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NON-PARAMETRIC ANALYSIS OF OPTIMIZING BEHAVIOR 
WITH MEASUREMENT ERROR* 

Hal R. VARIAN 

Uniuersi~y of Michigan, Ann Arbor, MI 4X1&? LISA 

We consider how one might test observed choice data for consistency with optimizing models in 
the presence of measurement error. We derive an appropriate test statistic and conduct case study 
involving cost minimization behavior by electric utility plants. 

1. Introduction 

In several earlier papers listed in the references I have described methods for 
testing observed economic behavior for consistency with optimizing models. 
These tests have built on the work of Afriat (1967,1972,1976), Diewert (1973) 
Diewert and Parkan (1978,198O) and Hanoch and Rothschild (1972). A defect 
of the methods proposed in these works is that there it seems difficult to 

incorporate measurement error into the analysis. The data are assumed to be 
observed without error, so that the tests are ‘all or nothing’: either the data 
satisfy the optimization hypothesis or they don’t. 

Despite this stringent nature of the tests, they may well be worth doing. 
Indeed, if some data pass such a test without resorting to any specification of 
measurement error one might feel more confident than usual about the veracity 
of the null hypothesis. (Or perhaps feel more dubious than usual about the 
power of the data to reveal violations of the null hypothesis.) 

However, it seems that if some data fail the tests, but only by a small 
amount, we might well be tempted to attribute this failure to measurement 
error, left out variables, or other sorts of stochastic intluences rather than to 
reject the hypothesis outright. The problem here of course is to give formal 
content to the phrase ‘only a small amount’. 

That is the goal of this paper. In the following sections I offer a general 
method that is, in principle, capable of measuring the magnitude of departure 
from the underlying model of optimizing behavior. I am able to interpret this 
procedure in terms of the classical statistical framework of hypothesis testing, 
and I provide a case study to illustrate the feasibility of the method. 

*This research was supported by the National Science Foundation. I received helpful comments 
on earlier drafts from Bruce Hill, Peter Schmidt, and Adonis Yatchew. 
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2. Stochastic considerations in non-parametric analysis 

The non-parametric tests mentioned above usually take the form of asking 
whether there exists a solution to a certain set of linear inequalities. For 
example, suppose that we have n observations on the output (y,), the factor 
prices (wi) and the factor demands (x,) for a particular firm. It is shown in 
Varian (1984) that the following ‘Weak Axiom of Cost Minimization’ (WACM) 
is a necessary and sufficient condition for the observed behavior of the firm to 
be compatible with cost minimizing behavior: 

w,x* I w,x, for all y, 5 yj. 

The interpretation of this condition is that the cost at the observed operating 
positions should be no greater than the cost of using any other factors capable 
of producing at least as much output. If there are n observations, this gives rise 
to n2 inequalities that must be satisfied by the observed choices if they are to 
be consistent with cost minimizing behavior. 

This sort of condition is easy to test, but it may be a bit more difficult to 
interpret. If the data do not satisfy WACM, what are we to do? The answer 
seems to depend on the magnitude of the violation. If the data fail to satisfy 
WACM by only a small amount, then we might well be tempted to attribute 
this violation to measurement error and accept the hypothesis of cost minimi- 
zation. 

The problem here is to give specific content to the words ‘magnitude of the 
violation’ and if possible to phrase the discussion in the formal language of 
statistical hypothesis testing. I will describe my progress towards achieving 
these goals. 

Let us suppose that the observed demand for factor k in observation i, xik, 
is related to the ‘true’ factor demand z,~ in the following way: 

X rk = z,k + Ejk, i=l ,..., n, k=l,...,m, 

where .eik is a random error term. We will suppose that this error term E,~ is iid 
N(0, u*). Of course other stochastic specifications are possible; but this choice 
is a convenient one for discussion.’ 

The null hypothesis that I wish to consider can be stated as 

H,: the data (w,, zi, yi) satisfy WACM. 

It is convenient to think of the matrix of observations (xik) as a vector with 
mn components which we will denote by X. Thus the non-negative orthant of 

‘In most applications, an assumption of proportional measurement error is often more ap- 
propriate. This is in fact the specification that we use in the empirical work presented below. 
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R”” is the set of all possible data. The set of data consistent with the null 
hypothesis is then that subset H of R”” that satisfies WACM. The observed 
choices, X, is not an element of this set, but under the null hypothesis, the true 
choices, 2, is an element of H. The situation is depicted in fig. 1. 

