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Using [3H]diazepam binding, high concentrations of receptors were found in the frontal cortex and lateral amygdala. Infusions ol 
chlordiazepoxide into the lateral amygdala induced a release of responding measured during the component of a conditioned emotion- 
al response task previously associated with an aversive stimulus. The lateral amygdala appears to be an important component of the 
forebrain circuitry involved in the expression of anxiety and sensitive to benzodiazepine drugs. 

INTRODUCTION 

The amygdaloid  complex has long been identif ied 

as an important  centre for the regulat ion of emotion-  

al behaviour  4. Weiskrantz  originally suggested that 

the effect of amygdalec tomy in monkeys  tested on 

avoidance tasks was to make it difficult for animals to 

identify reinforcing stimulP 2. Later  recording 22 and 

lesion studies in monkeys  7`u and rats 23 have support-  

ed the idea of an amygdaloid  mechanism for evaluat-  

ing the motivat ional  significance of sensory stimuli. 

Lesions and disruptive electrical s t imulat ion of the 

amygdaloid complex in rats selectively release spon- 

taneous and condi t ioned avoidance behaviour ,  indi- 

cating that the amygdaloid  complex in this species is 

perhaps most critically involved in the evaluat ion of 

aversive stimuli -~,<27. One of the most striking and 

characterist ic behavioural  effects of benzodiazepine  

drugs is also to release behaviour  suppressed by aver- 

sive stimuli such as electric shock~. The present  ex- 

per iments  test the hypothesis  that activation of ben- 

zodiazepine receptors  concent ra ted  within the amyg- 

daloid complex would produce anxiolytic effects. 

The distr ibution of benzodiazepine  receptors  in the 

amygdaloid complex and other  major  components  of 

the limbic system was es t imated primari ly to provide 

a guide for complementa ry  microinfusion experi-  

ments, and also as an addit ional  comparison with 

mapping studies from other  laborator ies  >. The be- 

havioural effects of microinfusions of benzodiaze-  

pines into subregions of the amygdaloid  complex rich 

in receptors  were measured using a 'conflict" test> 

modified for intracerebral  microinfusion studies 27. 

The modified test is sensitive to benzodiazepines  ad- 

ministered parentera l ly  and to b lockade of these ef- 

fects by the benzodiazepine  :antagonist Ro 15-1788, 

allows repeated  drug t rea tments  on a stable baseline,  

yet requires only 8 sessions of training2:.-'< 

The effects of the in t ra-amygdaloid  infusions on 

pain threshold in the tail-flick test were also meas- 

ured to evaluate the possible analgesic effects -'1 of 

BZ at doses showing an anxiolytic action, [3H]Diaze- 

pare was used for the binding studies, but as the etha- 

nol /propylene glycol/saline solvent vehicle necessary 

for i.v. adminis trat ion of d iazepam was unsuitable for 

direct intracerebral  infusion, the water-soluble com- 

pound chlordiazepoxide was used for the infusion ex- 

periments.  
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MATERIALS AND METHODS 

[3 H] Diazepam binding 
Animals were killed by decapitation. The brain 

was exposed by a single median sagittal scissor cut 

through the skull and retraction of the cranial bones. 

The brain was removed on a spatula and positioned 

ventral surface uppermost on an ice-cooled stainless 

steel plate. Transections and finer cuts were made 

with mounted razor blades, and the tissue manipu- 

lated with fine forceps. The dissection typically took 

4-5 min to generate samples of frontal cortex, stria- 

turn, septum, hypothalamus, hippocampus, amygda- 

loid complex, entorhinal cortex, cerebellum, brain- 

stem and spinal cord. Samples were frozen immedi- 

ately on aluminium foil overlying solid CO, and then 

stored in polythene vials. Subregions of the amygda- 

loid complex were dissected from frozen sections on 

a freezing-stage microtome (Frigistor). Frozen 

brains were transferred from liquid nitrogen, trun- 

cated posteriorly and placed anterior surface upper- 

most on the freezing-stage. Four successive sections 

of 500 #m thickness were then cut through successive 

levels of the amygdaloid complex, beginning at the 

level of the anterior commissure (0.0 in the atlas of 

Pellegrino and Cushmanlg). 

