of A; A = (g - h)Z, + 
hJ,, where J,, is a p X p matrix with every element equal to 1, g = (a + b + 
l)x+a+b-1, and h=ar+a; b=(cx+c)l,, with l’,=(l,l,...,l); and 

c, = dr + d. Now, x > so(A) is equivalent to Q(A) > 0, and from (24) this is 
implied by A > 0, i.e., to the eigenvalues h,, . . . , A, all being positive. These 
eigenvalues are X,=g+(p-1)h and X,= ... =X,=g-h. These are 
positive when x > (1 - b - up)/(l+ b + up) and r > (1 - b)/(l + b). It is 
readily shown that 

l-b-up l-b l-b 

l+b+up 
<-----1 and aO(A)<---- 

l+b l+b’ 

which leads to x > (1 - b)/(l + b). Hence it is sufficient for G(A) > 0 to 
hold, independent of A, that a satisfy (23). 

When p = 1, r2 = r,” and p2 = p: are respectively the squares of the 
sample and multiple correlation coefficients. In this case the unique minimum 
variance unbiased estimate of S = p2/(1 - p2) is 

8,= 
n-q-2 r2 4 --- 

n 1-r’ n’ 

and an argument similar to that above shows that, using squarederror loss, 6” 
is beaten by ab, for a satisfying max(O,(l - a - b)/(l+ a + b)) < a < 1. 
Moreover, Muirhead [4] has shoy that these latter estimates are beaten by 
nonlinear estimates of the form aS u + /3( 1 - r ‘)/r ‘. 

It is seen from (17) and (22) that the coefficient of tr( A2) in R,(a&,,, A) is 
minimized when a = l/(b + l), and this value of a satisfies (23). The 
corresponding estimate AL = (b + 1) - ‘AU thus dominates 6 CI’ 
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TABLE 1 
PRIAL OF’&, OVER 8,; WHEN p = tJ = 3 

n 

%9. 25 50 75 100 

diag(.5, .5,.5) 10.57 4.13 4.82 1.64 
diag( .3, .2,. 1) 16.07 9.52 7.69 0.00 
diag(.7, .6, .5) 2.63 3.42 3.94 2.08 
diag(.l,.l,.l) 17.65 10.00 0.00 0.00 
diag(.9, .9, .9) 3.75 2.95 2.92 0.04 
diag(.9,.5, .l) 4.93 0.96 3.71 1.40 

A Monte Carlo study was carried out to compare AI, with A, ,. For 
p = q = 3 and n = 25,50,75,100, a sample of 100 Wishart W,(n, 2) matrices 
were generated, where 

for various choices of a diagonal matrix Fi2. Then 100 F’s were formed using 
(2) and were used to construct both A,; and AL, and from these average 
losses (with respect to L2) were obtained. Table 1 summarizes the results. In 
this table the value given for each combination of Z,, and n is the 
percentage reduction in average loss (PRLAL) for 8, compared with A,., i.e., 
it is the estimate of 

obtained by replacing risk with average loss. It appears that AI. can represent 
a reasonable improvement over A,,, especially when n is small. 

Estimates of the parameters 6, = pf/(l - pf), i = 1,. . . , p, obtained from 
the estimate (YAP, in Theorem 3, are 

& = cx r n-q-p-l T,~ q --- 
n 1 l-ri2 n’ 

where cx satisfies (23). Current work is proceeding on evaluating these 
estimates and on obtaining other orthogonally invariant estimates of A. 
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