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A description is given of a number of numerical schemes to solve an evolution equation that 
arises when modefling the propagation of water waves in a channel. The discussion also 
includes the results of numerical experiments made with each of the schemes. It is suggested, 
on the basis of these experiments, that one of the schemes may have (discrete) solitary-wave 
solutions. fi’ 1985 Acadermc Press, Inc. 

1. INTRODUCTION 

In this paper we examine some numerical schemes for the initial-value problem 
for the real-valued function u(x, t) given by 

u, + 4 + Bwr - Y - *%, = 0, XER, t>o, W) 

44 0) = g(x), WI 

where p 3 0 and y > 0 are constants, and g is a given function comprising the initial 
datum for the differential equation. This problem, which arises in the theory of 
water waves, has been studied in recent years by several workers: Peregrine [17] 
examined its possible relevance to the temporal development of undular bores; a 
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mathematical theory for the problem was developed by Benjamin, Bona, and 
Mahony [5]; and, more recently, the present authors [9] have made a detailed 
comparison of the model with the outcome of some laboratory experiments. The 
problem (P) is closely associated with the initial-value problem for the Kor- 
teweggde Vries equation 

u, + 2.4, + puu., + y -*u,,, = 0, (1.1) 

in that both equations have been advocated as models for the same physical 
phenomena (e.g., see Benjamin et al. [S]). Indeed, when the initial datum g is 
restricted to conform to that arising in many physical applications, it can be shown 
(see Bona, Pritchard, and Scott [lo]) that the two equations yield essentially the 
same solution over a non-trivial time scale. The latter work also points out some 
other qualitative similarities between the solutions of the two problems over longer 
time scales. 

Several numerical studies of (P), or closely associated problems, have been repor- 
ted: e.g., see Peregrine [ 171, Wahlbin [21], Eilbeck and McGuire [12, 131, San- 
tarelli [lS], Courtenay Lewis and Tjon [ 111, Alexander and Morris [3], Bona et 
al. [ 8, 91. Abdulloev et al. [ 1 ] describe the results of some interesting computations 
for (P), but no details are given of the methods employed. Most of these studies 
present the results of formal calculations, except for the work of Wahlbin, in which 
an analysis is given of a Galerkin method for a (spatially) periodic version of (P), 
and that of [9], in which an analysis is given of a finite-difference method for an 
initial- and boundary-value version of (P). Both of the latter studies also showed 
that a specific implementation of the methods displayed the expected convergence 
properties when the mesh was relined. 

While developing the numerical method used in [9] we also developed and 
tested a number of finite-difference schemes for (P), and the purpose of the present 
paper is to describe some of the comparisons that were made between these various 
schemes. A description is given in Section 2 of the methods studied, consisting of a 
second-order method and a number of fourth-order schemes. The discussion also 
indicates how efficient schemes having arbitrary order accuracy can be generated. 
In Section 3 a discussion is given of the numerical experiments, including standard 
convergence studies along with a number of more subtle, subsidiary experiments. 

The main numerical experiments described below are related to special solutions 
to (P) known as solitary waves, which occur in the case p > 0. This one-parameter 
family of solutions represents single-crested waves of elevation and is given by 

4x, t)= Usech*{a[(x-x,)-(1 +$U)t]}, (1.2) 

for U>O and a= [&&*U(l +#U))‘]“*, corresponding to the initial datum 

g(x) = U sech2[a(x - x,)]. (1.3) 
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The arbitrary parameter x0 gives the location of the point of maximum amplitude 
of the solitary wave at time t = 0. These solitary waves propagate without change of 
form at the steady speed (1 + @U), determined by their maximum amplitude U. 
(Note that if U < -3/b, (1.2) also defines a real-valued travelling-wave solution of 
depression, whose amplitude, however, excludes it from the range of physical 
interest.) 

An especially interesting feature to emerge from our numerical experiments is 
that one of the schemes under study appeared to have a discrete solitary-wave 
solution. 

2. THE NUMERICAL SCHEMES 

In this section a description is given of the various schemes that have been 
studied. First we shall describe several semidiscrete, spatial approximations to the 
solution to (P) and then go on to describe the temporal approximations that have 
been used. As indicated in the Introduction, Benjamin et al. [S] showed that (P) is 
a well-posed problem. In particular, they showed that if g and its first few 
derivatives are continuous and bounded, then corresponding to g there is a unique 
bounded solution u of (P). This solution is infinitely differentiable with respect to 
the temporal variable t and is as smooth in the spatial variable x as the datum g. 
For such bounded solutions u they also derived an integral representation, namely, 

= u,(x, t) = s w, Y)(U + tpu’)(Y? t) 46 (2.1) -zc 
where K(x, y) := $7’ sgn(x - y) e -‘il-r-Y’. This representation has been used to 
generate the spatial discretizations described here. The ideas outlined below are 
closely related to the work described in [9], to which paper repeated reference will 
be made for some of the technical issues that arise. 