As each section was exposed, 4 subregions of the 

amygdaloid complex (lateral, basolateral, central- 

medial and cortical) were dissected out under a bin- 

ocular microscope with fine scalpel blades (Swarm- 

Morton No. 11), using the anterior commissure, op- 
tic tract and lateral ventricle as landmarks. 

Frozen tissue was homogenized to 10 mg.ml-~ in 
50 mM Tris/HCI (Trizma) buffer (pH 7.4) at 4 °C. 

Pre-cooled assay reagents were then added to assay 

tubes in an ice bath at 4 °C. Final concentrations of 
the reagents in the assay (200/~1 total volume) were, 

in order of addition: tissue homogenate 10 mg'ml-~, 5 
micromolar 'cold' diazepam (Roche) or de-ionized 
water, and 10 nM [3H]diazepam (3.22 TBq/mmol, or 
87 Ci/mmol, Amersham Radiochemicals). Assay 
tubes, replicated in triplicate, were incubated for 45 

min at 4 °C. Tube contents were transferred to a 12- 
port binding manifold (Millepore) in two 5 ml washes 
of 50 mM Tris, and vacuum filtered (minimum vacu- 
um 20 mm Hg: Whatman GF/C filters). Filters were 
removed and dried in a jet of warm air for a minimum 
of 60 min, then immersed in scintillation fluid corn- 

posed of 4.2 g PPO (2.5-diphenyloxazole) and 50 mg 
PDPOP (1,4-bis-2-5-phenyl-oxazolyl-benzcnet per 

titre of sulphur-free toluene. Samples were then 

counted to constant period (10 min) on an Isocap 30() 

liquid scintillation counter (Nuclear Chicago). lhc 

ESP-variable quench mode of a more sophisticated 

counter (Searle Model 688(I MK. 3) was used to 

check quench. Quench was sufficiently low and con- 

stant for the direct use of untransformed counts per 
minute (cpm) data to be used in subsequent cal- 

culations. The range of tissue counts was 100i)- 

22,000 cpm, with filter blanks typically below 1()11 

cpm. Bound radioactivity in cpm was conx.erted to 

binding density in fmol per mg tissue (w. wt.): the ref- 

erence standard was always 2 pmol of ligand spotted 

directly onto the filter. Each data point was the mean 

of the 3 assay replicates, the samples for which were 

all based on a minimum of 6 pooled samples. 

Two methods were employed to estimate maximal 

specific receptor binding in the brain regions as- 

sayed: the estimates of choice were based on extra- 

polation from Scatchard plots, but where this was im- 

practical, as in the case of very small intra-amygda- 

loid samples, relative estimates of binding density 

were made at fixed ligand concentration. 

Conflict test 
Rats (n = 11) were first trained to press a lever on 

an FR1 schedule in a standard conditioning chamber 

All animals then received a 20-min conditioning ses- 

sion each day for 8 days. Each session was parti- 

tioned into alternating 5-rain light (L} and 2.5-rain 

dark (D) periods in a fixed LDLDL sequence Dur- 
ing both periods (L,D), every lever-press delivered a 

food pellet; in the dark periods only, a random 50% 

of lever-presses also elicited a footshock ~0.6 mA. 
0.5 s). All conditioning contingencies were con- 

trolled by BASIC programs running on a low-cost 
laboratory microcomputer (Acorn). All drugs were 

administered i.p. in 0.9% saline. Animals were test- 
ed in extinction sessions (i.e. shock offI separated by 
1 or 2 sessions of re-training to maintain baseline re- 
sponding. Results are expressed as mean lever-pres- 

sing rates over the 5-min periods. The Wilcoxon test 
was used throughout for statistical comparisons. 

Analgesia test 
Rats (n = 11) were lightly restrained and their tails 



positioned in a groove over a 1 cm hole shielded from 
a 1 kW heat lamp positioned 6 in. below it. The shield 
plate was then removed to expose the 1 cm hole and 
the latency for the rat to flick its tail away from the 
heat source measured with a stopwatch. 