How can we conveniently test this null hypothesis? There are several 
approaches that one might consider. The first approach is somewhat Bayesian 
in Aavor. Since zik = x,~ - E,~ we might regard z,~ as a Normal random 
variable with mean x,~ and variance (I’. The vector Z can then be thought of 
as being multivariate Normal with a probability density f(2). We can in- 
tegrate the density over the region H to compute the probability that the null 
hypothesis actually holds. 

There are three sorts of problems with this approach that I can see. First, 
this procedure is not in the spirit of classical statistical hypothesis testing, since 
we generally want to consider the distribution of the observed data given that 
the null hypothesis is true, not the distribution of the true data given the 
observations. Second!y, the test may be computationally quite demanding, 
especially since it may need to be performed for several different values of u2. 
Thirdly, it does not generalize in a convenient way to other sorts of non-para- 

metric tests. 
For example, if we are given observations on a consumer’s choices (x,) when 

facing prices (p,), a necessary and sufficient condition for the data to be 
consistent with maximizing behavior is that there exist positive numbers 
(U,, A,) that satisfy the following system of inequalities: 

uis u,+X,p,(x,-x,), i, j=l,..., n. 

Thus in the case of consumer maximization, the region H will be all data 
sets for which these inequalities have a positive solution. This may be rather 
difficult to calculate, much less to integrate over. 

Fig. 1. Non-parametric test 
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For these reasons I have adopted a different approach. There are two 
arguments that lead to the same test procedure, which we will examine in the 
following two sections. 

3. A chi-squared test 

Suppose that we could somehow observe the true data (z,~). Then since 
E rk =z rk - Xik? we could compute the ‘test statistic’: 

T= i 5 (z,~-x,~)~,& 
i=l k=l 

Under the null hypothesis H,, this ‘statistic’ has a &i-squared distribution. 
Thus we can find a critical value C, for any desired level of significance, (Y. If 
T > C, we would reject the null hypothesis. 

The problem is of course that the ‘statistic’ T is not observable. However, it 
turns out that we can calculate an observable lower bound on T that will still 
allow us to apply the above testing method. Consider the following quadratic 
programming problem: 

S = mink f (Slk - ~,~)‘/a~, 
r=lk=l 

subject to 

4, 5 w,l, for Y, 5 Y,, 

Under the null hypothesis, the ‘true data’ (w,, zl, y,) satisfy the constraint. 
Hence the minimum of the sum of squares S must be no larger than the ‘test 
statistic’ T. 

Thus if we reject H, whenever S > C,, we are certain that in fact T > C,, and 
thus we have at least the desired level of significance. That is, the probability 
of rejecting H, when it is true will be less than (Y. In this sense, the test is very 
conservative. 

The basic trick in the above method is using the mathematical programming 
problem to derive a bound on the unobserved random variable. The exact 
stochastic specification and the distributional assumptions were chosen in 
order to present a specific example and are not critical to the structure of the 
test. The choice of specification in these non-parametric methods rests on the 
trade-off between generality and computability here just as it does in all 
statistical work.’ 

*This idea has been used before in the statistics literature. The classic upper and lower bounds 
on the Durbin-Watson statistic were calculated by using a similar bounding argument. 
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Although I believe the hypothesis test described above is in the spirit of 

classical hypothesis testing, it is comforting to note that it is also quite sensible. 
We are simply asking for the minimal perturbation of the data that satisfies 
WACM. If the minimal perturbation is small relative to the amount of noise 
thought to be present in the data then it seems reasonable to accept the null 
hypothesis. 

One particularly nice feature of the test outlined above is that it can handle 
‘nuisance parameters’ quite easily. For example, in the case of the utility 
maximization problem described above the programming problem becomes 

S = mint E ({,k - x,~)~/o~, 
i=lk=l 

subject to 

A,IA,+Q,(l,-!g, i, j=l,..., n. 

This time the minimization takes place over the variables (trk, A,, b,). Under 
the null hypothesis, there is a set of variables (z,, U,, X,) that satisfies the 
constraints, so the answer to this minimization problem will be an appropriate 
bound to the desired test statistic. It appears that it would be quite difficult, if 
not impossible, to analyze this problem by the integration technique mentioned 
earlier. 

A further advantage of the method is that it actually constructs the perturba- 
tion of the data that satisfies cost minimization. If we want to go on to 
calculate bounds on the underlying technology or to forecast demand behavior 
as described in Varian (1984), we can use this constructed technology. The 
integration approach described above lacks this feature. 