2.1. Spatial Discretizations 

2.1.1. The GEM Scheme 

The spatial discretizations were effected first by truncating the infinite interval of 
integration to a finite interval [X,, X,] and then by taking quadrature 
approximations of the integrals 

s x wx, Y)(U + lPU2NY> t) 4 and x2 m YNU + fPu2KY, t) 4. (2.2) XI i .r 
Justification for the truncation of the infinite interval can be given using arguments 
of the kind described in [9]. Note that K is smooth except for a jump discontinuity 
on the diagonal y = x and so, by splitting the interval of integration at x, the 
smoothness of the integrand on each of the subinterivals is determined entirely by 
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the smoothness of the initial datum g (cf. (2.1)). The quadrature approximation of 
the integrals used here is the Euler-Maclaurin formula truncated at fourth order, 
namely the trapezoidal rule on a uniform mesh with one derivative correction at 
each of the end points of the ranges of integration. When these derivative correc- 
tions fall upon the unknown (u+ $?u2) they are approximated by a centered, 
second difference. This discretization gives a quadrature rule similar to the one 
derived by Gregory (cf. Goldstine [ 141) prior to the work of Euler and Maclaurin, 
the only difference being that here derivatives of K have been found exactly. A 
further simplification can be made, as indicated in [9], by ignoring certain small 
terms arising at the extremities X, and X2 of the interval of integration. 

These approximations lead to a system of ordinary differential equations for 
functions ui(t), where ui approximates u at the ith quadrature point (i.e., 
ui(t)-u(iAx, I)). Here i=N,, N, + l,..., N,, with X, := N, Ax, X, := N, Ax, and Ax 
denotes the mesh size. These equations comprise a semidiscrete approximation to 
(2.1), taking the form 

lij(t)=Fi((U+tpU’U)(t)), i = N, ,..., N,, 

where u = (uN, ,..., a&, the symbol uou is defined by 

(u 0 u)i := Uf, 

and Fi(v) = Fi(v, ,,..., uNJ is given by 

(2.3) 

(2.4) 

% K(iAx,jA~)u,-~y~(u~+,-u~~~ 
j= N, 

(2.5) 

with the understanding that K(x, x) = 0 for all x, and vN, _ 1 = uNZ+ 1 = 0 whenever 
these expressions appear. More complete details of the derivation of these formulae 
can be found in [9]. We shall refer to the spatial discretization (2.3)-(2.5), as well 
as the simplification to be described below, as the Gregory-Euler-Maclaurin 
(GEM ) scheme. 

As it stands the method (2.3)-(2.5) involves a discrete convolution to calculate 
F = (FN, ,..., FNJ and is therefore not a very efficient procedure. However, this may 
be overcome in the following way. Define a second-difference operator D2 such that 

(D2v)i := vi- (ui+ 1 -22v,+ 1~-~)/(e@“-2 +epyd”), (2.6) 

which we write in the form 

so that a = 1 - 26 and -b-l = (2 sinh(& Ax))’ (= (y Ax)~ + O(y Ax)~). We want to 
apply D2 to the convolution term of (2.5), and it is therefore convenient to split F 
into two parts, namely, 

Fj(v) = F!(V) + e(V), 
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where F: is the convolution term and c(v) := -&y’ dx(v;+, -vi-,). Then, for 
N, < i < N2, a straightforward calculation gives 

(D*F’(v)),= fby* dx(vi+ 1 -vi- I) = -12W3v). (2.7) 

If again we ignore terms involving points outside the interval [X,, X2], an 
approximation to F’ (which is appropriate if v is suitably small near X, and X2, as 
obtains here) is given by the solution f(v) to the tridiagonal system of equations 

Af = -12bF*(v), (2.8) 

where 

A= 

a b 
b a b [ . . . I b a b ’ 

b a 

Thus, it is more efficient computationally to use the semidiscrete scheme 

~(t)=P((u+tpuou)(t)), 
u;(O) = g(i Ax), i = N, ,..., N, , 

(2.9)(GEM) 

where F = f + F*, and for which F can be calculated in O(N, - N, ) operations by 
solving the tridiagonal system (2.8). Using the same methods as those described in 
[9], it can be shown that (2.9) has an accuracy of 

O(~x4-e-“X2-w), (2.10) 

where r is a positive constant. 
Although (2.9) does not appear, superficially, to be a standard discretization it 

can, nevertheless, be viewed as a finite-difference approximation to (2.1) (or Pl ) 
written in the form 

(1 - y -*a;, 2.4, = -a,(24 + #242). (Pl, bis) 

To see this define difference operators D’ and Di by 

(D’v)~ := (vi+, - vie1)/2dx, 

(D;v)~ := -(vi-, - 2v, + vi+,)/dx2, 

and a parameter rc by 

(2.11) 

K := -b dx2 = (Ax/2 sinh($y Ax))*. (2.12) 



172 BONA, PRITCHARD, AND SCOTT 

Then, after multiplying the (GEM) scheme by D2 := I + I’D& and using the 
definition (2.8) of f, it follows that 

(I+ ~0;) i = -r*[(lc + $tx2)Z+ ff IC dx*D;] Div, (2.13)(GEM) 

where 

uj := ui + ghf, N16i<N2, (2.14) .- .- 0, otherwise, 

and Ui := (u);, N, 6 i 6 N,, ui := 0 otherwise. 
Note that 

ti=y- ‘[l -A (y /lx)‘+ O((y dx)4)], (2.15) 

which, together with (2.13) can be used to generate other discrete methods for 
(Pl). 