RESULTS 

Binding 
Specific binding was saturable and linear around 
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Fig. 1. Estimates of [~Hldiazcpam binding density in various re- 
gions of rat brain and within the amygdaloid complex. A: esti- 
mates from Scatchard pk)ts. B: estimates taken at 10 nM ligand 
concentration (means I s.c.s.,  n - 6). FC, frontal cortex; HE. 
hippocampus; EC, entorhinal cortex; AM, amygdaloid com- 
plex: HT, hypothalamus; CER, cerebellum; SEP, septum; ST, 
striatum: L, lateral amygdaloid area; CM, central-medial 
amygdaloid; CO, cortical amygdaloid area: B, basal amygda- 
k)id area. 
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the range of tissue concentration used for estimates 
of binding density. Binding estimated by extrapola- 
tion from Scatchard plots was high in frontal cortex, 
intermediate in hippocampus, entorhinal cortex, 
amygdaloid complex and hypothalamus, and low in 
striatum, septum and brainstem (Fig. 1A). Estimates 
at fixed ligand concentration yielded a very similar 
pattern of binding density except for a slightly lower 
value for the hippocampus (Fig. 1B). Within the 
amygdaloid complex, binding was highest in the lat- 
eral sample (Fig. 1B). 

A 
MEAN RESPONSES PER BIN 

35 

~ T 

2C 
F 

[ 

10 

5 

o i 
25 

B 

3O 

~T_ /_ 

3 0 7 5 100 12 5 150 17 5 20 0 
BIN (ELAPSED SESSION TIME) 

MEAN RESPONSES PER BIN 

T L I 

I 
25  S0 75  100 125 150 175 200 

8IN (ELAPSEO SESSION TIME) 

Fig. 2. Effect of infusion of  chlordiazepoxide into the lateral 
amygdaloid complex on the rat conflict test (means _+ S .E .M . ,  
n = 1]) .  Dark  periods shaded, light periods unshaded. A:  sa- 
line control infusion (! #1 at 0.5#1 per rain). B: chk)rdiazcpox- 
ide infusion ( l(l#g in 1 #1 at O.5,ul per min); release effect signif- 
icant with respect to saline control (P < 0.001, Wilcoxon test). 
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Conflict test 
Acquisition was very rapid. Subjects showed sup- 

pression confined to the dark periods during the first 

training session, which after 8 sessions reached a sta- 

ble asymptotic level. Microinfusions of chlordiaze- 

poxide (10~g in 1 #1 saline at a rate of 0.5 #l '  min-~) 
into the lateral amygdaloid complex produced highly 

significant release of responding in the dark periods 

with no effect on responding in the light (Fig. 2). 
Control infusions of saline into the lateral amygda- 

loid complex, and of the same dose of chlordiazepox- 

ide to a site 1 mm dorsal to the amygdaloid complex 

produced no release (Fig. 3). The releasing effect of 

CDP was severely attenuated when the shocks nor- 

mally omitted on test days were instead included 

(P < 0.001, Wilcoxon; Fig. 3). The inclusion of 

shock did not however quite reduce responding to sa- 

line control levels (P < (l.01, Wilcoxon; Fig. 3). 

According to Myers ~6, the small, low-rate infusions 

used would be expected to produce a radial spread of 

about 0.5 mm from the site of infusion. The spread ~I 

an infusion of 1/A of [3H]diazepam stock (1() nM) into 

the lateral amygdaloid area was measured dirccdv. 

Samples dissected and frozen 5 rain after a standard 

infusion (1 #1 over 2 min) revealed approximately 

17,000 cpm of activity in the amygdaloid complex, 

compared to 300 cpm in the next highest region, the 

ventral hippocampus. 

Analgesia test 
An identical infusion of chlordiazepoxide into the 

lateral amygdaloid complex in the same group of 11 

rats had no effect on tail-flick latency when compared 
with saline vehicle (5.7 + 0.5 S.E.M. and 4.8 _+ 0.7 s, 

respectively; n.s., Wilcoxon test). 