There is a nice geometric interpretation of, the proposed test that is depicted 

in fig. 1. Here the Euclidean distance between X and Z is a sum of squared 
residuals, and this distance in obviously bounded by the minimal distance from 
X to H. 

However, despite these observations, there are some unpleasant features of 
the proposed test. The major difficulty is the fact that one needs to specify a 
known variance.3 However, the fact that one must postulate a value for this 
parameter does not make the undertaking entirely arbitrary. For example, one 
could use estimates of the error variance derived from parametric fits or from 
knowledge about how the variables were actually measured. In any event, it 
seems that postulating one parameter, an indication of how noisy the investiga- 
tor believes the data to be, is much less objectionable than the common 
practice of postulating an entire functional form. It must be remembered that 

31f there are several observed choices at each price it may be possible to actually estimate the 
variance. However, this type of data is rather rare. 
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the usual estimates of error variances are correct only under the maintained 
hypothesis of the specified functional form; and this maintained hypothesis is 
often arbitrary. 

Even if we are not able to estimate the error variance as in parametric 
models, we can still derive bounds on the error variance that is necessary in 
order to reject the maintained hypothesis of maximizing behavior. Let us 
consider this point in more detail. 

As above, let C, be the critical value for our proposed test, and let S be the 
value of our objective function. Then by inspection of the objective function, 
S = R/o *, where u* is the ‘true’ variance of the error term and R is the sum 
of squared residuals. We are proposing to reject the null hypothesis when 
S > C, which means when a2 < R/C,. Let us refer to the O2 = R/C, as the 
critical value of 02, and let a be its square root. Note that a is easily 

computable once we have solved the quadratic programming problem. 
The critical value, 5, measures what the standard error of the data would 

have to be for us to consider the rejection of the maximization hypothesis to be 
a statistically significant rejection. If 5 is much smaller than our prior opinions 
concerning the precision with which these data have been measured, we may 
well want to accept the maximization hypothesis. 

4. A constrained maximum likelihood approach 

Another approach to the sort of test described above is through the method 
of constrained maximum likelihood. Given some observations (x,,) and the 
specification of a normal error term we can write the log-likelihood function 

log L = mn log(27r)/2 - mn log a - 5 2 (Z,k - X,k)2/2a*. 
t=lk=l 

We think of ( z,~) and u2 as unknown parameters to be estimated. Under the 
null hypothesis, Z = (zik) is an element of the set H, so we can consider the 
constrained maximum likelihood estimates derived by maximizing the likeli- 
hood over the set H. It is easy to see that this gives us as our estimator for ( z,~) 

the values that solve the quadratic programming problem described above. Let 
these values be denoted by (?rk). The associated estimator for a2 is 

S2=i f(irk-~ik)2 mn. 
i=lk=l i 

Thus the ‘fitted values’ (ilk) are a (constrained) maximum likelihood esti- 
mate of the true unknown values. However, I am unsure whether it is possible 
to establish any useful statistical properties for these estimates. After all, we 
are estimating one more parameter that we have observations. The only thing 
that allows our estimates to be identified at all is the constraint. 
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before we simply note that 

mnG2/a2 = R 
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purposes. As 

is no larger than a chi-squared variable with mn degrees of freedom. Hence if 
we reject the null hypothesis that 2 is in H whenever R > C,, we are 
guaranteed a test of at least the desired level of significance. 

Rearranging the test condition, we have 

a2 < mn82/C, = R/C,, 

which is exactly the condition given earlier. If our prior beliefs suggest that a2 
is less than R/C,, we should reject the optimization hypothesis. Otherwise, it 
should not be rejected. 

5. A comparison with parametric methods 

The diagram in fig. 1 can be used to establish a nice link with standard 
parametric estimation techniques in models with optimizing behavior. Suppose 
that we have some parametric form for the underlying technology which we 
can use to derive functional forms for the factor demand for factor k at 
observation i as a function of the factor prices, output levels, and an unknown 
vector of parameters /3. We denote this factor demand by g,(w,, y,, p). 

Then under the null hypothesis of optimizing behavior and known paramet- 
ric form, the true data, (z,,), will satisfy the parametric relationship: 

Z rk =g,(w,, YkJL i=l,...,n, k=l,...,m. 

If there are b unknown parameters, the set of all Z that satisfy this 
relationship will generically be a b-dimensional manifold in R”‘” which we 
denote by M. Since Z satisfies the optimization conditions by construction, the 
manifold M must be a subset of the set H. This relationship is depicted in fig 
2. 