2.1.2. A Second-Order Method 

At second order the (GEM) scheme agrees with the second-order centered-dif- 
ference approximation to (Pl ), namely, 

(I+?-‘D;)ti= -D’v, (2.16)(CD) 

with v defined as in (2.14). 
This kind of spatial differencing has often been used (e.g., see Eilbeck and 

McGuire [ 12]), though sometimes the nonlinear term is not cast in the “conser- 
vative” form used here. 

2.1.3. Another Fourth-Order Method 

Keeping terms in (2.13) only to fourth order yields an approximation to (Pl ) of 
Stormer-Numerov type (cf. Stoer and Bulirsch [20]), namely, 

(I + y -2(1 - &(y Ax)~) D;) ti = -(I+ &lx’D;) D’v, (2.17)(SN) 

and again v is defined as in (2.14). 
As with the (GEM) scheme, this method can be shown to satisfy the error bound 

(2.10) some specific tests of which are described below. 

2.1.4. Remarks 

(i) Although the (GEM) scheme ((2.9) or (2.13)-(2.14)) has only fourth- 
order spatial accuracy, schemes of arbitrary-order accuracy can be derived in a 
similar way by retaining the required number of terms in the Euler-Maclaurin for- 
mula (with the appropriate derivative corrections being replaced by differences). 
For these higher-order schemes the system of equations corresponding to (2.8) is 
not altered, the only change in the scheme being that P is of the form P = f + E*, 
where F2 incorporates the higher-order derivative corrections; the original F2, 
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however, remains on the right-hand side of (2.8). This occurs because the difference 
operator D* (= I + KD:) is an infinite-order approximation to (1 - y -“a:), in the 
sense that 

for all sufliciently regular functions 4. Thus the term f in the definition of @ is 
infinite-order accurate, and it remains only to determine P2 to the desired accuracy. 

(ii) It is more efficient to compute the (GEM) scheme in the form (2.8)-(2.9) 
than in the form (2.13): with the fourth-order scheme, for example, the latter 
arrangement requires the calculation of a penta-diagonal approximation to a,, 
whereas the former involves only D’. In general, one could envisage a variable- 
order method where P2 is calculated to different orders of accuracy in different 
parts of the domain (depending, say, on some local estimation of the spatial errors). 

(iii) The generalisation of the (GEM) scheme to obtain higher-order methods 
may appear somewhat academic, but the use of the fourth-order scheme in [9] (in 
modelling a laboratory experiment) placed a considerable burden on the data sam- 
pling to ensure the desired accuracy of the numerical solutions. Similarly, in 
another study concerning the interaction properties of two solitary-wave solutions 
of the family (1.2) (see Bona et al. [8]), the implementation of a more accurate 
scheme would have been beneficial. At the outset of each of these projects the 
fourth-order scheme seemed to be more than adequate but, in retrospect, we should 
have considered more seriously the relative efficiency of the higher-order schemes. 

(iv) The above methods can readily be adapted to solve (Pl) posed on some 
fixed interval [X,, X2], subject to the initial condition that U(X, 0) = g(x) for 
X, ,< x < X, and the boundary conditions u(X,, t) = hi(t) for t 2 0, i= 1, 2, where g, 
h, and h, are given functions. (Theory relating to this initial- and two-point boun- 
dary-value problem has been provided by Showalter [19] and Bona and 
Dougalis [7]. In case X, = -cc or X2 = +co, the condition u(X,, t) = hi(t) may be 
replaced by a growth condition, as in Bona and Bryant [6].) These methods may 
also be used to handle the periodic initial-value problem in which the initial datum 
g and the solution u are both required to be periodic in x with a given period. We 
have implemented the GEM scheme for some of these problems. 