DISCUSSION 

The binding results from this study are in striking 

agreement with the most recent findings based on 
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Fig. 3. Summary (means + S.E.M., n = 11) of the effects of intra-amygdaloid chlordiazepoxide on the rat conflict test f(~r all combina- 
tions of infusions, shock and placement tested. Compared with saline controls (SAL), chlordiazepoxide (CDP) infusions into the later- 
al amygdaloid complex (AL) significantly increased responding in the dark (shaded) periods in the absence (P < 0.001: Wilcoxon test) 
and presence (P < 0.005, Wilcoxon test) of shock. The central placement had no significant effect, and response vakies in the liglvt 
(unshaded) periods were also unaffected (all n.s., Wilcoxon test). 



autoradiographic mapping17 revealing the lateral 

area to have the highest density of [3H]diazepam 

binding within the amygdaloid complex. Microinfu- 
sions of a small dose of chlordiazepoxide into the lat- 
eral area of the amygdaloid complex produced a se- 
lective release of suppressed responding with no non- 
specific effects. This effect was not produced by ex- 

tra-amygdaloid infusions of chlordiazepoxide or of 
saline, and the effective intra-amygdaloid dose of 
chlordiazepoxide did not show any analgesic effect 

on the tail-flick test. Similar infusions using [3H]dia- 
zepam solution suggested that spread after 5 rain was 
minimal. Such a time-course and Myers' studies~6 ren- 
der it likely the infusion had its anxiolytic effect be- 
fore it had spread significantly beyond the site of in- 

jection. 
Peripheral administration of chlordiazepoxide has 

an identical releasing effect, recently shown to be 

blocked by the benzodiazepine antagonist Ro 
15-1788 (ref. 28). These findings strongly suggest 
that the lateral amygdaloid complex is a key site for 

the anxiolytic action of the benzodiazepines. 
The presence of shock greatly attenuated the re- 

leasing effect of CDP, indicating the release effect 
was specific to the conditioned emotional response 
(CER) and did not extend to behaviour suppressed 
by immediate punishment. Other actions of chlordia- 
zepoxide cannot account simply for the confinement 
of the release phenomenon to the dark (shock signal) 
period. Muscle relaxant or sedative actions would 
have produced further suppression of responding and 
neither of these actions would be predicted to be spe- 

cific to the dark periods. 
The wider neural mechanisms by which activation 

of benzodiazepine receptors in the amygdaloid com- 
plex produces a specific anti-anxiety effect are un- 
clear 2~. Recent anatomical s tud ies  ~.12,25,3~ have sup- 

ported earlier suggestions that the amygdaloid com- 
plex may be an important cortico-hippocampal re- 
lay -'-7. The lateral area of the amygdaloid area con- 

tains the lateral nucleus which receives projections 
from the neocortex and projects to the hippocampal 
formation ll. The lateral amygdaloid projection to the 
hippocampal system is known to have a strong mod- 
ulatory electrophysiological influence on the ento- 
rhinal input to the dentate gyrus 29.30. The population 

of benzodiazepine receptors in the lateral amygda- 
loid area is therefore in a position to modulate corti- 
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co-hippocampal neurotransmission, and this may be 

an important facet of the anxiolytic action of benzo- 
diazepines. 

In addition to its reciprocal links with the hippo- 
campal formation, the basolateral area of the amyg- 
daloid complex has prominent links with frontal cor- 

tex both directly and via the nucleus medialis dorsalis 
of the thalamus 10,20. Recent cytoarchitectural studies 

have also supported the notion that the lateral and 
basolateral areas of the amygdaloid complex play a 

critical role in coordinating lirnbic forebrain areas 
that direct behavioural output 13. Both the hippocam- 
pal formation and the amygdaloid complex send out- 
put to the nucleus accumbens septi s-9. 

Thus, different sectors of the amygdaloid complex 
project to hippocampus and to association cortex, a 
dissociation supported by the cytoarchitectural data. 
In turn, both the hippocampus and basolateral amyg- 

daloid complex project to the nucleus accumbens, 
which receives a rich dopaminergic innervation 12 and 

serves as an interface between limbic structures and 
motor output mechanisms of the striatum 1~. Both in 
terms of its interactions with circuits in the limbic sys- 
tem and its access to motor mechanisms, the amygda- 
Mid complex is viewed as a critical structure coordi- 
nating limbic forebrain areas that direct behavioural 
output. Lesion studies suggest that whereas the 
amygdaloid complex is critical for the coding of 
meaningful events, the hippocampus is involved m 
the memory of those events ~5. In the absence of these 
limbic structures, present experience fails to guide 
future hehaviour. 