The usual approach to constrained parametric estimation involves maximiz- 
ing the likelihood function over the manifold M. This simply means that we 
find some fitted values (z,~) in M that maximize the likelihood function. The 
associated values of /_I are the maximum likelihood estimates of the unknown 
parameters. The maximum likelihood estimate for a2 is just the sum of 
squared residuals divided by mn. 

These estimates are entirely analogous to the non-parametric estimates given 
above. The only difference is that we are maximizing the likelihood over the 
mn-dimensional set H rather than the b-dimensional manifold M. Despite this 
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X 

Fig. 2. Parametric test 

resemblance in method, the statistical properties of the estimators may be quite 
different. I suspect that the major differences arise because the dimension of 
the manifold M stays fixed as the number of observations increases while the 
dimension of H keeps growing. 

Let us use R, to denote the minimal sum of squared residuals for the 
parametric estimate and R, the minimal sum of squared residuals for the 
non-parametric estimate. The ratio RJR, is, in some sense, a measure of 
the ‘goodness of fit’ of the parametric model, conditional on the optimization 
hypothesis. If the perturbation of the data necessary to satisfy the optimization 
hypothesis in the presence of a specific parametric form is very large relative to 
the perturbation necessary to satisfy optimization alone, we might not find the 
parametric hypothesis very convincing. 

Of course again we need to ask ‘large relative to what?’ I have not yet come 
up with a satisfactory answer to that question, and until someone does we will 
simply have to make do with an intuitive notion of what magnitudes are 
plausible. 

6. A case study 

In order to examine the feasibility of the methods described above I 
undertook a case study involving data on California electric power generation. 
The data in question were obtained from Woo (1982) and are discussed in 
detail in his Chapter 4. The data consist of eighteen time series observations 
from 1960-1979 on the factor inputs and output of two electric power 
generation plants.4 The factors used in this study are labor, fuel and capital. 

We first checked the plants for consistency with the cost minimization 
hypothesis. We found that the observed behavior violated the WACM in- 
equalities. The natural question is: by how much were the inequalities violated? 

4Woo’s original data set contained two observations in which the cost of capital variable was 
negative. These observations were discarded. 
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To answer this question we solved up the quadratic programming problem 
described above. Each program involved fifty-four variables (three factors, 
eighteen observations) and around two hundred constraints. The actual pro- 
gram solved was different from that described above in that we postulated a 
proportional measurement error rather than an additive one. Since the factor 
demands were measured in very different units this seemed like a much more 

plausible specification. 
Specifically, we assumed that the true demand was related to the observed 

demand in the following way: 

where E,~ is an iid Normal disturbance with mean zero and constant variance. 
This leads to an objective function of the form 

? L? (Z,k/X,k - I)2 
r=l k=l 

The quadratic programming problem was solved by a quadratic programming 
package called MINOS by Murtagh and Saunders (1977). We found the cost of 

each quadratic programming problem was around $2.00 during normal priority 
on the University of Michigan computer system, an Amdahl 5860 running 
MTS. The result of these calculations are presented in tables 1 and 2. 

We will describe the data in table 1 since the story in table 2 is much the 
same. Columns 2-4 give the observed output and input levels, while columns 
5-7 give the percent ‘residuals’ that would make the observed firm choices 
consistent with WACM and minimize the sum of squared deviations. The 
value SSR, the sum of squared residuals, is given for each factor and overall, 
as well as the square root of the overall SSR divided by the number of 
observations. The latter variable may be thought of as something like a 
standard error so we have denoted it by SE. 

There are several interesting things about the ‘fit’ described in table 1. Note 
for example the size of the perturbations for the different factors. One would 
imagine that the labor cost component of these electric power plants would be 
the easiest to measure, with the fuel costs a close second. The most difficult 
factor to measure is certainly the capital stock. Indeed, when we look at the 
sum of squared residuals for each factor we find that they conform to this 
expected pattern.5 

‘Of course if the analyst thought that there were extreme differences in the degree of 
measurement error across the factors of production he would presumably modify the null 
hypothesis of equal percentage error variance. This seems to me to be analogous to the problem of 
heteroskedasticity in ordinary regression analysis. Just as in the case of ordinary least squares, we 
can minimize a weighted sum of squares if this problem is felt to be a serious one. In most cases, I 
doubt that it is. 
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Table 1 