2.2. Temporal Discretization 

All the spatial discretizations of(P) described above lead to a system of ordinary- 
differential equations of the form 

li(t)=?F(u(t)), t30, 
u(0) = u*, (2.18) 

where, for example, up = g(i dx) for N, < i < N,. Moreover, the function 9 remains 
suitably bounded as dx --f 0, so that the problem (2.18) is not in any way stiff for 
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small values of Ax. An indication of why this is so is given by a von Neumann-type 
stability analysis of a linearized version of the problem with periodic boundary con- 
ditions. Thus, in (2.14) set ui = Uu, for all i, where U is a constant, and consider the 
above discretizations for the initial-value problem for the appropriate modification 
to (P), and with 2rc-periodic data and corresponding periodic boundary conditions 
in space. Then, for all three of the above spatial discretizations, the resulting F has 
eigenvalues pk of the form 

pk = iUy&, 

where 0 d k < 27c/Ax and, for each k, 2, is real with 11,1 < C, where C remains 
bounded as Ax approaches zero. In particular, we may take 

C=4, for CD(2.16), 

=$+&yAx, for GEM(2.13)-(2.14) and 

= (1 - #J Ax)*) ~ ‘I*, for SN(2.17). 

Note that, for the (SN) scheme, we must have Ax < 144~ - ’ in order that the mul- 
tiple of Di on the left-hand side of (2.17) be positive. For the full nonlinear problem 
the precise boundedness conditions satisfied by 9 are given in [9]. It follows that 
any of a variety of methods for integrating ordinary differential equations can be 
used to discretize (2.18). This observation is generally valid for the class of Sobolev 
equations, of which (Pl) is a prototype (cf. Arnold, Douglas, and Thomte [43). 

For the second-order scheme (2.16) it is natural to consider a second-order tem- 
poral discretization and, since stiffness is not a problem, an explicit method can be 
used. We have therefore chosen the so-called “leap-frog” scheme 

U n+l =“fl-l + 2At9-(u”), n3 1. (2.19)(LF) 

The “starting value” u1 was obtained from a step using the Runge-Kutta scheme 
described below. (In fact, for the numerical experiments to be reported in Section 3, 
three steps of (RK) were used initially so that (LF) was used only for n 2 3.) The 
discretization (2.16), (2.19) of (P), the (CD-LF) scheme, has an error bound of the 
form 

O(AX*+A~~+~~“~~-~~)), (2.20) 

where r is a positive constant. 
For the fourth-order schemes (GEM) (2.8,2.9) and (SN) we have used the 

following fourth-order Runge-Kutta method, for n 2 0: 

w1 = un + + AtS=(u”), 

w2=un++AtcF(w1), 

w3 = u” + AtF(w*), 
(2.21)(RK) 

U “+ ’ = un + ;At[29(w’) + 29(w2) + crF(u”) + S(w’)]. 
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Once several steps of (RK) have been calculated it could prove more efficient to 
switch to a multi-step scheme. We have, therefore, also considered the following 
prediction-correction scheme, for n 2 3: 

U -“+‘=u”+~At[55~“-59~“~‘+39~“~2-9~”~~3], 

(2.22)(MS) 
U “+‘=u”+&,At[2519(ti”+‘)+646Fn 

where Fj denotes F(uj) and u’, u2, and u3 are calculated by (2.21). (Note that this 
prediction-correction scheme is used in the so-called PECE mode, as described by 
Lambert [ 161. The prediction step employs the fourth-order Adams-Bashforth for- 
mula while the correction step is made via the fifth-order Adams-Moulton method. 
This results in a temporal discretization that has fifth-order accuracy.) 

All four possible combinations of the spatial discretizations (GEM) or (SN), 
coupled with the temporal discretizations (RK) or (MS), provide a fully discrete 
approximation to (P) satisfying the error bound 

O(Ax4+AtP+e-“XZ-X1’), (2.23) 

where p is four for the (RK) scheme and five for the (MS) scheme, and r is a 
positive constant. 

The (GEM) spatial discretization, coupled with the standard fourth-order 
Adams-Bashforth-Moulton prediction-correction scheme (e.g., see Lambert [ 16]), 
was used in [9] to solve (Pl) posed with initial and boundary conditions. 

3. NUMERICAL EXPERIMENTS 

3.1. Preliminary Definitions 

In this section a description is given of some numerical experiments made with 
our implementations of the above methods. All the experiments to be described 
relate to initial data g(x) given by (1.3). This function is associated with the family 
(1.2) of exact solutions to the problem (P) and therefore provides a convenient 
means of checking the convergence properties of the various schemes. It has, in 
addition, enabled us to make a number of other, more refined, studies of the 
properties of the numerical solutions. 

It is standard practice to determine empirically the convergence of a scheme to 
test both its theoretical basis and the correctness of its implementation. Fairly 
detailed studies of this kind have been made for the methods under consideration, 
but we give here only a sample of the results that have been obtained. All the 
experiments to be described were made with /? = 1.5 and y2 = 6, identifications 
which henceforth will be assigned without further reference. These values relate to 
the aforementioned physical problem of water waves propagating in a uniform 
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channel. (We have, however, carried out similar tests with other values of fi and y.) 
Thus, the quantity a appearing in (1.2) is given by a = [3U/4( 1 + fU)]‘/‘, and the 
solitary wave of amplitude U has speed c := (1 + &U). 