One might speculate then that the amygdalo-hip- 

pocampal and amygdalo-frontal circuits, respective- 
ly, subserve the mnemonic and affective aspects of 
emotional experience, It is particularly striking that 
all of the key sites in this speculative scheme exhibit 

high local concentrations of benzodiazepine recep- 
tors. The strong agreement of biochemical, anatom- 
ical, physiological and behavioural data from this and 
other work suggests a prevalent role of benzodiaze- 
pine receptors in the amygdaloid and related limbic 
sites in anxiety. 

ACKNOWLEDGEMENTS 

S.R.T. thanks the Medical Research Council for 
support as an MRC scholar and Training Fellow. 



90 

REFERENCES 

1 Beckstead, R. M., Afferent connections of the entorhinal 
area in the rat as demonstrated by retrograde cell-labelling 
with horseradish peroxidase, Brain Research. 152 (1978) 
249-264. 

2 Douglas, P. and Pribram, K., Learning and limbic lesions. 
Neuropsychology, 4 (1966) 197-220. 

3 Geller, I., Kulak, J. T. and Seifter, J., The effects of chlor- 
diazepoxide and chlorpromazine on a punishment discrimi- 
nation, Psychopharmacology, 25 (1962) 112-116. 

4 Gloor, P., Temporal lobe epilepsy: its possible contribu- 
tions to the functional significance of the amygdala and of 
its interaction with neocortical-temporal mechanisms. In B. 
E, Eleftheriou (Ed.), The Neurobiology o f  the Amygdala. 
Plenum Press. New York, 1972, pp, 423-457. 

5 Goddard, G, V., Amygdala stimulation and learning in the 
rat. J. comp. Physiol. Psychol., 58 (1964) 23-36. 

6 Grossman, S. P., Grossman, L. and Watsh, L. L., Func- 
tional organization of the rat amygdala with respect to 
avoidance behaviour, J. comp, Physiol. Psychol.. 88 (1975) 
829-843, 

7 Jones, B. and Mishkin, M., Limbic lesions and the problem 
of stimulus-reinforcement associations, Exp. Neurol., 36 
(1972) 362-377. 

8 Kelly, A. E. and Domesick, V. B., The distribution of the 
projection from the hippocampal formation to the nucleus 
accumbens in the rat: an anterograde- and retrograde- 
horseradish peroxidase study. Neuroscience, 7 (19821 
2321-2335. 

9 Kelly, A. E., Domesick, V. B. and Nauta, W. J. H., The 
amygdala-striatal projection in the rat - -  an anatomical 
study by anterograde and retrograde tracing methods, Neu- 
roscience. 7 ( 19821 615-630. 

10 Krettek. J. E. and Price, J. L.. Projections from the amyg- 
daloid complex to the cerebral cortex in the rat and cat, 
J. comp, Neurol. . 172 (19771 687-722. 

11 Krettek. J. E. and Price, J. L., Projections from the amyg- 
daloid complex and adjacent olfactory structures to the en- 
torhinal cortex and to the subiculum in the rat and cat, 
J. comp. Neurol., 172 (19771 723-752. 

12 Krcttek, J. E. and Price, J. L., A description of the amyg- 
daloid complex in the rat and cat, with observations on in- 
tra-amygdaloid axonal connections, J. comp. Neurol., 178 
(1978) 255-280. 

13 Millhouse, O, E. and De Olmos, J,, Neuronal configura- 
tions in lateral and basolateral amygdala, Neuroseience. 10 
(1983) 1269-1300. 

14 Mishkin. M.. Memory in monkeys severely impaired by 
combined but not by separate removal of amygdala and 
hippocampus, Nature (Lond.), 273 (1978) 297-298. 