Alamitosa 

Year 
Actual Actual Actual Residual Residual Residual 

fuel labor capital x100 Xl00 x100 

1 24150 55.00 33.27 0.01 
2 26624 67.00 63.24 0.00 
3 50010 81.00 95.12 0.00 
4 48608 67.00 90.39 0.00 
5 56676 98.00 86.48 4.37 
6 52526 126.00 119.28 - 4.00 
I 88855 132.00 141.67 - 1.03 
8 97145 139.00 137.03 - 6.32 
9 95378 141.00 130.55 - 3.23 

10 98783 161.00 135.12 3.29 
11 91613 158.00 128.72 0.49 
12 92427 156.00 122.53 - 0.36 
13 83392 154.00 116.54 0.00 
14 90072 149.00 111.56 0.00 
17 77048 140.00 99.49 0.00 
18 101445 143.00 94.59 2.63 
19 88150 147.00 90.22 0.00 
20 111575 148.00 86.13 5.58 

0.00 0.00 
0.00 0.00 
0.00 0.00 
0.00 0.00 

-0.15 1.94 
-0.20 - 2.68 
- 0.03 -0.53 
-0.55 - 4.42 
-0.10 - 2.74 
-0.12 - 1.65 

0.24 - 1.82 
0.13 3.20 
0.00 0.00 
0.00 0.00 
0.00 0.00 
0.30 3.81 
0.00 0.00 
0.18 1.47 

SSR 0.0136 0.0001 0.0710 
SE 0.0275 0.0018 0.0199 

“Overall SSR = 0.0208, overall SE = 0.00196, critical value 5 = 0.0005 

Secondly note how small the perturbations are. The largest perturbation is in 
the period 8 fuel usage, and this is only about 6.3 per cent. These perturbations 
seem to be quite small relative to my beliefs about the likely magnitude of the 
measurement error associated with these data. 

We can be more precise about this statement. Following the discussion in 
section 2, I have computed the critical value of u outlined there. The 95% 
critical value of a &i-squared variable with 54 degrees of freedom is about 44. 
This implies that 6 is 0.0005. This means that one would have to believe the 
data were measured with a standard error of less than 0.05 percent in order to 
reject the null hypothesis of cost minimization. This seems a substantially 
smaller measurement error than anyone would be likely to attribute to these 
data. On these grounds I am willing to accept the hypothesis of cost minimiza- 
tion. 

How do these data fare when confronted with standard sorts of parametric 
methods? To answer this question I found the minimal perturbation of the 
data to satisfy factor demands derived from Cobb-Douglas and CES produc- 
tion functions. The fit is described in table 3. Note that in the Cobb-Douglas 
case the sum of squared residuals is over 500 times as large as the perturbation 
needed to satisfy minimization alone! The CES case fares somewhat better, 
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Table 2 

Pittsburg.a 
- 

Year 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
17 
18 
19 
20 

SSR 
SE 

- 

Actual Actual 
fuel labor 

52336 100.00 
76601 135.00 
70065 135.00 
63000 129.00 
69602 129.00 
55398 134.00 
70906 127.00 
52791 132.00 
61286 133.00 
37792 139.00 
44233 152.00 
47155 157.00 

108952 163.00 
84772 170.00 

105566 185.00 
105935 199.00 

82745 204.00 
86842 209.00 

Actual 
capital 

110.22 
138.15 
131.62 
125.07 
116.44 
110.25 
104.78 
99.67 
94.15 
89.42 
85.16 
81.08 

146.41 
145.69 
150.17 
155.81 
150.76 
142.48 

- 

Residual Residual 
x100 Xl00 

0.57 0.01 
0.00 0.00 

- 4.80 -0.12 
0.00 0.00 
0.96 0.03 
2.32 - 1.62 
3.86 0.09 
3.41 1.62 
0.00 0.00 
0.00 0.00 
0.00 0.00 
0.00 0.00 

- 1.01 - 0.03 
0.00 0.00 
0.67 0.47 
0.37 - 0.47 
0.00 0.00 
0.00 -0.00 

0.0058 0.0006 
0.0179 0.0056 

a Overall SSR = 0.0125, overall SE = 0.0152, critical value 0 = 0.0002, 

Table 3 

Comparison with parametric method. 

Residual 
Xl00 

0.40 
0.00 

-2.92 
0.00 
0.52 

- 4.75 
1.85 
3.77 
0.00 
0.00 
0.00 
0.00 

- 0.21 
0.00 
2.51 

- 2.39 
0.00 
0.00 

0.0061 
0.0184 

SSR 

Plant Cobb-Douglas CES Non-parametric 

Alamitos 12.359 1.0697 0.0208 
Pittsburg 6.444 0.8704 0.0125 

with a SSR only 50 times as large as that needed in the non-parametric case. 
Even so this perturbation seems quite large. The conclusion seems to be that 
the data are consistent with cost minimization - but not Cobb-Douglas or 
CES cost minimization. 