The truncation of the infinite interval described in Section 2 was usually effected, 
at t = 0, by choosing X, and X2 such that 

dxi)Iu = &Y i= 1, 2. (3.1) 

Here E was chosen empirically so that the truncation had negligible influence on the 
results. At each time step (or after a certain specified number of time steps) the 
right-hand boundary was moved outwards (i.e., X2 was increased) so that its dis- 
tance from the “crest” of the solitary wave did not, on average, decrease with time. 
Whenever such an expansion of the domain was made the vector u was extended by 
zero on its undefined components. In certain experiments it was also possible to 
move the left-hand boundary X, to the right without influencing appreciably the 
experiment in question. (In such cases, the vector u was simply truncated.) The 
changes in X, and X, were made automatically by the code, as follows. After each 
A4 time steps the values of X, and X2 were moved a distance Ci drM, 
corresponding to speeds C1 and C2. A typical value for M was 25 and C, and C2 
were chosen appropriately for specific computations. In particular 
Ci < 1 + @J 9 C2. We were conservative about the positioning of the endpoints of 
the domain but, even so, in some of the experiments with very fine meshes the 
errors generated by the numerical scheme were so small that the positioning of the 
boundaries (at t = 0) gave rise to a nonnegligible additional error. However, this 
additional contribution was never more than 5% of the total error. We shall not, 
therefore, report the values of X,(t) and X,(t), but give only their values at t = 0. 
These will be stated implicitly by quoting either x0 (cf. (1.3)), in which case X, = 0 
and X2 = 2x,, or by quoting the value of E in (3.1). 

TO describe the convergence studies it is convenient to introduce some 
definitions. Let a solution to the discrete problem at time t = j At, where j is a 
positive integer, be denoted by VI(~) = (..., vi(t),...), N,(t) < i < N*(f), and let the 
exact solution (1.2) be denoted by u(x, t). Define a relative difference E between the 
two functions by 

2 [u(iAx, t)- qi(t)12 z [u(i Ax, t)12 
112 

. (3.2) 
1=N, i=N, 

Another functional of interest in this problem is the difference between the 
amplitude qrn of the discrete solution and that of the solution of the continuous 
problem, a difference we shall refer to as the height error H(t). This quantity is 
defined in the following way. Find max{v],(t): N,(t) < i< N2(f)}; let p be the value 
of i at which the maximum is achieved. (If there is more than one such i, let p be 
the smallest of these.) Then interpolate the function values vi(t) by a quartic 
polynomial Q(x) at the points x = i Ax, for i =p + k with (k( < 2 (i.e., at the live 
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points centered about the maximum of q). Now determine the maximum value of Q 
using Newton’s method, starting the iteration at x = p Ax. (This procedure was suc- 
cessful in all cases.) Denote this maximum by qm. Then, finally, define the height 
error to be 

H(t) := U-q,(t). (3.3) 

The value of x for which Q achieves its maximum, say x,, provides the possibility 
of determining a phase error at each t for the discrete solution and, by taking dif- 
ferences, of obtaining an average speed for the wave crest in the discrete solution. 
This speed can then be compared with the speed c of the solitary-wave solution to 
the continuous problem and with the speed (1 + 4~~) of a solitary wave of the 
family (1.2) with amplitude q,,,. 

Finally, knowing the values of I], and x, raises the possibility of yet another 
comparison, namely, the difference between the solution R(t) of the discrete 
problem and the function 

[(x, t) = ye,,, sech’ {[4(1:“,,,1”’ (x-q 

The function c corresponds to the wave of the family (1.2) of amplitude ‘I m, whose 
crest is located at x,. Then, analogously to the definition (3.2) we write 

(3.4) 

$ [q(iAx, t)-[(i Ax, t)l* 2 [[(i Ax, t)l* 
112 

, (3.5) 
i=NI i=Nl 

which quantity we shall refer to as the shape error. 

3.2. Convergence Studies 

Since, for the convergence studies, it is sufficient to use a fixed ratio of Ax to At, 
one of our early experiments was to determine an “optimal” value for this ratio. 
The results of one such test (see Table I) indicate that the best accuracy was 
achieved when Ax N At. We decided, therefore, to fix on the ratio Ax = At (=: A) for 
the remainder of the study. 