15 Mishkin, M. and Aggleton, J., Multiple functional contri- 
butions of the amygdala in monkeys. In M. Y. Ben-Ari 
(Ed.), The Amygdaloid Complex, Elsevier. Amsterdam, 
1981. 

16 Myers, R. D., Blood-brain barrier: techniques for the in- 
tracerebrat administration of drugs. In k. L. lversen, S. D. 

Iversen and S. H. Snyder (Eds.), Handbook oj t'sychophur- 
macology, Vol. 1, Plenum, New York, t975, pp. I -28. 

17 Niehoff, D. and Kuhar, M. J., Benzodiazcpinc receptors: 
localization in rat amygdala, J. Neurosci.. 3 ¢19831 
2091 - 2097. 

18 Nauta, W. J. H. and Domesick. U. B., Crossroads of limbic 
and striatal circuitry: hypothalamic-nigral connections. In 
K. E. Livingston and O. Hornykiewicz (Eds.), Limbic 
Mechanisms, Plenum Press, pp. 75-93. 

19 Pellegrino, L. J. and Cushman. A. J., A Stereotaxic Atlas of  
the Rat Brain, Meredith Press. 1967. 

20 Porrino, L. J., Crane, A. M. and Goldman-Rakk, P.S., Di- 
rect and indirect pathways from the amygdala to the frontal 
lobe in Rhesus monkeys, J. comp. Neurol. 198 (1981) 
121-136. 

21 Rodgers, R. J., Elevation of aversive thresholds in rats by 
intra-amygdaloid injections of morphine sulphate, Physiol. 
Biochem. Behav., 6 (1977)385-393. 

22 Rolls, E. T., The Brain and Reward, Pergamon Press, Ox- 
ford, 1975. 

23 Rolls, E. T. and Rolls, B. J.. Altered food preferences af- 
ter lesions in the basolateral region of the amygdala in the 
rat, J. cornp. Physiol. Psychol.. 83 (1973)248-252. 

24 Scheel-Kruger, J. and Petersen, E. N., BZ receptors in 
amygdala mediate anticonflict effects by' a GABAergic 
mechanism, A bstr. for C. l. N. P. Congress, 1984, in press. 

25 Swanson, L. W., The hippocampus: new anatomical in- 
sights, T.I.N.S., 2 (1979)9-12. 

26 Thiebot, M. H., Jobert, A. and Soubrie, P., Conditioned 
suppression of behaviour: its reversal by intra raphe micro- 
injection of chlordiazepoxide and GABA, Neurosci. Lett., 
16 ( 19801 213-217. 

27 Thomas, S. R., Stimulus Evaluation Mechanisms in the 
Lirnbic System, Ph.D. thesis, University of Cambridge, 
1981, 

28 Thomas, S. R., Trimnell, L. E, and lversen, S. D., Benzo- 
diazepine "antagonist' blocks the releasing effect of chlor- 
diazepoxide on a rat conflict test, Proc. Brit. pharmacot. 
Soc., C72, Galway, September 1983. 

29 Thomas. S. R., Assaf, S. Y. and Iversen, S. D., Electro- 
physiological studies of the amygda!oid-hippocampal input 
in the rat, Neurosci. Lelt. Suppl. 7 (1981) 238. 

30 Thomas, S. R., Assaf, S. Y. and Iversen, S. D., Amygda- 
loid complex modulates neurotransmission from the ento- 
rhinal cortex to the dentate gyrus of the rat, Brain Re- 
search. 307 (19841 363-365. 

3l Turner, B. H.. Mishkin, M. and Knapp, M., Organization 
of amygdalopetal projections from modality-specific corti- 
cal association areas in the monkey, J. cornp. Neurol.. 191 
(1981) 515-543. 

32 Weiskrantz, L., Behavioural changes associated with abla- 
tion of the amygdaloid complex in monkeys, ,/. comp. Phys, 
iol. Psychol.. 49 (1956) 381-391. 

33 Young, W. S. III and Kuhar. M. J., Radiohistochemical lo- 
calization of benzodiazepine receptors in rat brain, 
J. Pharm. exp. Ther., 212 (1980) 337-346. 