7. Objections and replies 

After describing the above method, I have often encountered various objec- 
tions to it. In this section I will describe several of the most common objections 
and my replies. 
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(1) You have speci$ed error terms on(y on the quantity terms; the price terms 

may also be measured with error. 

I agree. It would be desirable to incorporate error terms on the prices as well. 
However, note that the resulting programming problem would then have 
non-linear constraints and thus be considerably more difficult to solve. Fur- 
thermore, note that standard regression methods typically specify that regres- 
sors are non-stochastic. If one is estimating conditional factor demand equa- 
tions, this means that price and output variables are hypothesized to be 
measured without error, and only factor demands themselves are assumed to 
be measured with error - exactly as specified here. 

(2) Simply because you fail to reject the null hypothesis doesn’t mean that the 
data were generated by optimization. 

Of course not. If we fail to reject the null hypothesis then we have simply 
stated that the observed departures from the model are not extremely unlikely 
given the null hypothesis. That is exactly what is done in ordinary statistical 
hypothesis testing. 

(3) It would be useful to have a measure of the power of this test. 

Absolutely. But of course the power of a test depends on the specific alternative 
hypothesis. Given some reasonable alternative and the distribution of the 
errors it would be possible to compute the probability that the proposed test 
would be satisfied. This would almost certainly have to be done by Monte 
Carlo methods, since I see little hope of an analytic solution. However, by way 
of comparison, let me note that it is quite rare that one sees power reported in 
parametric econometric studies. 

(4) The fact that one needs to specify the error variance eflectively renders this 

approach worthless. 

I think not. Rather than speculate idly on this point, it is worth considering the 
particular example presented above. Does anyone really believe that the factor 
demand data described in table 1 were measured with a standard error of less 
than 0.05 percent? If not, the procedures outlined above indicate that the 
departures from cost minimizing behavior depicted in that table are not 
statistically significant. This seems to me to be a perfectly satisfactory state- 
ment. Furthermore, specifying the likely magnitude of the measurement error 
seems to me to be much less dijkdt a task than specifying a plausible 
functional form for a production function, as is required in the conventional 
approach. 

And of course, one may be able to construct plausible estimates or bounds 
on the error variance by other means. One obvious choice is to use the 
standard errors that are generated by parametric methods. Moreover, Epstein 
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and Yatchew (1984) have suggested a method of estimating u that is consistent 

under certain hypotheses about the family of functional forms that could have 
generated the data. If the Epstein-Yatchew method works well in small 
samples, it may eliminate this objection entirely. 

(5) It is dijicult to argue that we know enough to specilfv the way disturbances 
enter the demand equations and can specify a parametric form of the 
distribution while at the same time arguing that we do not know enough to 

specify the form for the demand system. 

I find the specification of a Normal error term much less difficult than the 
specification of a particular parametric form for technology or demand. In any 
event parametric studies usually require a specification of both the functional 
form of the demand relationship and the parametric form of the distribution. 

(6) What is the relationship of this approach to the literature on frontier estima- 

tion? 6 

In this paper I have specified the error term as a measurement error associated 
with the factor demands, since in my opinion these are the variables that are 
the most poorly measured in this sort of study. However, one could consider 
alternative approaches in a non-parametric context as well. 

For example, suppose that we thought that the output levels (y,) were 
underestimates of the ‘ true’ output frontier levels (y,*). That is, 

Y; = y,* + E, > i=l,...,n, 

where E, _< 0. In this case we might find a minimal perturbation of the 
observations that would satisfy WACM, while respecting the sign restriction 
on the perturbations implied by the non-positivity of the error term. Under the 
null hypothesis this would be a lower bound on the actual perturbation and all 
the analysis of this paper applies. The only difficulty with this approach is that 
the minimization problem does not take a standard form. 

8. Summary 

I have shown how one can extend the non-parametric methods described in 
the introduction to cases involving measurement error. The logic of the 
approach involves asking for the minimal perturbation of the data that satisfies 
the inequality relations implied by the underlying theory. This sort of test can 
be given an interpretation consistent with the classical theory of statistical 
hypothesis testing. Furthermore, the methods are practical from the computa- 
tional perspective and can be applied in a wide variety of stochastic specifica- 
tions. 

‘For a survey of frontier estimation, see Aigner and Schmidt (1980) 
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