A number of convergence studies have been made using the fourth-order schemes 
(GEM-RK), (GEM-MS), (SN-RK) and the second-order scheme (CD-LF), the 
tests being carried out with solitary-wave amplitudes U of 0.1 and 1.0. A summary 
of the results of these experiments is given in Table II, where the errors E at times 
t z 30, 70 and 120 are given. (Recall that the speed of propagation of these waves is 
(I+ fU) so that when t= 120 they will have travelled distances of 126 and 180 
spatial units, respectively.) The rows labelled “ratio” in this table give the ratio of 
the numbers above and below the entry and indicate the ratio by which the error 
decreased when A was halved; for the fourth-order schemes this ratio should 
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TABLE I 

The Errors E Obtained at t = 19.2 Using the (GEM-RK) Scheme for 
a Solitary Wave of Amplitude U = 1.0 

Values of Ax 

At 0.32 0.16 0.08 0.04 0.02 

0.32 0.25(-l) 0.37( - 1) 0.36( - 1) 0.36( - 1) 0.36( - 1) 
0.16 0.12(-l) 0.12( -2) 0.18( -2) 0.18( -2) 0.18( -2) 
0.08 0.14( - 1) 0.80( - 3) 0.53( -4) 0.86( -4) 0.89( -4) 
0.04 0.14( - 1) 0.87( -3) OSl(-4) 0.28( -5) 0.48( - 5) 
0.02 0.14( - 1) 0.87( - 3) 0.54( - 4) 0.33( -5) 0.14(-5) 

Note. These experiments had x0 = 11. The numbers in parentheses indicate the exponent of 10 mul- 
tiplying the preceding numbers, e.g., 0.25( - 1) = 0.25 x 10 - ‘. 

approach 16 as A decreases to zero and should approach 4 in the same limit for the 
second-order scheme. That this apparently was the case for our implementations 
can be seen from the results with U = 0.1. With the larger wave amplitude, U= 1.0, 
convergence orders considerably in excess of 4 were found in many of the tests 
made with the fourth-order schemes, suggesting that still further mesh refinement 
was needed before the asymptotic convergence rate would be achieved. Under 
similar conditions, however, the asymptotic convergence rate was apparently 
realized with the second-order (CD-LF) scheme. The convergence properties of the 
(GEM-MS) scheme with U= 1.0 may seem to be somewhat anomalous, but they 
are probably a consequence of the fifth-order time stepping used in this scheme: 
with the meshes employed the dominant component of the error presumably arose 
from the temporal approximation and the anticipated fourth-order rates would 
therefore only emerge with much liner meshes or by using a different ratio for 
At/Ax. The run times on a CYBER 175 for the tests with A =0.02 were 
approximately 400 s (GEM-RK), 267 s (GEM-MS), and 400 s (SN-RK). 

While Table II indicates the convergence properties of the schemes with A, the 
graphs in Fig. 1 indicate the temporal dependence of E for a fixed A. Figure la 
shows the error E for the various approximations computed with A = 0.04 to the 
solitary wave having U= 0.1, and Fig. lb shows the approximations found with 
A = 0.02 to the wave having U = 1.0. (Note that E is plotted on a logarithmic scale.) 
The (SN-RK) scheme gave the best approximation to the smaller solitary wave 
whereas the (GEM-RK) scheme gave, by and large, the smallest errors for the 
solitary wave with U= 1.0. (Note that the (GEM-RK) and the (GEM-MS) 
schemes gave nearly the same errors for the computation of the smaller solitary 
wave, but for the larger wave the errors were greatly different, suggesting that the 
choice At = Ax was not “optimal” for the (GEM-MS) scheme.) Both sets of graphs 
show an initial phase over which the error rapidly increased and after which there 
was a slower increase in E. Much of the slower increase arises because the 
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TABLE II 

The Errors E Obtained When Approximating Solitary Waves of Amplitude 0.1 and 1.0 

Values of f 

For U=O.l For U= 1.0 

30.720 72.320 120.320 30.720 72.320 A 120.320 
- 

Notes. (a) (GEM-RK) scheme; (b) (GEM-MS) scheme; (c) (SN-RK) scheme; (d) (CD-LF) 
scheme. E = 0.1 x lo-’ for all these tests. An entry in a row labelled “ratio” is the ratio of the numbers 
above and below that entry. 
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FIG. 1. The error E (plotted on a logarithmic scale) as a function of f. (a) C/=0.1, A =0.04. 
-: (GEM-RK) and (GEM-MS); --: (SN-RK); -- -: (CD-LF). (b) U= 1.0, d =0.02. 
-: (GEM-RK); -.-: (GEM-MS); --: (SN-RK); - - -: (CD-LF). 

“amplitude” of the approximate solutions is, in general, different from that of the 
exact solution and therefore the two waves, having slightly different phase speeds, 
draw apart. 

3.3. Further Tests 

The dependence of the height error H on time for the various schemes (when 
A = 0.02) is shown in Fig. 2a. The results for Fig. 2 were obtained using a solitary 
wave of amplitude U = 1 .O as the initial datum. (Note that, to normalize the errors, 
the ordinates in Fig. 2 have been scaled by A”, where n is the order of accuracy of 
the scheme being used.) Thus we see that the “amplitude” of the discretely com- 
puted waveforms for both the (GEM-RK) and the (SN-RK) schemes were slightly 
smaller than the amplitude of the exact solution; moreover, after an initial “settling 
out” period, the amplitude of the approximate solution decreased monotonically 
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FIG. 2. Two measures of differences between approximate solutions and solitary-wave solutions, for 
calculations using initial data corresponding to a solitary wave of amplitude U= 1.0 (and 
&=o.l x 10-7). -:(GEM-RK), n=4; -‘-:(GEM-MS), n=4; --:(SN-RK), n=4; 
- - -: (CD-LF), n = 2. These calculations had d =0.02. (a) H(t)/d” (see 3.3); (b) D(f)/d” (see 3.5). 

with time. Both the (GEM-MS) and the (CD-LF) schemes, on the other hand, 
generated waveforms whose amplitudes exceeded that of the exact solution. 
Probably the most interesting feature of these computations is that the (CD-LF) 
scheme, in contrast to the other schemes, generated a waveform which, after an 
initial period, had an amplitude (or height error) independent of t. We shall con- 
sider this point in more detail below. 

Another obvious feature of the graphs is the “kink” near t = 10. This corresponds 
to the time at which the crest of the wave passed the initial location of the right- 
hand boundary of the domain, the point where the initial datum had been trun- 
cated. This is not unexpected since the theory for problem (P) developed in [S] 
shows that a discontinuity of the sort generated by our truncation procedure does 
not propagate. (The larger errors associated with the second-order scheme 
presumably dominated the truncation effect so that the “blip” was not apparent in 
that case.) 

581/60/2-Z 
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The same effect is also apparent in connection with the “shape error” D(t), shown 
in Fig. 2b, where a “spike” can be seen near t = 10 for all three of the higher-order 
schemes. Recall that the shape error indicates the difference between the discretely- 
computed waveform and a solitary wave (1.2) having the same amplitude and 
phase location as that of the discrete solution. Thus, the results of Fig. 2b suggest 
that, after an initial settling-out period of about 30 time units, the shape of the dis- 
cretely-computed wave changed only rather slowly with time, with the exception of 
the (GEM-MS) scheme which showed some short-time variation in D superim- 
posed on a more gradual, long term variation. In keeping with the results shown in 
Fig. 2a, the (CD-LF) scheme generated a waveform whose shape was eventually 
independent of t. 

- -~--~-- - - - - -~I - - -_-_~-  

I  I  /  I  I  

0 200 400 600 600 1000 1200 
1 

FIG. 3. The height error when A =0.16 for a variety of initial wave amplitudes U. (E =O.l x lo-‘.) 
Note the ordinates are magnified by the factor 10”. 

(GEM-RK) 
(a) -: fJ==l.O, (SN-RK) , n = 4, s = -2, H(1280)/A” = 34.86; 

-.-: U= 1.0, (CD-LF), ’ n=2,s=l, H( 1280)/A” = -0.6722; 
--: U=O.75, (CD-LF), ?l=2,s=l, H( 1280)/A” = -0.3480; 

- - -: U= 0.5, (CD-LF), n=2,s=l H(128O)/A” = -0.1412. 
(b) --: U=O.25, (CIXLF), n = 2, s = 2, H( 1280)/A” = -0.0324; 

-: (I= 0.1, (CD-LF), n=2,s=3, H( 1280)/A” = -0.00494. 
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Thus, the above results suggest that the (CD-LF) scheme has discrete “solitary- 
wave” solutions, whereas none of the other schemes would appear to have this 
property. To provide further support for this thesis similar tests were made with a 
variety of different initial wave amplitudes U. This new set of experiments was made 
with A = 0.16 with the calculations progressing for 8000 time steps to investigate the 
possibility of very slow temporal changes in H or D. The results of these tests are 
summarised in Figs. 3 and 4, the height errors being given in Fig. 3 and the shape 
errors in Fig. 4. It is seen from these graphs that the height error for the (CD-LF) 

/XT 
b/ \ 

; 
\ L---------------- ------- 
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I 

I 
0.10 '- 

0 zoo 400 800 800 1000 1200 
t 

FIG. 4. The shape error when A =0.16 for a variety of initial wave amplitudes U. (E = 0.1 x lo-‘.) 

(a) --“‘-: CJ= 1.0, (GEM-RK), n=4, 0(1280)/4”=0.8869; 
-: U = 1.0, (SN-RK), n=4, 0(1280)/4”=0.7119; 
-.-: U= 1.0, (CD-LF), n = 2, D( 1280)/A” = 0.9416; 

- -: U= 0.75, (CD-LF), n = 2, D( 128O)A” = 0.6263; 
---: U=O.S, (CD-LF), n = 2, D( 1280)/A” = 0.3680. 

(b) --: U=O.25, (CD-LF), n=2, D(128O)/A”=O.1605; 
-: U= 0.1 (CD-LF), n = 2, D( 1280)/A” = 0.05871. 
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scheme quickly became constant at a value that was maintained for several thou- 
sand time steps. By contrast the height errors for both the (GEM-RK) and the 
(SN-RK) schemes increased steadily with time (see Fig. 3a where the case U= 1.0 
is shown). An illustration of how nearly constant the height error was for the 
(CD-LF) scheme is as follows. At t = 23.04, H= -0.01746 (rounded to 4 
significant digits) and from then until t = 1280.00 the height error was either 
-0.01746 or -0.01747, with the fluctuation in the fourth digit probably arising as 
a consequence of the height-locating procedure that was used (cf. Section 3.1). The 
times taken for the steady situation to be attained were found to depend rather 
strongly on the amplitude U of the initial datum, a feature that is evident in Fig. 3, 
but which appears more obviously in the graphs of the shape error shown in Fig. 4. 
Thus, when U = 1.0 it took only about 40 time units for the steady waveform to be 
realized whereas with U =O.l it took at least 1000 time units for the discrete 
waveform to reach its steady value. (It is interesting that Ablowitz and Ladik [2], 
and see also Hirota [ 151, have discovered a numerical scheme for the Korteweg-de 
Vries equation (1.1) that has exact soliton solutions. This scheme is not local in 
space, however, and it is not known whether there are local schemes for (1.1) hav- 
ing exact travelling-wave solutions.) 

Also given in Fig. 4a are graphs of the shape error D for both the (GEM-RK) 
and the (SN-RK) schemes, for the case U= 1.0. It can be seen from these graphs 
that the variations of D with time were quite small when t exceeded about 100. 
Note that this does not mean the discrete wave nearly has permanent form for, as 
we saw in Fig. 3, the “amplitudes” of these discrete solutions decreased steadily with 
time. Rather, the interpretation is that, for t > 100 say, the “shape” of these discrete 
solutions differed from a solitary wave (1.2) of the same amplitude by 
approximately a constant proportion. Thus, although the amplitudes of these 
approximations to the solitary wave (1.2) decreased steadily with time the 
waveform preserved a shape close to that of a member of the family (1.2). 

Some of the values of D/A4 for the (GEM-RK) scheme, from which the graph in 
Fig. 4a was drawn are given in Table III. 

TABLE III 

Some Values of D/A4 for the (GEM-RK) Scheme, U= 1.0, E =O.l x lo-‘, A = 0.16, 
Corresponding to the Graph Shown in Fig. 4a. 

t 99.84 199.68 299.52 399.36 499.20 599.04 701.44 
D/A4 0.8777 0.8812 0.8825 0.8838 0.8865 0.8860 0.8855 

1 801.28 901.12 lOCtO.96 1100.80 1200.64 
D/A4 0.8841 0.8850 0.8829 0.8835 0.8795 
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4. CONCLUSIONS 

A description has been given of a number of numerical schemes to solve the 
initial-value problem (P). The methods studied have either second- or fourth-order 
accuracy in both the space and time variables, though one of the schemes has a 
straightforward extension to any desired order of accuracy. Rigorous error 
estimates can be obtained for all these schemes using the methods described in [9]. 
A description is also given of some numerical experiments made with these schemes 
based on the solitary-wave solution (1.2) of (P). The experiments, which included 
both a standard convergence study and other special tests, revealed some subtle dif- 
ferences between the errors for the various schemes. So, for example, the multi-step 
scheme appeared to introduce an oscillatory component to the solution, as 
indicated by the shape error D (cf. Fig. 2), whereas the others apparently did not. 
On the other hand, the (CD-LF) computations appeared to settle into a per- 
manent-form solution of its own, a property not evident with the other schemes. 

In purely practical terms we found the convergence study invaluable, by way of 
exposing errors both in the programming and of a conceptual kind, and as a guide 
to performing the computations described in Bona, Pritchard, and Scott [S-lo]. 

Finally, the numerical evidence that the (CD-LF) scheme might have per- 
manent-form (solitary-wave) solutions was a surprise to us and it would be of 
interest to know definitively whether or not this is the case. (We have not as yet 
attempted to find an explicit solitary-wave solution to the present problem, or to 
demonstrate the existence of such by an abstract argument.) Should a family of 
such solutions exist it would be interesting to enquire whether or not they would 
exhibit the so-called soliton property, namely, that two solitary waves of the family 
would reemerge from an interaction with their shapes unaltered. We believe the 
answer to this question to be in the negative for the following reason. If the 
(CD-LF) scheme were to have the soliton property for all dt and Ax, then the con- 
vergence estimates referred to in Section 2 would imply that the same holds for (P): 
as Al and dx tend to zero, the solitary-wave solutions to (CD-LF) would converge 
to a solitary-wave solution of (P). But the numerical experiments described in [ 1 ] 
and [S] indicate that (P) does not have the soliton property. (Inelastic collisions of 
two solitary waves having positive and negative amplitudes, respectively, have been 
reported in [I l] and [lx].) It should, however, be stressed that the above 
argument is not a proof, even given the existence of (CD-LF) solitary waves. 
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